Randomized, double-blind, placebo-controlled, crossover trial of oral doxycycline for epistaxis in hereditary hemorrhagic telangiectasia

K P Thompson, J Sykes, P Chandakkar, P Marambaud, N T Vozoris, D A Marchuk, M E Faughnan, K P Thompson, J Sykes, P Chandakkar, P Marambaud, N T Vozoris, D A Marchuk, M E Faughnan

Abstract

Background: Vascular malformations in hereditary hemorrhagic telangiectasia (HHT) lead to chronic recurrent bleeding, hemorrhage, stroke, heart failure, and liver disease. There is great interest in identifying novel therapies for epistaxis in HHT given its associated morbidity and impact on quality of life. We aimed to measure the effectiveness of oral doxycycline for the treatment of epistaxis and explore mechanisms of action on angiogenic, inflammatory and pathway markers in HHT using a randomized controlled trial.

Methods: 13 HHT patients with epistaxis were recruited from the Toronto HHT Center at St. Michael's Hospital. Recruitment was stopped early due to COVID-19-related limitations. The study duration was 24 months. Patients were randomly assigned to the treatment-first or placebo-first study arm. We compared the change in weekly epistaxis duration and frequency, biomarkers, blood measurements, and intravenous iron infusion and blood transfusion requirements between treatment and placebo.

Results: There was no significant difference in the change in weekly epistaxis duration (p = 0.136) or frequency (p = 0.261) between treatment and placebo. There was no significant difference in the levels of MMP-9, VEGF, ANG-2, IL-6 or ENG with treatment. Hemoglobin levels were significantly higher (p = 0.0499) during treatment. Ferritin levels were not significantly different between treatment and placebo. There was no significant difference in RBC transfusions between treatment periods (p = 0.299).

Conclusion: Overall, our study did not demonstrate effectiveness of doxycycline as a treatment for epistaxis in patients with HHT, though the study was underpowered. Secondary analyses provided new observations which may help guide future trials in HHT. Trial Registration ClinicalTrials.gov, NCT03397004. Registered 11 January 2018 - Prospectively registered, https://ichgcp.net/clinical-trials-registry/NCT03397004.

Keywords: Angiogenesis; Biomarkers; Doxycycline; Epistaxis; HHT; Hereditary hemorrhagic telangiectasia.

Conflict of interest statement

The authors have no relevant financial or non-financial interests to disclose.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Study design
Fig. 2
Fig. 2
Weekly epistaxis duration by treatment allocation. Shaded boxes represent periods of doxycycline treatment
Fig. 3
Fig. 3
Mean WED, hemoglobin level and RBC transfusions for individual patient responders. Horizontal tick marks represent mean WED for that month and error bars represent standard deviation of the mean. Hemoglobin levels are depicted by black circles and blood transfusions are indicated by an x, with each x representing 1 unit. In general, patients in Allocation B had more severe epistaxis than patients in Allocation A. The scale for mean WED was set to 87 min for Allocation A patients, except for Subject 1, who was a major outlier, with a maximum of 483 min. The scale for mean WED was set to 150 min for 5/6 Allocation B patients and 250 min for the remaining 1 patient
Fig. 4
Fig. 4
Mean WED, hemoglobin level and RBC transfusions for individual patient non-responders. Horizontal tick marks represent mean WED for that month and error bars represent standard deviation of the mean. Hemoglobin levels are depicted by black circles and blood transfusions are indicated by an x, with each x representing 1 unit. In general, patients in Allocation B had more severe epistaxis than patients in Allocation A. The scale for mean WED was set to 87 min for Allocation A patients, except for Subject 1, who was a major outlier, with a maximum of 483 min. The scale for mean WED was set to 150 min for 5/6 Allocation B patients and 250 min for the remaining 1 patient

References

    1. Faughnan ME, Mager JJ, Hetts SW, Palda VA, Lang-Robertson K, Buscarini E, Deslandres E, Kasthuri RS, Lausman A, Poetker D, Ratjen F, Chesnutt MS, Clancy M, Whitehead KJ, Al-Samkari H, Chakinala M, Conrad M, Cortes D, Crocione C, Darling J, de Gussem E, Derksen C, Dupuis-Girod S, Foy P, Geisthoff U, Gossage JR, Hammill A, Heimdal K, Henderson K, Iyer VN, Kjeldsen AD, Komiyama M, Korenblatt K, McDonald J, McMahon J, McWilliams J, Meek ME, Mei-Zahav M, Olitsky S, Palmer S, Pantalone R, Piccirillo JF, Plahn B, Porteous MEM, Post MC, Radovanovic I, Rochon PJ, Rodriguez-Lopez J, Sabba C, Serra M, Shovlin C, Sprecher D, White AJ, Winship I, Zarrabeitia R. Second international guidelines for the diagnosis and management of hereditary hemorrhagic telangiectasia. Ann Intern Med. 2020;173:989–1001. doi: 10.7326/M20-1443.
    1. Mitchell A, Adams LA, MacQuillan G, Tibballs J, Vanden Driesen R, Delriviere L. Bevacizumab reverses need for liver transplantation in hereditary hemorrhagic telangiectasia. Liver Transpl. 2008;14:210–213. doi: 10.1002/lt.21417.
    1. Flieger D, Hainke S, Fischbach W. Dramatic improvement in hereditary hemorrhagic telangiectasia after treatment with the vascular endothelial growth factor (VEGF) antagonist bevacizumab. Ann Hematol. 2006;85:631–632. doi: 10.1007/s00277-006-0147-8.
    1. Dupuis-Girod S, Ginon I, Saurin JC, Marion D, Guillot E, Decullier E, Roux A, Carette MF, Gilbert- Dussardier B, Hatron PY, Lacombe P, Lorcerie B, Riviere S, Corre R, Giraud S, Bailly S, Paintaud G, Ternant D, Valette PJ, Plauchu H, Faure F. Bevacizumab in patients with hereditary hemorrhagic telangiectasia and severe hepatic vascular malformations and high cardiac output. JAMA. 2012;307:948–955. doi: 10.1001/jama.2012.250.
    1. Thompson AB, Ross DA, Berard P, Figueroa-Bodine J, Livada N, Richer SL. Very low dose bevacizumab for the treatment of epistaxis in patients with hereditary hemorrhagic telangiectasia. Allergy Rhinol. 2014;5:91–95. doi: 10.2500/ar.2014.5.0091.
    1. Chavan A, Schumann-Binarsch S, Schmuck B, Oltmer F, Geisthoff U, Hoppe F, Wirsching K, Klempnauer J, Manns M, Köhne CH. Emerging role of bevacizumab in management of patients with symptomatic hepatic involvement in hereditary hemorrhagic telangiectasia. Am J Hematol. 2017;92:E641–E644. doi: 10.1002/ajh.24878.
    1. Iyer VN, Apala DR, Pannu BS, Kotecha A, Brinjikji W, Leise MD, Kamath PS, Misra S, Begna KH, Cartin-Ceba R, DuBrock HM, Krowka MJ, O’Brien EK, Pruthi RK, Schroeder DR, Swanson KL. Intravenous bevacizumab for refractory hereditary hemorrhagic telangiectasia–related epistaxis and gastrointestinal bleeding. Mayo Clin Proc. 2018;93:155–166. doi: 10.1016/j.mayocp.2017.11.013.
    1. Epperla N, Kapke JT, Karafin M, Friedman KD, Foy P. Effect of systemic bevacizumab in severe hereditary hemorrhagic telangiectasia associated with bleeding. Am J Hematol. 2016;91:E313–E314. doi: 10.1002/ajh.24367.
    1. Rosenberg T, Fialla AD, Kjeldsen J, Kjeldsen AD. Does severe bleeding in HHT patients respond to intravenous bevacizumab? Review of the literature and case series. Rhinology. 2019;57:242–251. doi: 10.4193/Rhin18.289.
    1. Guilhem A, Fargeton AE, Simon AC, Duffau P, Harle JR, Lavigne C, Carette MF, Bletry O, Kaminsky P, Leguy V, Lerolle N. Intra-venous bevacizumab in hereditary hemorrhagic telangiectasia (HHT): a retrospective study of 46 patients. PLoS ONE. 2017;12:e0188943. doi: 10.1371/journal.pone.0188943.
    1. Al-Samkari H, Kasthuri RS, Parambil JG, Albitar HA, Almodallal YA, Vázquez C, Serra MM, Dupuis-Girod S, Wilsen CB, McWilliams JP, Fountain EH, Gossage JR, Weiss CR, Latif MA, Issachar A, Mei-Zahav M, Meek ME, Conrad M, Rodriguez-Lopez J, Kuter DJ, Iyer VN. An international, multicenter study of intravenous bevacizumab for bleeding in hereditary hemorrhagic telangiectasia: the InHIBIT-bleed study. Haematologica. 2021;106:2161–2169. doi: 10.3324/haematol.2020.261859.
    1. Al-Samkari H, Kritharis A, Rodriguez-Lopez JM, Kuter DJ. Systemic bevacizumab for the treatment of chronic bleeding in hereditary haemorrhagic telangiectasia. J Intern Med. 2019;285:223–231. doi: 10.1111/joim.12832.
    1. Parambil JG, Gossage JR, McCrae KR, Woodard TD, Menon KV, Timmerman KL, Pederson DP, Sprecher DL, Al-Samkari H. Pazopanib for severe bleeding and transfusion-dependent anemia in hereditary hemorrhagic telangiectasia. Angiogenesis. 2021 doi: 10.1007/s10456-021-09807-4.
    1. Faughnan ME, Gossage JR, Chakinala MM, Oh SP, Kasthuri R, Hughes CC, McWilliams JP, Parambil JG, Vozoris N, Donaldson J, Paul G. Pazopanib may reduce bleeding in hereditary hemorrhagic telangiectasia. Angiogenesis. 2019;22:145–155. doi: 10.1007/s10456-018-9646-1.
    1. Karnezis TT, Davidson TM. Efficacy of intranasal Bevacizumab (Avastin) treatment in patients with hereditary hemorrhagic telangiectasia-associated epistaxis. Laryngoscope. 2011;121:636–638. doi: 10.1002/lary.21415.
    1. Rohrmeier C, Sachs HG, Kuehnel TS. A retrospective analysis of low dose, intranasal injected bevacizumab (Avastin) in hereditary haemorrhagic telangiectasia. Eur Arch Otorhinolaryngol. 2012;269:531–536. doi: 10.1007/s00405-011-1721-9.
    1. Dupuis-Girod S, Ambrun A, Decullier E, Fargeton AE, Roux A, Breant V, Colombet B, Riviere S, Cartier C, Lacombe P, Chinet T, Blivet S, Blondel JH, Gilbert-Dussardier B, Dufour X, Michel J, Harle JR, Dessi P, Faure F. Effect of bevacizumab nasal spray on epistaxis duration in hereditary hemorrhagic telangectasia: a randomized clinical trial. JAMA. 2016;316:934–942. doi: 10.1001/jama.2016.11387.
    1. Whitehead KJ, Sautter NB, McWilliams JP, Chakinala MM, Merlo CA, Johnson MH, James M, Everett EM, Clancy MS, Faughnan ME, Oh SP, Olitsky SE, Pyeritz RE, Gossage JR. Effect of topical intranasal therapy on epistaxis frequency in patients with hereditary hemorrhagic telangiectasia: a randomized clinical trial. JAMA. 2016;316:943–951. doi: 10.1001/jama.2016.11724.
    1. Lee CZ, Xu B, Hashimoto T, McCulloch CE, Yang GY, Young WL. Doxycycline suppresses cerebral matrix metalloproteinase-9 and angiogenesis induced by focal hyperstimulation of vascular endothelial growth factor in a mouse model. Stroke. 2004;35:1715–2179. doi: 10.1161/01.STR.0000129334.05181.b6.
    1. Krakauer T, Buckley M. Doxycycline is anti-inflammatory and inhibits staphylococcal exotoxin-induced cytokines and chemokines. Antimicrob Agents Chemother. 2003;47:3630–3633. doi: 10.1128/AAC.47.11.3630-3633.2003.
    1. Hashimoto T, Wen G, Lawton MT, Boudreau NJ, Bollen AW, Yang GY, Barbaro NM, Higashida RT, Dowd CF, Halbach VV, Young WL. Abnormal expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in brain arteriovenous malformations. Stroke. 2003;34:925–931. doi: 10.1161/01.STR.0000061888.71524.DF.
    1. Sonstein WJ, Kader A, Michelsen WJ, Llena JF, Hirano A, Casper D. Expression of vascular endothelial growth factor in pediatric and adult cerebral arteriovenous malformations: an immunocytochemical study. J Neurosurg. 1996;85:838–845. doi: 10.3171/jns.1996.85.5.0838.
    1. Lee CZ, Xue Z, Zhu Y, Yang GY, Young WL. Matrix metalloproteinase-9 inhibition attenuates vascular endothelial growth factor-induced intracerebral hemorrhage. Stroke. 2007;38:2563–2568. doi: 10.1161/STROKEAHA.106.481515.
    1. Arthur H, Geisthoff U, Gossage JR, Hughes CC, Lacombe P, Meek ME, Oh P, Roman BL, Trerotola SO, Velthuis S, Wooderchak-Donahue W. Executive summary of the 11th HHT international scientific conference. Angiogenesis. 2015;18:511–524. doi: 10.1007/s10456-015-9482-5.
    1. McWilliams JP, Majumdar S, Kim GH, Lee J, Seals K, Tangchaiburana S, Gilbert S, Duckwiler GR. North American study for the treatment of recurrent epistaxis with doxycycline: the NOSTRIL trial. J Thromb Haemost. 2022;20:1115–1125. doi: 10.1111/jth.15662.
    1. Purkey MR, Seeskin Z, Chandra R. Seasonal variation and predictors of epistaxis. Laryngoscope. 2014;124:2028–2033. doi: 10.1002/lary.24679.
    1. Silva BM, Hosman AE, Devlin HL, Shovlin CL. Lifestyle and dietary influences on nosebleed severity in hereditary hemorrhagic telangiectasia. Laryngoscope. 2013;123:1092–1099. doi: 10.1002/lary.23893.
    1. Gupta S, Faughnan ME, Tomlinson GA, Bayoumi AM. A framework for applying unfamiliar trial designs in studies of rare diseases. J Clin Epidemiol. 2011;64:1085–1094. doi: 10.1016/j.jclinepi.2010.12.019.
    1. Kasthuri RS, Montifar M, Nelson J, Kim H, Lawton MT, Faughnan ME, Brain Vascular Malformation Consortium HHT Investigator Group. Prevalence and predictors of anemia in hereditary hemorrhagic telangiectasia. Am J Hematol. 2017;10.1002/ajh.24832
    1. Grondin MA, Ruivard M, Perreve A, Derumeaux-Burel H, Perthus I, Roblin J, Thiollieres F, Gerbaud L. Prevalence of iron deficiency and health-related quality of life among female students. J Am Coll Nutr. 2008;27:337–341. doi: 10.1080/07315724.2008.10719709.
    1. Patterson AJ, Brown WJ, Powers JR, Roberts DC. Iron deficiency, general health and fatigue: results from the Australian longitudinal study on women's health. Qual Life Res. 2000;9:491–497. doi: 10.1023/A:1008978114650.
    1. Mazzieri R, Pucci F, Moi D, Zonari E, Ranghetti A, Berti A, Politi LS, Gentner B, Brown JL, Naldini L, De Palma M. Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell. 2011;19:512–526. doi: 10.1016/j.ccr.2011.02.005.
    1. Lewis CE, Ferrara N. Multiple effects of angiopoietin-2 blockade on tumors. Cancer Cell. 2011;19:431–433. doi: 10.1016/j.ccr.2011.03.016.
    1. Holopainen T, Saharinen P, D’Amico G, Lampinen A, Eklund L, Sormunen R, Anisimov A, Zarkada G, Lohela M, Heloterä H, Tammela T, Benjamin LE, Ylä-Herttuala S, Leow CC, Koh GY, Alitalo K. Effects of angiopoietin-2-blocking antibody on endothelial cell–cell junctions and lung metastasis. J Natl Cancer Inst. 2012;104:461–475. doi: 10.1093/jnci/djs009.
    1. Thurston G, Daly C. The complex role of angiopoietin-2 in the angiopoietin–tie signaling pathway. Cold Spring Harb Perspect Med. 2012;2:a006650. doi: 10.1101/cshperspect.a006650.
    1. Lobov IB, Brooks PC, Lang RA. Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo. Proc Natl Acad Sci. 2002;99:11205–11210. doi: 10.1073/pnas.172161899.
    1. Ardelean DS, Letarte M. Anti-angiogenic therapeutic strategies in hereditary hemorrhagic telangiectasia. Front Genet. 2015;6:35. doi: 10.3389/fgene.2015.00035.
    1. Han C, Choe SW, Kim YH, Acharya AP, Keselowsky BG, Sorg BS, Lee YJ, Oh SP. VEGF neutralization can prevent and normalize arteriovenous malformations in an animal model for hereditary hemorrhagic telangiectasia 2. Angiogenesis. 2014;17:823–830. doi: 10.1007/s10456-014-9436-3.
    1. Ruiz S, Zhao H, Chandakkar P, Chatterjee PK, Papoin J, Blanc L, Metz CN, Campagne F, Marambaud P. A mouse model of hereditary hemorrhagic telangiectasia generated by transmammary-delivered immunoblocking of BMP9 and BMP10. Sci Rep. 2016;6:1–2. doi: 10.1038/srep37366.
    1. Crist AM, Zhou X, Garai J, Lee AR, Thoele J, Ullmer C, Klein C, Zabaleta J, Meadows SM. Angiopoietin-2 inhibition rescues arteriovenous malformation in a Smad4 hereditary hemorrhagic telangiectasia mouse model. Circulation. 2019;139:2049–2063. doi: 10.1161/CIRCULATIONAHA.118.036952.
    1. Fiedler U, Reiss Y, Scharpfenecker M, Grunow V, Koidl S, Thurston G, Gale NW, Witzenrath M, Rosseau S, Suttorp N, Sobke A, Herrmann M, Preissner KT, Vajkoczy P, Augustin HG. Angiopoietin-2 sensitizes endothelial cells to TNF-α and has a crucial role in the induction of inflammation. Nat Med. 2006;12:235–239. doi: 10.1038/nm1351.
    1. Schuldt EA, Lieb W, Dörr M, Lerch MM, Völzke H, Nauck M, Friedrich N. Circulating angiopoietin-2 and its soluble receptor Tie-2 concentrations are related to inflammatory markers in the general population. Cytokine. 2018;105:1–7. doi: 10.1016/j.cyto.2018.02.003.
    1. Rodríguez-García J, Zarrabeitia-Puente R, Fernández-Santos R, García-Erce JA. Infection prevention in patients with hereditary hemorrhagic telangiectasia. Haematologica. 2018;103:e491–e492. doi: 10.3324/haematol.2018.200873.
    1. Seki T, Yanaihara N, Shapiro JS, Saito M, Tabata J, Yokomizo R, Noguchi D, Kuroda T, Kawabata A, Suzuki J, Takahashi K. Interleukin-6 as an enhancer of anti-angiogenic therapy for ovarian clear cell carcinoma. Sci Rep. 2021;11:1–9. doi: 10.1038/s41598-021-86913-9.

Source: PubMed

3
Se inscrever