Claudin-1 induced sealing of blood-brain barrier tight junctions ameliorates chronic experimental autoimmune encephalomyelitis

Friederike Pfeiffer, Julia Schäfer, Ruth Lyck, Victoria Makrides, Sarah Brunner, Nicole Schaeren-Wiemers, Urban Deutsch, Britta Engelhardt, Friederike Pfeiffer, Julia Schäfer, Ruth Lyck, Victoria Makrides, Sarah Brunner, Nicole Schaeren-Wiemers, Urban Deutsch, Britta Engelhardt

Abstract

In experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis (MS), loss of the blood-brain barrier (BBB) tight junction (TJ) protein claudin-3 correlates with immune cell infiltration into the CNS and BBB leakiness. Here we show that sealing BBB TJs by ectopic tetracycline-regulated expression of the TJ protein claudin-1 in Tie-2 tTA//TRE-claudin-1 double transgenic C57BL/6 mice had no influence on immune cell trafficking across the BBB during EAE and furthermore did not influence the onset and severity of the first clinical disease episode. However, expression of claudin-1 did significantly reduce BBB leakiness for both blood borne tracers and endogenous plasma proteins specifically around vessels expressing claudin-1. In addition, mice expressing claudin-1 exhibited a reduced disease burden during the chronic phase of EAE as compared to control littermates. Our study identifies BBB TJs as the critical structure regulating BBB permeability but not immune cell trafficking into CNS during EAE, and indicates BBB dysfunction is a potential key event contributing to disease burden in the chronic phase of EAE. Our observations suggest that stabilizing BBB barrier function by therapeutic targeting of TJs may be beneficial in treating MS, especially when anti-inflammatory treatments have failed.

References

    1. J Cell Biol. 2008 Nov 3;183(3):409-17
    1. PLoS One. 2010 Oct 29;5(10):e13741
    1. Neuropathol Appl Neurobiol. 2007 Feb;33(1):86-98
    1. Exp Cell Res. 2008 Apr 1;314(6):1202-16
    1. Curr Opin Cell Biol. 2002 Oct;14(5):531-6
    1. PLoS One. 2008 Aug 22;3(8):e3037
    1. J Pathol. 2003 Oct;201(2):319-27
    1. Neuroscience. 2007 Jul 13;147(3):664-73
    1. J Cell Sci. 1994 May;107 ( Pt 5):1347-57
    1. J Clin Invest. 2002 Feb;109(3):383-92
    1. Acta Neuropathol. 2000 Sep;100(3):323-31
    1. J Neuroimmunol. 2010 Dec 15;229(1-2):180-91
    1. Trends Cell Biol. 2006 Apr;16(4):181-8
    1. Acta Neuropathol. 2007 Feb;113(2):177-86
    1. Eur J Immunol. 2008 Aug;38(8):2156-67
    1. Vascul Pharmacol. 2002 Jun;38(6):323-37
    1. Eur J Immunol. 2004 Nov;34(11):2955-63
    1. J Cereb Blood Flow Metab. 2009 Sep;29(9):1491-502
    1. Brain Pathol. 2002 Apr;12(2):154-69
    1. Exp Cell Res. 2004 Apr 15;295(1):36-47
    1. Curr Opin Cell Biol. 1999 Oct;11(5):628-33
    1. J Cell Biol. 1998 Oct 19;143(2):391-401
    1. FASEB J. 2005 Nov;19(13):1872-4
    1. Mol Biol Cell. 2000 Dec;11(12):4131-42
    1. J Cell Biol. 1999 Nov 15;147(4):891-903
    1. J Immunol. 2005 Jul 15;175(2):1267-75
    1. Nat Med. 2007 Oct;13(10):1173-5
    1. Cell Tissue Res. 2004 Feb;315(2):157-66
    1. Adv Drug Deliv Rev. 2005 Apr 25;57(6):883-917
    1. Lancet. 2008 Oct 25;372(9648):1502-17
    1. Neurobiol Dis. 2008 May;30(2):162-73
    1. Lab Invest. 2005 Jun;85(6):734-46
    1. Neurosci Lett. 2001 Jul 13;307(2):77-80
    1. Neurodegener Dis. 2008;5(1):16-22
    1. Acta Neuropathol. 2003 Jun;105(6):586-92
    1. Proc Natl Acad Sci U S A. 2007 Mar 27;104(13):5656-61
    1. J Cell Biol. 2002 Mar 18;156(6):1099-111
    1. Am J Physiol Heart Circ Physiol. 2003 Dec;285(6):H2820-31
    1. Schriftenr Neurol. 1983;25:1-135
    1. J Cell Sci. 1997 Jul;110 ( Pt 14):1603-13
    1. J Cell Biol. 1999 Oct 4;147(1):185-94
    1. Neuropathol Appl Neurobiol. 2011 Feb;37(1):24-39
    1. Brain. 1990 Oct;113 ( Pt 5):1477-89
    1. Biochim Biophys Acta. 2008 Mar;1778(3):631-45
    1. J Cell Biol. 2003 May 12;161(3):653-60

Source: PubMed

3
Se inscrever