Sleep apnea and diabetes mellitus are independently associated with cardiovascular events and hospitalization for heart failure after coronary artery bypass grafting

Aye-Thandar Aung, Chieh-Yang Koo, Wilson W Tam, Zhengfeng Chen, William Kristanto, Hui-Wen Sim, Pipin Kojodjojo, Theodoros Kofidis, Chi-Hang Lee, Aye-Thandar Aung, Chieh-Yang Koo, Wilson W Tam, Zhengfeng Chen, William Kristanto, Hui-Wen Sim, Pipin Kojodjojo, Theodoros Kofidis, Chi-Hang Lee

Abstract

The relative and combined effects of sleep apnea with diabetes mellitus (DM) on cardiovascular outcomes in patients undergoing coronary artery bypass grafting (CABG) remain unknown. In this secondary analysis of data from the SABOT study, 1007 patients were reclassified into four groups based on their sleep apnea and DM statuses, yielding 295, 218, 278, and 216 patients in the sleep apnea (+) DM (+), sleep apnea (+) DM (-), sleep apnea (-) DM (+), and sleep apnea (-) DM (-) groups, respectively. After a mean follow-up period of 2.1 years, the crude incidence of major adverse cardiac and cerebrovascular event was 18% in the sleep apnea (+) DM (+), 11% in the sleep apnea (+) DM (-), 13% in the sleep apnea (-) DM (+), and 5% in the sleep apnea (-) DM (-) groups. Using sleep apnea (-) DM (-) as the reference group, a Cox regression analysis indicated that sleep apnea (+) and DM (+) independently predicted MACCEs (adjusted hazard ratio, 3.2; 95% confidence interval, 1.7-6.2; p = 0.005) and hospitalization for heart failure (adjusted hazard ratio, 12.6; 95% confidence interval, 3.0-52.3; p < 0.001). Sleep apnea and DM have independent effects on the prognosis of patients undergoing CABG.Clinical trial registration: ClinicalTrials.gov identification no. NCT02701504.

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Cumulative incidence of major adverse cardiac and cerebrovascular events (MACCEs), defined as a four-component composite of cardiovascular mortality, nonfatal myocardial infarction, nonfatal stroke, and unplanned revascularization.
Figure 2
Figure 2
Kaplan–Meier analyses of the cumulative incidences of cardiovascular mortality (A), non-fatal myocardial infarction (B), non-fatal stroke (C), and hospitalization for heart failure (D).

References

    1. Farkouh ME, Domanski M, Sleeper LA, et al. Strategies for multivessel revascularization in patients with diabetes. N. Engl. J. Med. 2012;367:2375–2384. doi: 10.1056/NEJMoa1211585.
    1. Head SJ, Milojevic M, Taggart DP, Puskas JD. Current practice of state-of-the-art surgical coronary revascularization. Circulation. 2017;136:1331–1345. doi: 10.1161/CIRCULATIONAHA.116.022572.
    1. Leavitt BJ, Ross CS, Spence B, et al. Long-term survival of patients with chronic obstructive pulmonary disease undergoing coronary artery bypass surgery. Circulation. 2006;114(1 Suppl):I430–I434.
    1. Alserius T, Hammar N, Nordqvist T, Ivert T. Risk of death or acute myocardial infarction 10 years after coronary artery bypass surgery in relation to type of diabetes. Am. Heart J. 2006;152:599–605. doi: 10.1016/j.ahj.2006.02.010.
    1. Mohammadi S, Dagenais F, Mathieu P, et al. Long-term impact of diabetes and its comorbidities in patients undergoing isolated primary coronary artery bypass graft surgery. Circulation. 2007;116(11 Suppl):I220–225.
    1. Gallagher S, Kapur A, Lovell MJ, et al. Impact of diabetes mellitus and renal insufficiency on 5-year mortality following coronary artery bypass graft surgery: A cohort study of 4869 UK patients. Eur. J. Cardiothorac. Surg. 2014;45:1075–1081. doi: 10.1093/ejcts/ezt630.
    1. Holzmann MJ, Rathsman B, Eliasson B, et al. Long-term prognosis in patients with type 1 and 2 diabetes mellitus after coronary artery bypass grafting. J. Am. Coll. Cardiol. 2015;65:1644–1652. doi: 10.1016/j.jacc.2015.02.052.
    1. Kogan A, Ram E, Levin S, et al. Impact of type 2 diabetes mellitus on short- and long-term mortality after coronary artery bypass surgery. Cardiovasc. Diabetol. 2018;17:151. doi: 10.1186/s12933-018-0796-7.
    1. Pamidi SL, Tasali E. Obstructive sleep apnea and type 2 diabetes: Is there a link? Front. Neurol. 2016;3:126.
    1. Reutrakul S, Mokhlesi B. Obstructive sleep apnea and diabetes: A state of the art review. Chest. 2017;152:1070–1086. doi: 10.1016/j.chest.2017.05.009.
    1. Javaheri S, Barbe F, Campos-Rodriguez F, et al. Sleep apnea: Types, mechanisms, and clinical cardiovascular consequences. J. Am. Coll. Cardiol. 2017;69:841–858. doi: 10.1016/j.jacc.2016.11.069.
    1. Zhao LP, Kofidis T, Lim TW, et al. Sleep apnea is associated with new-onset atrial fibrillation after coronary artery bypass grafting. J. Crit. Care. 2015;30(1418):e1–5.
    1. Zhao LP, Kofidis T, Chan SP, et al. Sleep apnoea and unscheduled re-admission in patients undergoing coronary artery bypass surgery. Atherosclerosis. 2015;242:128–134. doi: 10.1016/j.atherosclerosis.2015.07.006.
    1. Rupprecht S, Schultze T, Nachtmann A, et al. Impact of sleep disordered breathing on short-term post-operative outcome after elective coronary artery bypass graft surgery: A prospective observational study. Eur Respir J. 2017;49:1601486. doi: 10.1183/13993003.01486-2016.
    1. Uchôa CHG, Danzi-Soares NJ, Nunes FS, et al. Impact of OSA on cardiovascular events after coronary artery bypass surgery. Chest. 2015;147:1352–1360. doi: 10.1378/chest.14-2152.
    1. Koo, C.Y. et al. Sleep apnoea and cardiovascular outcomes after coronary artery bypass grafting. Heart (2020) (in press).
    1. American Diabetes Association Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;33(Suppl 1):S62–S69. doi: 10.2337/dc10-S062.
    1. Netzer NC, Stoohs RA, Netzer CM, Clark K, Strohl KP. Using the Berlin Questionnaire to identify patients at risk for the sleep apnea syndrome. Ann. Intern. Med. 1999;131:485–491. doi: 10.7326/0003-4819-131-7-199910050-00002.
    1. Johns MW. A new method for measuring daytime sleepiness: The Epworth sleepiness scale. Sleep. 1991;14:540–545. doi: 10.1093/sleep/14.6.540.
    1. Yalamanchali S, Farajian V, Hamilton C, Pott TR, Samuelson CG, Friedman M. Diagnosis of obstructive sleep apnea by peripheral arterial tonometry: Meta-analysis. JAMA Otolaryngol. Head Neck. Surg. 2013;139:1343–1350. doi: 10.1001/jamaoto.2013.5338.
    1. Spitzer E, McFadden E, Vranckx P, Garcia-Garcia HM, et al. Critical appraisal of contemporary clinical endpoint definitions in coronary intervention trials: A guidance document. JACC Cardiovasc. Interv. 2019;12:805–819. doi: 10.1016/j.jcin.2018.12.031.
    1. Cho NH, Shaw JE, Karuranga S, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018;138:271–281. doi: 10.1016/j.diabres.2018.02.023.
    1. Wong LY, Toh MP, Tham LW. Projection of prediabetes and diabetes population size in Singapore using a dynamic Markov model. J. Diabetes. 2017;9:65–75. doi: 10.1111/1753-0407.12384.
    1. Huang T, Lin BM, Stampfer MJ, Tworoger SS, Hu FB, Redline S. A population-based study of the bidirectional association between obstructive sleep apnea and type 2 diabetes in three prospective U.S. cohorts. Diabetes Care. 2018;41:2111–2119. doi: 10.2337/dc18-0675.
    1. Chan MTV, Wang CY, Seet E, et al. Postoperative Vascular Complications in Unrecognized Obstructive Sleep Apnea (POSA) Study Investigators. Association of unrecognized obstructive sleep apnea with postoperative cardiovascular events in patients undergoing major noncardiac surgery. JAMA. 2019;321:1788–1798. doi: 10.1001/jama.2019.4783.
    1. Koo CY, Drager LF, Sethi R, et al. Obstructive sleep apnea and diabetes mellitus independently add to cardiovascular risk after coronary revascularization. Diabetes Care. 2018;41:e12–e14. doi: 10.2337/dc17-0759.
    1. Shaw JE, Punjabi NM, Wilding JP, Alberti KG, Zimmet PZ. Sleep-disordered breathing and type 2 diabetes: A report from the International Diabetes Federation Taskforce on Epidemiology and Prevention. Diabetes Res. Clin. Pract. 2018;81:2–12. doi: 10.1016/j.diabres.2008.04.025.

Source: PubMed

3
Se inscrever