Human adipose tissue-resident monocytes exhibit an endothelial-like phenotype and display angiogenic properties

Amparo Navarro, Severiano Marín, Nicasia Riol, Francisco Carbonell-Uberos, María Dolores Miñana, Amparo Navarro, Severiano Marín, Nicasia Riol, Francisco Carbonell-Uberos, María Dolores Miñana

Abstract

Introduction: Adipose tissue has the unique property of expanding throughout adult life, and angiogenesis is required for its growth. However, endothelial progenitor cells contribute minimally to neovascularization. Because myeloid cells have proven to be angiogenic, and monocytes accumulate in expanding adipose tissue, they might contribute to vascularization.

Methods: The stromal vascular fraction (SVF) cells from human adipose tissue were magnetically separated according to CD45 or CD14 expression. Adipose-derived mesenchymal stromal cells (MSCs) were obtained from SVF CD45- cells. CD14+ monocytes were isolated from peripheral blood (PB) mononuclear cells and then cultured with SVF-derived MSCs. Freshly isolated or cultured cells were characterized with flow cytometry; the conditioned media were analyzed for the angiogenic growth factors, angiopoietin-2 (Ang-2), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), granulocyte colony-stimulating factor (G-CSF), and granulocyte macrophage colony-stimulating factor (GM-CSF) with Luminex Technology; their angiogenic capacity was determined in an in vivo gelatinous protein mixture (Matrigel) plug angiogenesis assay.

Results: CD45+ hematopoietic cells within the SVF contain CD14+ cells that co-express the CD34 progenitor marker and the endothelial cell antigens VEGF receptor 2 (VEGFR2/KDR), VEGFR1/Flt1, and Tie2. Co-culture experiments showed that SVF-derived MSCs promoted the acquisition of KDR and Tie-2 in PB monocytes. MSCs secreted significant amounts of Ang-2 and HGF, but minimal amounts of bFGF, G-CSF, or GM-CSF, whereas the opposite was observed for SVF CD14+ cells. Additionally, SVF CD14+ cells secreted significantly higher levels of VEGF and bFGF than did MSCs. Culture supernatants of PB monocytes cultured with MSCs contained significantly higher concentrations of VEGF, HGF, G-CSF, and GM-CSF than did the supernatants from cultures without MSCs. Quantitative analysis of angiogenesis at 14 days after implantation demonstrated that neovascularization of the implants containing SVF CD14+ cells or PB monocytes previously co-cultured with MSCs was 3.5 or 2 times higher than that observed in the implants with SVF-derived MSCs. Moreover, immunofluorescence of Matrigel sections revealed that SVF CD14+ cells differentiated into endothelial cells and contributed to vascular endothelium.

Conclusions: The results from this study suggest that adipose tissue-resident monocytes should contribute to tissue vascularization. Because SVF CD14+ cells were more efficient in inducing angiogenesis than SVF-derived MSCs, and differentiated into vascular endothelial cells, they may constitute a new cell source for cell-based therapeutic angiogenesis.

Figures

Figure 1
Figure 1
SVF CD14+ cells exhibit a proangiogenic phenotype. PB nucleated cells (A) were analyzed for CD45 and CD34 expression. Top right, CD34+CD45low cells corresponding to hematopoietic progenitor cells are shown. Bottom, CD45+ cells (blue) were gated and analyzed for CD14 expression and for co-expression of CD14 with CD31, Tie2, KDR, Flt-1, and CD34. The CD14+ cells represented 20% of CD45+ cells, which in turn accounted for 98.5% of the total viable PB nucleated cells. SVF cells (B) were analyzed for CD45 expression, and then the gated CD45+ cells (blue) were analyzed for CD34 and CD14 expression and for the co-expression of CD14 with CD31, CD144, Tie2, KDR, Flt-1, and CD34. Isotype-matched controls are shown. CD45+ cells accounted for 6% of total viable cells. Dot plots of CD14 conjugated with APC or PE correspond to three different samples.
Figure 2
Figure 2
Phenotypic characteristics of adipose-derived MSCs. CD45- SVF cells were isolated by immunomagnetic methods and then cultured in EGM-2 MV to generate MSCs. Morphologic aspect of MSCs at passage 2 (scale bar, 100 μm) is shown in panel (A). Flow-cytometry dot plots demonstrating the expression of a panel of markers in MSCs are shown in (B). Isotype-matched controls are given.
Figure 3
Figure 3
Induction of endothelial markers in circulating CD14+ cells. CD14+ monocytes were isolated from adult PB, cultured in EGM-2 MV with or without MSCs, and then analyzed with flow cytometry. Dot plots from freshly isolated CD14+ cells (A) and after 4 days of co-culture with adipose-derived MSCs (green) (B) are shown. Flow-cytometry histograms in panels A and B show the expression of KDR and Tie2 in gated CD14+ cells. Isotype-matched controls are given.
Figure 4
Figure 4
Angiogenic response induced by SVF cells in the Matrigel-plug assay. Freshly isolated SVF CD45+, CD45-or CD14+ cells, or SVF-derived MSCs were mixed with Matrigel and injected subcutaneously into immunodeficient mice. (A) Macroscopic visualization of Matrigel plugs containing SVF cells or no cells 14 days after implantation. In some experiments, 10 minutes before the Matrigel plugs were harvested, mice were injected into the tail vein with FITC-dextran. Fluorescence microscopy of Matrigel explants allows identifying vessels connected to the circulation (B). Sections from the plugs were stained with H&E to visualize vessel formation (C, D). Scale bars: B, 200 μm (left), 100 μm (right); C and D, 50 μm.
Figure 5
Figure 5
Quantification of neovessels in Matrigel plugs. Freshly isolated SVF cells, SVF-derived MSCs, and PB CD14+ monocytes, freshly isolated or after co-culture with SVF-derived MSCs in a transwell system, were individually embedded in Matrigel at 1 × 106 cells per implant. Matrigel explants were harvested 14 days after implantation and H&E-stained sections were used to enumerate blood vessels (A). The lumen area of newly formed vessels in Matrigel implants containing SVF-derived MSCs or SVF-isolated CD45+ or CD45- cells was determined. Vessel distribution indicates the percentage of vessels according to their lumen area, given as range of values (B). Results are expressed as the mean and SD of five Matrigel implants per test group. MSCs derived from three independent SVFs were used. *P < 0.0001 for differences between groups linked by the brackets.
Figure 6
Figure 6
SVF CD14+ cells incorporate into new vessels. Fourteen days after implantation, Matrigel implants containing SVF CD14+ cells were evaluated for the expression of CD31, CD45, and e-NOS. (A) Representative images for CD31 staining. Arrows indicate the presence of CD31+ endothelial cells in the vessels formed. (B) Human CD45 immunostaining. Note that CD45+ cells are located surrounding blood vessels (left) or adjacent to the endothelium (right). (C) Human e-NOS immunostaining. Arrows indicate positive staining of some blood vessels for e-NOS. Scale bars: A, 50 μm; B, 50 μm (left), 30 μm (right); C, 50 μm.
Figure 7
Figure 7
Matrigel implants contain blood vessels comprising human and mouse endothelial cells. Consecutive sections of Matrigel implants with SVF CD14+ cells were double-immunostained with antibodies against mCD31 (green) and αSMA (red) (A), or Ulex europaeus agglutinin 1 (UEA-1; green) and αSMA (red) (B). The images on the top of the panels A and B show merged images and correspond to the same microscopic field at different magnifications: left, low magnification; middle, medium magnification; right, higher magnification. Images on the bottom (A, B) show green and red fluorescence and correspond to the merged image at the highest magnification. Images in panel B correspond to a consecutive section. The insets in A and B (upper left) show the field at low magnification and asterisks illustrate benchmarks. Note that the green staining associated with murine (A) or human (B) endothelial cells in the adjacent sections is near identical. Double labeling shows a close assembly of αSMA-positive cells to the blood vessels. White arrows indicate αSMA-positive cells lining vascular-like structures which do not express murine (A) or human (B) endothelial cells. Scale bars in A, B (upper left): 200 μm, upper in the middle: 100 μm; upper right and bottom: 50 μm.
Figure 8
Figure 8
Immunofluorescence detection of nestin in Matrigel implants. Representative images of consecutive sections of Matrigel implants with SVF CD14+ cells stained by anti-mouse CD31 (green) and anti-vWF (red) (A), and by UEA-1 (green) and anti-vWF (red) (B). The arrows show colocalization of vWF-positive cells and endothelial cells of murine or human origin. However, in Matrigel implants, other vWF-positive cells not associated with blood vessels are shown. Double-immunofluorescence staining of human nestin (red) and mCD31 (green) (C), and human nestin (red) and UEA-1 (green) (D). In Matrigel implants, nestin was expressed in human and murine endothelial cells, although some nestin-positive cells (arrow) lacking mCD31 were observed. Scale bar, 50 μm.

References

    1. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–4295. doi: 10.1091/mbc.E02-02-0105.
    1. Crandall DL, Haussman GJ, Kral JG. A review of the microcirculation of adipose tissue: anatomic, metabolic, and angiogenic perspectives. Microcirculation. 1997;4:211–232. doi: 10.3109/10739689709146786.
    1. Cao Y. Angiogenesis modulates adipogenesis and obesity. J Clin Invest. 2007;117:2362–2368. doi: 10.1172/JCI32239.
    1. Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A, Fujita Y, Kothari S, Mohle R, Sauvage LR, Moore MA, Storb RF, Hammond WP. Evidence for circulating bone marrow-derived endothelial cells. Blood. 1998;92:362–367.
    1. Bailey AS, Willenbring H, Jiang S, Anderson DA, Schroeder DA, Wong MH, Grompe M, Fleming WH. Myeloid lineage progenitors give rise to vascular endothelium. Proc Natl Acad Sci U S A. 2006;103:13156–13161. doi: 10.1073/pnas.0604203103.
    1. Neels JG, Thinnes T, Loskutoff DJ. Angiogenesis in an in vivo model of adipose tissue development. FASEB J. 2004;18:983–985.
    1. Hausman GJ, Richardson RL. Adipose tissue angiogenesis. J Anim Sci. 2004;82:925–934.
    1. Rupnick MA, Panigrahy D, Zhang CY, Dallabrida SM, Lowell BB, Langer R, Folkman MJ. Adipose tissue mass can be regulated through the vasculature. Proc Natl Acad Sci U S A. 2002;99:10730–10735. doi: 10.1073/pnas.162349799.
    1. Hutley LJ, Herington AC, Shurety W, Cheung C, Vesey DA, Cameron DP, Prins JB. Human adipose tissue endothelial cells promote preadipocyte proliferation. Am J Physiol Endocrinol Metab. 2001;281:E1037–E1044.
    1. Fukumura D, Ushiyama A, Duda DG, Xu L, Tam J, Krishna V, Chatterjee K, Garkavtsev I, Jain RK. Paracrine regulation of angiogenesis and adipocyte differentiation during in vivo adipogenesis. Circ Res. 2003;93:e88–e97. doi: 10.1161/01.RES.0000099243.20096.FA.
    1. Curat CA, Miranville A, Sengenes C, Diehl M, Tonus C, Busse R, Bouloumié A. From blood monocytes to adipose tissue-resident macrophages: induction of diapedesis by human mature adipocytes. Diabetes. 2004;53:1285–1294. doi: 10.2337/diabetes.53.5.1285.
    1. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL, Caro JF. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996;334:292–295. doi: 10.1056/NEJM199602013340503.
    1. Suganami E, Takagi H, Ohashi H, Suzuma K, Suzuma I, Oh H, Watanabe D, Ojima T, Suganami T, Fujio Y, Nakao K, Ogawa Y, Yoshimura N. Leptin stimulates ischemia-induced retinal neovascularization: possible role of vascular endothelial growth factor expressed in retinal endothelial cells. Diabetes. 2004;53:2443–2448. doi: 10.2337/diabetes.53.9.2443.
    1. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112:1796–1808. doi: 10.1172/JCI200319246.
    1. Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity. J Clin Invest. 2011;121:2094–2101. doi: 10.1172/JCI45887.
    1. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117:175–184. doi: 10.1172/JCI29881.
    1. Kim Y, Kim H, Cho H, Bae Y, Suh K, Jung J. Direct comparison of human mesenchymal stem cells derived from adipose tissues and bone marrow in mediating neovascularization in response to vascular ischemia. Cell Physiol Biochem. 2007;20:867–876. doi: 10.1159/000110447.
    1. Matsuda K, Falkenberg KJ, Woods AA, Choi YS, Morrison WA, Dilley RJ. Adipose-derived stem cells promote angiogenesis and tissue formation for in vivo tissue engineering. Tissue Eng Part A. 2013;19:1327–1335. doi: 10.1089/ten.tea.2012.0391.
    1. Miñana MD, Carbonell-Uberos F, Mirabet V, Marín S, Encabo A. IFATS collection: identification of hemangioblasts in the adult human adipose tissue. Stem Cells. 2008;26:2696–2704. doi: 10.1634/stemcells.2007-0988.
    1. Planat-Benard V, Silvestre JS, Cousin B, André M, Nibbelink M, Tamarat R, Clergue M, Manneville C, Saillan-Barreau C, Duriez M, Tedgui A, Levy B, Pénicaud L, Casteilla L. Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation. 2004;109:656–663. doi: 10.1161/01.CIR.0000114522.38265.61.
    1. Bhatia M, Wang JC, Kapp U, Bonnet D, Dick JE. Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc Natl Acad Sci U S A. 1997;94:5320–5325. doi: 10.1073/pnas.94.10.5320.
    1. Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, Pell CL, Johnstone BH, Considine RV, March KL. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation. 2004;109:1292–1298. doi: 10.1161/01.CIR.0000121425.42966.F1.
    1. Tigges U, Hyer EG, Scharf J, Stallcup WB. FGF2-dependent neovascularization of subcutaneous Matrigel plugs is initiated by bone marrow-derived pericytes and macrophages. Development. 2008;135:523–532. doi: 10.1242/dev.002071.
    1. van Schooten CJ, Shahbazi S, Groot E, Oortwijn BD, van den Berg HM, Denis CV, Lenting PJ. Macrophages contribute to the cellular uptake of von Willebrand factor and factor VIII in vivo. Blood. 2008;112:1704–1712. doi: 10.1182/blood-2008-01-133181.
    1. Anghelina M, Krishnan P, Moldovan L, Moldovan NI. Monocytes/macrophages cooperate with progenitor cells during neovascularization and tissue repair: conversion of cell columns into fibrovascular bundles. Am J Pathol. 2006;168:529–541. doi: 10.2353/ajpath.2006.050255.
    1. Klein D, Weisshardt P, Kleff V, Jastrow H, Jakob HG, Ergün S. Vascular wall-resident CD44+ multipotent stem cells give rise to pericytes and smooth muscle cells and contribute to new vessel maturation. PLoS One. 2011;6:e20540. doi: 10.1371/journal.pone.0020540.
    1. Mokrý J, Ehrmann J, Karbanová J, Cízková D, Soukup T, Suchánek J, Filip S, Kolár Z. Expression of intermediate filament nestin in blood vessels of neural and non-neural tissues. Acta Medica (Hradec Kralove) 2008;51:173–179.
    1. Szöke K, Brinchmann JE. Concise review: therapeutic potential of adipose tissue-derived angiogenic cells. Stem Cells Transl Med. 2012;1:658–667. doi: 10.5966/sctm.2012-0069.
    1. Kuwana M, Okazaki Y, Kodama H, Izumi K, Yasuoka H, Ogawa Y, Kawakami Y, Ikeda Y. Human circulating CD14+ monocytes as a source of progenitors that exhibit mesenchymal cell differentiation. J Leukoc Biol. 2003;74:833–845. doi: 10.1189/jlb.0403170.
    1. Kuwana M, Okazaki Y, Kodama H, Satoh T, Kawakami Y, Ikeda Y. Endothelial differentiation potential of human monocyte-derived multipotential cells. Stem Cells. 2006;24:2733–2743. doi: 10.1634/stemcells.2006-0026.
    1. Romagnani P, Annunziato F, Liotta F, Lazzeri E, Mazzinghi B, Frosali F, Cosmi L, Maggi L, Lasagni L, Scheffold A, Kruger M, Dimmeler S, Marra F, Gensini G, Maggi E, Romagnani S. CD14+ CD34low cells with stem cell phenotypic and functional features are the major source of circulating endothelial progenitors. Circ Res. 2005;97:314–322. doi: 10.1161/01.RES.0000177670.72216.9b.
    1. Conejo-Garcia JR, Buckanovich RJ, Benencia F, Courreges MC, Rubin SC, Carroll RG, Coukos G. Vascular leukocytes contribute to tumor vascularization. Blood. 2005;105:679–681. doi: 10.1182/blood-2004-05-1906.
    1. Muller WA, Weigl SA, Deng X, Phillips DM. PECAM-1 is required for transendothelial migration of leukocytes. J Exp Med. 1993;178:449–460. doi: 10.1084/jem.178.2.449.
    1. Ferrero E, Bondanza A, Leone BE, Manici S, Poggi A, Zocchi MR. CD14+CD34+ peripheral blood mononuclear cells migrate across endothelium and give rise to immunostimulatory dendritic cells. J Immunol. 1998;160:2675–2683.
    1. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–967. doi: 10.1126/science.275.5302.964.
    1. Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res. 2004;95:343–353. doi: 10.1161/01.RES.0000137877.89448.78.
    1. Favre J, Terborg N, Horrevoets AJ. The diverse identity of angiogenic monocytes. Eur J Clin Invest. 2013;43:100–107. doi: 10.1111/eci.12009.
    1. Nowak G, Karrar A, Holmén C, Nava S, Uzunel M, Hultenby K, Sumitran-Holgersson S. Expression of vascular endothelial growth factor receptor-2 or Tie-2 on peripheral blood cells defines functionally competent cell populations capable of reendothelialization. Circulation. 2004;110:3699–3707. doi: 10.1161/01.CIR.0000143626.16576.51.
    1. Wara AK, Croce K, Foo S, Sun X, Icli B, Tesmenitsky Y, Esen F, Rosenzweig A, Feinberg MW. Bone marrow–derived CMPs and GMPs represent highly functional proangiogenic cells: implications for ischemic cardiovascular disease. Blood. 2011;118:6461–6464. doi: 10.1182/blood-2011-06-363457.
    1. Urbich C, Heeschen C, Aicher A, Dernbach E, Zeiher AM, Dimmeler S. Relevance of monocytic features for neovascularization capacity of circulating endothelial progenitor cells. Circulation. 2003;108:2511–2516. doi: 10.1161/01.CIR.0000096483.29777.50.
    1. Willenborg S, Lucas T, van Loo G, Knipper JA, Krieg T, Haase I, Brachvogel B, Hammerschmidt M, Nagy A, Ferrara N, Pasparakis M, Eming SA. CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair. Blood. 2012;120:613–625. doi: 10.1182/blood-2012-01-403386.
    1. Kim SJ, Kim JS, Papadopoulos J, Wook Kim S, Maya M, Zhang F, He J, Fan D, Langley R, Fidler IJ. Circulating monocytes expressing CD31: implications for acute and chronic angiogenesis. Am J Pathol. 2009;174:1972–1980. doi: 10.2353/ajpath.2009.080819.
    1. Coffelt SB, Lewis CE, Naldini L, Brown JM, Ferrara N, De Palma M. Elusive identities and overlapping phenotypes of proangiogenic myeloid cells in tumors. Am J Pathol. 2010;176:1564–1576. doi: 10.2353/ajpath.2010.090786.
    1. Grunewald M, Avraham I, Dor Y, Bachar-Lustig E, Itin A, Jung S, Chimenti S, Landsman L, Abramovitch R, Keshet E. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell. 2006;124:175–189. doi: 10.1016/j.cell.2005.10.036.
    1. Shojaei F, Wu X, Qu X, Kowanetz M, Yu L, Tan M, Meng YG, Ferrara N. G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc Natl Acad Sci U S A. 2009;106:6742–6747. doi: 10.1073/pnas.0902280106.
    1. Eubank TD, Roberts R, Galloway M, Wang Y, Cohn DE, Marsh CB. GM-CSF induces expression of soluble VEGF receptor-1 from human monocytes and inhibits angiogenesis in mice. Immunity. 2004;21:831–842. doi: 10.1016/j.immuni.2004.10.011.
    1. Bruno S, Bussolati B, Scacciatella P, Marra S, Sanavio F, Tarella C, Camussi G. Combined administration of G-CSF and GM-CSF stimulates monocyte-derived pro-angiogenic cells in patients with acute myocardial infarction. Cytokine. 2006;34:56–65. doi: 10.1016/j.cyto.2006.03.014.
    1. Augustin HG, Koh GY, Thurston G, Alitalo K. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol. 2009;10:165–177. doi: 10.1038/nrm2639.
    1. Felcht M, Luck R, Schering A, Seidel P, Hu J, Bartol A, Kienast Y, Vettel C, Loos EK, Srivastava K, Kutschera S, Bartels S, Appak S, Besemfelder E, Terhardt D, Chavakis E, Wieland T, Klein C, Thomas M, Uemura A, Goerdt S, Augustin HG. Angiopoietin-2 differentially regulates angiogenesis through TIE2 and integrin signaling. J Clin Invest. 2012;122:1991–2005. doi: 10.1172/JCI58832.
    1. Gimble JM, Bunnell BA, Chiu ES, Farshid G. Concise review: adipose-derived stromal vascular fraction cells and stem cells: let’s not get lost in translation. Stem Cells. 2011;29:749–754. doi: 10.1002/stem.629.

Source: PubMed

3
Se inscrever