Neuroprotective Effects of Clostridium butyricum against Vascular Dementia in Mice via Metabolic Butyrate

Jiaming Liu, Jing Sun, Fangyan Wang, Xichong Yu, Zongxin Ling, Haixiao Li, Huiqing Zhang, Jiangtao Jin, Wenqian Chen, Mengqi Pang, Junjie Yu, Yiwen He, Jiru Xu, Jiaming Liu, Jing Sun, Fangyan Wang, Xichong Yu, Zongxin Ling, Haixiao Li, Huiqing Zhang, Jiangtao Jin, Wenqian Chen, Mengqi Pang, Junjie Yu, Yiwen He, Jiru Xu

Abstract

Probiotics actively participate in neuropsychiatric disorders. However, the role of gut microbiota in brain disorders and vascular dementia (VaD) remains unclear. We used a mouse model of VaD induced by a permanent right unilateral common carotid arteries occlusion (rUCCAO) to investigate the neuroprotective effects and possible underlying mechanisms of Clostridium butyricum. Following rUCCAO, C. butyricum was intragastrically administered for 6 successive weeks. Cognitive function was estimated. Morphological examination was performed by electron microscopy and hematoxylin-eosin (H&E) staining. The BDNF-PI3K/Akt pathway-related proteins were assessed by western blot and immunohistochemistry. The diversity of gut microbiota and the levels of butyrate in the feces and the brains were determined. The results showed that C. butyricum significantly attenuated the cognitive dysfunction and histopathological changes in VaD mice. C. butyricum not only increased the levels of BDNF and Bcl-2 and decreased level of Bax but also induced Akt phosphorylation (p-Akt) and ultimately reduced neuronal apoptosis. Moreover, C. butyricum could regulate the gut microbiota and restore the butyrate content in the feces and the brains. These results suggest that C. butyricum might be effective in the treatment of VaD by regulating the gut-brain axis and that it can be considered a new therapeutic strategy against VaD.

Figures

Figure 1
Figure 1
Open field test. (a) The total distance travelled over 1 h, (b) the time spent in the central area, and (c) the total rest time are presented for each group. Sham, sham-operated group; VaD, VaD model group; Cb H, C. butyricum- (1 × 108 CFU-) treated group; Cb M, C. butyricum- (1 × 107 CFU-) treated group; and Cb L, C. butyricum- (1 × 106 CFU-) treated group. Error bars indicate SEM; P < 0.05 versus sham group; #P < 0.05 and ##P < 0.01 versus VaD group.
Figure 2
Figure 2
Morris water maze. (a) Escape latency (s). (b) The time spent in the target quadrant (s). Sham, sham-operated group; VaD, VaD model group; Cb H, C. butyricum- (1 × 108 CFU-) treated group; Cb M, C. butyricum- (1 × 107 CFU-) treated group; and Cb L, C. butyricum- (1 × 106 CFU-) treated group. Error bars indicate SEM; P < 0.05 and ∗∗P < 0.01 versus sham group; #P < 0.05 and ##P < 0.01 versus VaD group.
Figure 3
Figure 3
Representative photomicrographs of the ultrastructural changes observed in brain tissue. (a) A representative nucleolus in a hippocampal neuron of the sham-operated group. (b) A representative nucleolus of cerebral ischemia in the VaD group. (c) A representative nucleolus in the Cb L group, Cb M group (d), and Cb H group (e). Sham, sham-operated group; VaD, VaD model group; Cb H, C. butyricum- (1 × 108 CFU-) treated group; Cb M, C. butyricum- (1 × 107 CFU-) treated group; and Cb L, C. butyricum- (1 × 106 CFU-) treated group.
Figure 4
Figure 4
Representative photomicrographs of the histopathological changes in area CA1 of the hippocampus in mice. (a) HE staining. (b) TUNEL staining. Cells with a brown-stained cytoplasm are considered positive. Sham, sham-operated group; VaD, VaD model group; Cb H, C. butyricum- (1 × 108 CFU-) treated group; Cb M, C. butyricum- (1 × 107 CFU-) treated group; and Cb L, C. butyricum- (1 × 106 CFU-) treated group. Magnification: 400x. Scale bar = 20 μm.
Figure 5
Figure 5
Western blot analysis. (a) Western blot of the expression levels of BDNF, p-Akt, Akt, Bcl-2, and Bax in mouse hippocampus. (b) A quantitative analysis of the protein levels of BDNF from each group normalized to the loading control β-actin (c). (d) Bar graphs showing the protein level ratios of p-Akt/Akt and Bcl-2/Bax from each group; Sham, sham-operated group; VaD, VaD model group; Cb H, C. butyricum- (1 × 108 CFU-) treated group; Cb M, C. butyricum- (1 × 107 CFU-) treated group; and Cb L, C. butyricum- (1 × 106 CFU-) treated group. Error bars indicate SD; n = 8 for each group. P < 0.01 and ∗∗P < 0.01 versus sham group; #P < 0.05 and ##P < 0.01 versus VaD group.
Figure 6
Figure 6
Immunohistochemical staining. Representative images of the immunohistochemical staining of BDNF, p-Akt, Bcl-2, and Bax in area CA1 of the hippocampus. Cells with a brown-stained cytoplasm are considered positive. Sham, sham-operated group; VaD, VaD model group; Cb H, C. butyricum- (1 × 108 CFU-) treated group; Cb M, C. butyricum- (1 × 107 CFU-) treated group; and Cb L, C. butyricum- (1 × 106 CFU-) treated group. Magnification: 400x. Scale bar = 20 μm.
Figure 7
Figure 7
PCR-DGGE analysis of the predominant fecal microbiota in mice. (a) PCR-DGGE fingerprints used to analyze the fecal microbiota of the samples from the VaD model group (A), sham-operated group (H), and C. butyricum- (B, 1 × 106 CFU-; C, 1 × 107 CFU-; and D, 1 × 108 CFU-) treated groups. Each lane represents one subject that was randomly selected from each group. The bands marked in the DGGE gel were identified by cloning and sequencing to facilitate the interpretation of the figure. Bands: 1: Bacteroides sp.; 2: Hespellia sp.; 3: Clostridium XVIII sp.; 4: TM7 genera incertae sedis; 5: TM7 genera incertae sedis; 6: Anaerostipes sp.; 7: Barnesiella sp.; 8: Barnesiella sp.; 9: Roseburia sp.; 10: Acinetobacter sp.; 11: unclassified Helicobacteraceae sp.; 12: Streptobacillus sp.; 13: Barnesiella sp.; 14: Clostridium XIVa sp.; 15: Alistipes sp.; 16: unclassified Lachnospiraceae sp.; 17: Lachnospiraceae incertae sedis Alistipes sp.; 18: Anaerostipes sp.; 19: unclassified Porphyromonadaceae sp.; and 20: Butyricimonas sp. (b) Dendrogram of the DGGE profiles shown in (a).
Figure 8
Figure 8
Absolute concentration of butyrate (μmol g−1 wet weight). Sham, sham-operated group; VaD, VaD model group; Cb H, C. butyricum- (1 × 108 CFU-) treated group; Cb M, C. butyricum- (1 × 107 CFU-) treated group; and Cb L, C. butyricum- (1 × 106 CFU-) treated group. Error bars indicate SD; n = 8 for each group. P < 0.05 versus sham group, ∗∗P < 0.01 versus sham group, and #P < 0.05 and ##P < 0.01 versus VaD group.

References

    1. Sahathevan R., Brodtmann A., Donnan G. A. Dementia, stroke, and vascular risk factors; a review. International Journal of Stroke. 2012;7(1):61–73. doi: 10.1111/j.1747-4949.2011.00731.x.
    1. Zhao Y., Gong C.-X. From chronic cerebral hypoperfusion to Alzheimer-like brain pathology and neurodegeneration. Cellular and Molecular Neurobiology. 2015;35(1):101–110. doi: 10.1007/s10571-014-0127-9.
    1. Snyder H. M., Corriveau R. A., Craft S., et al. Vascular contributions to cognitive impairment and dementia including Alzheimer's disease. Alzheimer's & Dementia. 2015;11(6):710–717. doi: 10.1016/j.jalz.2014.10.008.
    1. Zhang J., Guo W., Tian B., et al. Puerarin attenuates cognitive dysfunction and oxidative stress in vascular dementia rats induced by chronic ischemia. International Journal of Clinical and Experimental Pathology. 2015;8(5):4695–4704.
    1. Sun Z.-K., Ma X.-R., Jia Y.-J., Liu Y.-R., Zhang J.-W., Zhang B.-A. Effects of resveratrol on apoptosis in a rat model of vascular dementia. Experimental and Therapeutic Medicine. 2014;7(4):843–848. doi: 10.3892/etm.2014.1542.
    1. Grenham S., Clarke G., Cryan J. F., Dinan T. G. Brain-gut-microbe communication in health and disease. Frontiers in Physiology. 2011;2, article 94 doi: 10.3389/fphys.2011.00094.
    1. Cryan J. F., Dinan T. G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nature Reviews Neuroscience. 2012;13(10):701–712. doi: 10.1038/nrn3346.
    1. Bercik P. The microbiota-gut-brain axis: learning from intestinal bacteria? Gut. 2011;60(3):288–289. doi: 10.1136/gut.2010.226779.
    1. Heijtz R. D., Wang S., Anuar F., et al. Normal gut microbiota modulates brain development and behavior. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(7):3047–3052. doi: 10.1073/pnas.1010529108.
    1. Hsiao E. Y., McBride S. W., Hsien S., et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155(7):1451–1463. doi: 10.1016/j.cell.2013.11.024.
    1. Gareau M. G., Wine E., Rodrigues D. M., et al. Bacterial infection causes stress-induced memory dysfunction in mice. Gut. 2011;60(3):307–317. doi: 10.1136/gut.2009.202515.
    1. Ait-Belgnaoui A., Colom A., Braniste V., et al. Probiotic gut effect prevents the chronic psychological stress-induced brain activity abnormality in mice. Neurogastroenterology and Motility. 2014;26(4):510–520. doi: 10.1111/nmo.12295.
    1. Bravo J. A., Forsythe P., Chew M. V., et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(38):16050–16055. doi: 10.1073/pnas.1102999108.
    1. Ohland C. L., Kish L., Bell H., et al. Effects of Lactobacillus helveticus on murine behavior are dependent on diet and genotype and correlate with alterations in the gut microbiome. Psychoneuroendocrinology. 2013;38(9):1738–1747. doi: 10.1016/j.psyneuen.2013.02.008.
    1. Girard S.-A., Bah T. M., Kaloustian S., et al. Lactobacillus helveticus and Bifidobacterium longum taken in combination reduce the apoptosis propensity in the limbic system after myocardial infarction in a rat model. The British Journal of Nutrition. 2009;102(10):1420–1425. doi: 10.1017/s0007114509990766.
    1. MacFabe D. F., Cain N. E., Boon F., Ossenkopp K.-P., Cain D. P. Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: relevance to autism spectrum disorder. Behavioural Brain Research. 2011;217(1):47–54. doi: 10.1016/j.bbr.2010.10.005.
    1. MacFabe D. F., Cain D. P., Rodriguez-Capote K., et al. Neurobiological effects of intraventricular propionic acid in rats: possible role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders. Behavioural Brain Research. 2007;176(1):149–169. doi: 10.1016/j.bbr.2006.07.025.
    1. Aragon G., Graham D. B., Borum M., Doman D. B. Probiotic therapy for irritable bowel syndrome. Gastroenterology & Hepatology. 2010;6(1):39–44.
    1. Patel R., DuPont H. L. New approaches for bacteriotherapy: prebiotics, new-generation probiotics, and synbiotics. Clinical Infectious Diseases. 2015;60(supplement 2):S108–S121. doi: 10.1093/cid/civ177.
    1. Ishibashi N., Yamazaki S. Probiotics and safety. The American Journal of Clinical Nutrition. 2001;73(2, supplement):465S–470S.
    1. Slyepchenko A., Carvalho A. F., Cha D. S., Kasper S., McIntyre R. S. Gut emotions—mechanisms of action of probiotics as novel therapeutic targets for depression and anxiety disorders. CNS & Neurological Disorders—Drug Targets. 2014;13(10):1770–1786. doi: 10.2174/1871527313666141130205242.
    1. Seki H., Shiohara M., Matsumura T., et al. Prevention of antibiotic-associated diarrhea in children by Clostridium butyricum MIYAIRI. Pediatrics International. 2003;45(1):86–90. doi: 10.1046/j.1442-200x.2003.01671.x.
    1. Lattimer J. M., Haub M. D. Effects of dietary fiber and its components on metabolic health. Nutrients. 2010;2(12):1266–1289. doi: 10.3390/nu2121266.
    1. Varela R. B., Valvassori S. S., Lopes-Borges J., et al. Sodium butyrate and mood stabilizers block ouabain-induced hyperlocomotion and increase BDNF, NGF and GDNF levels in brain of Wistar rats. Journal of Psychiatric Research. 2015;61:114–121. doi: 10.1016/j.jpsychires.2014.11.003.
    1. Hyeon J. K., Rowe M., Ren M., Hong J.-S., Chen P.-S., Chuang D.-M. Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. Journal of Pharmacology and Experimental Therapeutics. 2007;321(3):892–901. doi: 10.1124/jpet.107.120188.
    1. Ma J., Zhang J., Hou W. W., et al. Early treatment of minocycline alleviates white matter and cognitive impairments after chronic cerebral hypoperfusion. Scientific Reports. 2015;5, article 12079 doi: 10.1038/srep12079.
    1. Ma J., Xiong J.-Y., Hou W.-W., et al. Protective effect of carnosine on subcortical ischemic vascular dementia in mice. CNS Neuroscience and Therapeutics. 2012;18(9):745–753. doi: 10.1111/j.1755-5949.2012.00362.x.
    1. Venkat P., Chopp M., Chen J. Models and mechanisms of vascular dementia. Experimental Neurology. 2015 doi: 10.1016/j.expneurol.2015.05.006.
    1. van de Pol L., Gertz H.-J., Scheltens P., Wolf H. Hippocampal atrophy in subcortical vascular dementia. Neuro-Degenerative Diseases. 2011;8(6):465–469. doi: 10.1159/000326695.
    1. Barnhart C. D., Yang D., Lein P. J., Chapouthier G. Using the Morris water maze to assess spatial learning and memory in weanling mice. PLoS ONE. 2015;10(4) doi: 10.1371/journal.pone.0124521.e0124521
    1. Zhang X., Zeng B., Liu Z., et al. Comparative diversity analysis of gut microbiota in two different human flora-associated mouse strains. Current Microbiology. 2014;69(3):365–373. doi: 10.1007/s00284-014-0592-x.
    1. Muyzer G., de Waal E. C., Uitterlinden A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology. 1993;59(3):695–700.
    1. Li J., Qu Y., Chen D., et al. The neuroprotective role and mechanisms of TERT in neurons with oxygen-glucose deprivation. Neuroscience. 2013;252:346–358. doi: 10.1016/j.neuroscience.2013.08.015.
    1. Yang H.-Y., Liu Y., Xie J.-C., Liu N.-N., Tian X. Effects of repetitive transcranial magnetic stimulation on synaptic plasticity and apoptosis in vascular dementia rats. Behavioural Brain Research. 2015;281:149–155. doi: 10.1016/j.bbr.2014.12.037.
    1. Yang Y., Zhang X., Cui H., Zhang C., Zhu C., Li L. Apelin-13 protects the brain against ischemia/reperfusion injury through activating PI3K/Akt and ERK1/2 signaling pathways. Neuroscience Letters. 2014;568:44–49. doi: 10.1016/j.neulet.2014.03.037.
    1. Fanaei H., Karimian S. M., Sadeghipour H. R., et al. Testosterone enhances functional recovery after stroke through promotion of antioxidant defenses, BDNF levels and neurogenesis in male rats. Brain Research. 2014;1558:74–83. doi: 10.1016/j.brainres.2014.02.028.
    1. Harada S., Fujita-Hamabe W., Tokuyama S. Ameliorating effect of hypothalamic brain-derived neurotrophic factor against impaired glucose metabolism after cerebral ischemic stress in mice. Journal of Pharmacological Sciences. 2012;118(1):109–116. doi: 10.1254/jphs.11164FP.
    1. Kernie S. G., Liebl D. J., Parada L. F. BDNF regulates eating behavior and locomotor activity in mice. The EMBO Journal. 2000;19(6):1290–1300. doi: 10.1093/emboj/19.6.1290.
    1. Yao R.-Q., Qi D.-S., Yu H.-L., Liu J., Yang L.-H., Wu X.-X. Quercetin attenuates cell apoptosis in focal cerebral ischemia rat brain via activation of BDNF-TrkB-PI3K/Akt signaling pathway. Neurochemical Research. 2012;37(12):2777–2786. doi: 10.1007/s11064-012-0871-5.
    1. Dai R., Xia Y., Mao L., Mei Y., Xue Y., Hu B. Involvement of PI3K/Akt pathway in the neuroprotective effect of Sonic hedgehog on cortical neurons under oxidative stress. Journal of Huazhong University of Science and Technology [Medical Sciences] 2012;32(6):856–860. doi: 10.1007/s11596-012-1047-x.
    1. Tehranian R., Rose M. E., Vagni V., et al. Transgenic mice that overexpress the anti-apoptotic Bcl-2 protein have improved histological outcome but unchanged behavioral outcome after traumatic brain injury. Brain Research. 2006;1101(1):126–135. doi: 10.1016/j.brainres.2006.05.049.
    1. Cummings J. H., Hill M. J., Bone E. S., Branch W. J., Jenkins D. J. The effect of meat protein and dietary fiber on colonic function and metabolism. II. Bacterial metabolites in feces and urine. The American Journal of Clinical Nutrition. 1979;32(10):2094–2101.
    1. Macfabe D. F. Short-chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum disorders. Microbial Ecology in Health and Disease. 2012;23 doi: 10.3402/mehd.v23i0.19260.
    1. Intlekofer K. A., Berchtold N. C., Malvaez M., et al. Exercise and sodium butyrate transform a subthreshold learning event into long-term memory via a brain-derived neurotrophic factor-dependent mechanism. Neuropsychopharmacology. 2013;38(10):2027–2034. doi: 10.1038/npp.2013.104.
    1. Kim H. J., Leeds P., Chuang D.-M. The HDAC inhibitor, sodium butyrate, stimulates neurogenesis in the ischemic brain. Journal of Neurochemistry. 2009;110(4):1226–1240. doi: 10.1111/j.1471-4159.2009.06212.x.
    1. De Vadder F., Kovatcheva-Datchary P., Goncalves D., et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell. 2014;156(1-2):84–96. doi: 10.1016/j.cell.2013.12.016.

Source: PubMed

3
Se inscrever