Randomized phase III trial of amrubicin/cisplatin versus etoposide/cisplatin as first-line treatment for extensive small-cell lung cancer

Yan Sun, Ying Cheng, Xuezhi Hao, Jie Wang, Chengping Hu, Baohui Han, Xiaoqing Liu, Li Zhang, Huiping Wan, Zhongjun Xia, Yunpeng Liu, Wei Li, Mei Hou, Helong Zhang, Qingyu Xiu, Yunzhong Zhu, Jifeng Feng, Shukui Qin, Xiaoyan Luo, Yan Sun, Ying Cheng, Xuezhi Hao, Jie Wang, Chengping Hu, Baohui Han, Xiaoqing Liu, Li Zhang, Huiping Wan, Zhongjun Xia, Yunpeng Liu, Wei Li, Mei Hou, Helong Zhang, Qingyu Xiu, Yunzhong Zhu, Jifeng Feng, Shukui Qin, Xiaoyan Luo

Abstract

Background: Extensive-disease small-cell lung cancer (ED-SCLC) is characterized by rapid progression and relapse, despite high initial response rates to chemotherapy. The primary objective of this trial was to demonstrate the non-inferiority of amrubicin and cisplatin (AP) combination therapy compared with the standard first-line regimen of etoposide and cisplatin (EP) for previously untreated ED-SCLC in a Chinese population. When non-inferiority was verified, the objective was switched from non-inferiority to superiority.

Methods: From June 2008 to July 2010, 300 patients were enrolled and randomly assigned at a 1:1 ratio to AP and EP groups. AP-treated patients received cisplatin (60 mg/m(2), day 1) and amrubicin (40 mg/m(2), days 1-3) once every 21 days. EP-treated patients received cisplatin (80 mg/m(2), day 1) and etoposide (100 mg/m(2), days 1-3) once every 21 days. Treatment was continued for four to six cycles, except in cases of progressive disease or toxicity, and patient refusal.

Results: Median overall survival (OS) for AP vs. EP treatment was 11.8 vs. 10.3 months (p = 0.08), respectively, demonstrating non-inferiority of AP to EP (AP group: 95% confidence interval for hazard ratio 0.63-1.03 months). Median progression-free survival and overall response rates for AP vs. EP groups were 6.8 vs. 5.7 months (p = 0.35) and 69.8% vs. 57.3%, respectively. Drug-related adverse events in both groups were similar, with neutropenia being the most frequent (AP 54.4%; EP 44.0%). Leukopenia, pyrexia, and fatigue were more prevalent in the AP group, but all were clinically reversible and manageable.

Conclusions: AP therapy demonstrated non-inferiority to EP therapy, prolonging OS for 1.5 months, but this difference was not statistically significant; thus we propose AP as a promising treatment option for ED-SCLC in China.

Trial registration: This trial was registered on 10 April 2008 (ClinicalTrials.gov NCT00660504).

Keywords: Amrubicin; Chinese; Cisplatin; ED-SCLC; Etoposide; Randomized clinical trial.

Figures

Fig. 1
Fig. 1
Patient flowchart. AP, amrubicin/cisplatin; EP, etoposide/cisplatin
Fig. 2
Fig. 2
Cumulative survival rate of patients. AP group (n = 149; black triangles), EP group (n = 150; red circles) (ITT population). AP, amrubicin/cisplatin; CI, confidence interval; EP, etoposide/cisplatin; HR, hazard ratio; OS, overall survival
Fig. 3
Fig. 3
Progression-free survival of patients. AP group (n = 149; black triangles), EP group (n = 150; red circles) (ITT population). AP, amrubicin/cisplatin; CI, confidence interval; EP, etoposide/cisplatin; HR, hazard ratio; ITT, intent-to-treat

References

    1. Chen W, Zheng R, Zhang S, Zhao P, Zeng H, Zou X, et al. Annual report on status of cancer in China, 2010. Chin J Cancer Res. 2014;26:48–58.
    1. Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med. 2008;359:1367–80. doi: 10.1056/NEJMra0802714.
    1. Stupp R, Monnerat C, Turrisi AT, 3rd, Perry MC, Leyvraz S. Small cell lung cancer: state of the art and future perspectives. Lung Cancer. 2004;45:105–17. doi: 10.1016/j.lungcan.2003.12.006.
    1. Shepherd FA, Crowley J, Van Houtte P, Postmus PE, Carney D, Chansky K, et al. The International Association for the Study of Lung Cancer lung cancer staging project: proposals regarding the clinical staging of small cell lung cancer in the forthcoming (seventh) edition of the tumor, node, metastasis classification for lung cancer. J Thorac Oncol. 2007;2:1067–77. doi: 10.1097/JTO.0b013e31815bdc0d.
    1. Chute JP, Chen T, Feigal E, Simon R, Johnson BE. Twenty years of phase III trials for patients with extensive-stage small-cell lung cancer: perceptible progress. J Clin Oncol. 1999;17:1794–801.
    1. Mascaux C, Paesmans M, Berghmans T, Branle F, Lafitte JJ, Lemaitre F, et al. A systematic review of the role of etoposide and cisplatin in the chemotherapy of small cell lung cancer with methodology assessment and meta-analysis. Lung Cancer. 2000;30:23–36. doi: 10.1016/S0169-5002(00)00127-6.
    1. Pujol JL, Carestia L, Daures JP. Is there a case for cisplatin in the treatment of small-cell lung cancer? A meta-analysis of randomized trials of a cisplatin-containing regimen versus a regimen without this alkylating agent. Br J Cancer. 2000;83:8–15. doi: 10.1054/bjoc.2000.1164.
    1. Noda K, Nishiwaki Y, Kawahara M, Negoro S, Sugiura T, Yokoyama A, et al. Japan Clinical Oncology Group. Irinotecan plus cisplatin compared with etoposide plus cisplatin for extensive small-cell lung cancer. N Engl J Med. 2002;346:85–91. doi: 10.1056/NEJMoa003034.
    1. Hanna N, Bunn PA, Jr, Langer C, Einhorn L, Guthrie T, Jr, Beck T, et al. Randomized phase III trial comparing irinotecan/cisplatin with etoposide/cisplatin in patients with previously untreated extensive-stage disease small-cell lung cancer. J Clin Oncol. 2006;24:2038–43. doi: 10.1200/JCO.2005.04.8595.
    1. Lara PN, Jr, Natale R, Crowley J, Lenz HJ, Redman MW, Carleton JE, et al. Phase III trial of irinotecan/cisplatin compared with etoposide/cisplatin in extensive-stage small-cell lung cancer: clinical and pharmacogenomic results from SWOG S0124. J Clin Oncol. 2009;27:2530–5. doi: 10.1200/JCO.2008.20.1061.
    1. Zatloukal P, Cardenal F, Szczesna A, Gorbunova V, Moiseyenko V, Zhang X, et al. A multicenter international randomized phase III study comparing cisplatin in combination with irinotecan or etoposide in previously untreated small-cell lung cancer patients with extensive disease. Ann Oncol. 2010;21:1810–16. doi: 10.1093/annonc/mdq036.
    1. Hermes A, Bergman B, Bremnes R, Ek L, Fluge S, Sederholm C, et al. Irinotecan plus carboplatin versus oral etoposide plus carboplatin in extensive small-cell lung cancer: a randomized phase III trial. J Clin Oncol. 2008;26:4261–7. doi: 10.1200/JCO.2007.15.7545.
    1. Schmittel A, Sebastian M, Fischer von Weikersthal L, Martus P, Gauler TC, Kaufmann C, Arbeitsgemeinschaft Internistische Onkologie Thoracic Oncology Study Group et al. A German multicenter, randomized phase III trial comparing irinotecan-carboplatin with etoposide-carboplatin as first-line therapy for extensive-disease small-cell lung cancer. Ann Oncol. 2011;22:1798–804. doi: 10.1093/annonc/mdq652.
    1. Lee SM, James LE, Qian W, Spiro S, Eisen T, Gower NH, et al. Comparison of gemcitabine and carboplatin versus cisplatin and etoposide for patients with poor-prognosis small cell lung cancer. Thorax. 2009;64:75–80. doi: 10.1136/thx.2007.093872.
    1. Socinski MA, Smit EF, Lorigan P, Konduri K, Reck M, Szczesna A, et al. Phase III study of pemetrexed plus carboplatin compared with etoposide plus carboplatin in chemotherapy-naive patients with extensive-stage small-cell lung cancer. J Clin Oncol. 2009;27:4787–92. doi: 10.1200/JCO.2009.23.1548.
    1. Ciuleanu T, Samarzjia M, Demidchik Y, Beliakouski V, Rancic M, Bentsion DL, et al. Randomized phase III study (SPEAR) of picoplatin plus best supportive care (BSC) or BSC alone in patients (pts) with SCLC refractory or progressive within 6 months after first-line platinum-based chemotherapy. [abstract no. 7002]. J Clin Oncol. 2010;28 (15 suppl).
    1. Misaki Y, Inoue K, Seki T, Kawasaki H. Acute intravenous toxicity study of amrubicin hydrochloride (SM-5887) in rats. Jpn Pharmacol Ther. 1999;27:s7–35.
    1. Kohda A, Noda T, Horii K, Inoue K, Ozaki M, Kato T. Single intravenous toxicity study of amrubicin hydrochloride (SM-5887) in dogs. Jpn Pharmacol Ther. 1999;27:s37–62.
    1. Adachi H, Nakayama A, Horii K, Ozaki M, Uwagawa S, Seki T, et al. Five-day intravenous comparative toxicity study on amrubicin hydrochloride (SM-5887) and doxorubicin hydrochloride (DXR) in male rats. Jpn Pharmacol Ther. 1999;27:s221–44.
    1. Suzuki T, Minamide S, Iwasaki T, Yamamoto H, Kanda H. Cardiotoxicity of a new anthracycline derivative (SM-5887) following intravenous administration to rabbits: comparative study with doxorubicin. Invest New Drugs. 1997;15:219–25. doi: 10.1023/A:1005862730941.
    1. Noda T, Watanabe T, Kohda A, Hosokawa S, Suzuki T. Chronic effects of a novel synthetic anthracycline derivative (SM-5887) on normal heart and doxorubicin-induced cardiomyopathy in beagle dogs. Invest New Drugs. 1998;16:121–8. doi: 10.1023/A:1006088907271.
    1. Yana T, Negoro S, Takada M, Yokota S, Takada Y, Sugiura T, West Japan Thoracic Oncology Group et al. Phase II study of amrubicin in previously untreated patients with extensive-disease small cell lung cancer: West Japan Thoracic Oncology Group (WJTOG) study. Invest New Drugs. 2007;25:253–8. doi: 10.1007/s10637-006-9012-9.
    1. Ohe Y, Negoro S, Matsui K, Nakagawa K, Sugiura T, Takada Y, et al. Phase I-II study of amrubicin and cisplatin in previously untreated patients with extensive-stage small-cell lung cancer. Ann Oncol. 2005;16:430–6. doi: 10.1093/annonc/mdi081.
    1. O’Brien ME, Konopa K, Lorigan P, Bosquee L, Marshall E, Bustin F, et al. Randomised phase II study of amrubicin as single agent or in combination with cisplatin versus cisplatin etoposide as first-line treatment in patients with extensive stage small cell lung cancer - EORTC 08062. Eur J Cancer. 2011;47:2322–30. doi: 10.1016/j.ejca.2011.05.020.
    1. Ettinger DS, Jotte R, Lorigan P, Gupta V, Garbo L, Alemany C, et al. Phase II study of amrubicin as second-line therapy in patients with platinum-refractory small-cell lung cancer. J Clin Oncol. 2010;28:2598–603. doi: 10.1200/JCO.2009.26.7682.
    1. Jotte R, Conkling P, Reynolds C, Galsky MD, Klein L, Fitzgibbons JF, et al. Randomized phase II trial of single-agent amrubicin or topotecan as second-line treatment in patients with small-cell lung cancer sensitive to first-line platinum-based chemotherapy. J Clin Oncol. 2011;29:287–93. doi: 10.1200/JCO.2010.29.8851.
    1. von Pawel J, Jotte R, Spigel DR, O’Brien ME, Socinski MA, Mezger J, et al. Randomized phase III trial of amrubicin versus topotecan as second-line treatment for patients with small-cell lung cancer. J Clin Oncol. 2014;32:4012–9. doi: 10.1200/JCO.2013.54.5392.
    1. Pocock SJ, Simon R. Sequential treatment assignment with balancing for prognostic factors in the controlled clinical trial. Biometrics. 1975;31:103–15. doi: 10.2307/2529712.
    1. Satouchi M, Kotani Y, Shibata T, Ando M, Nakagawa K, Yamamoto N, et al. Phase III study comparing amrubicin plus cisplatin with irinotecan plus cisplatin in the treatment of extensive-disease small-cell lung cancer: JCOG 0509. J Clin Oncol. 2014;32:1262–8. doi: 10.1200/JCO.2013.53.5153.
    1. Minami-Shimmyo Y, Ohe Y, Yamamoto S, Sumi M, Nokihara H, Horinouchi H, et al. Risk factors for treatment-related death associated with chemotherapy and thoracic radiotherapy for lung cancer. J Thorac Oncol. 2012;7:177–82. doi: 10.1097/JTO.0b013e31823c4c07.
    1. Ochi N, Hotta K, Takigawa N, Oze I, Fujiwara Y, Ichihara E, et al. Treatment-related death in patients with small-cell lung cancer in phase III trials over the last two decades. PLoS One. 2012;7:e42798. doi: 10.1371/journal.pone.0042798.
    1. Kobayashi M, Matsui K, Iwamoto Y, Ebi N, Oizumi S, Takeda K, et al. West Japan Oncology Group. Phase II study of sequential triplet chemotherapy, irinotecan and cisplatin followed by amrubicin, in patients with extensive-stage small cell lung cancer: West Japan Thoracic Oncology Group Study 0301. J Thorac Oncol. 2010;5:1075–80. doi: 10.1097/JTO.0b013e3181dd1591.

Source: PubMed

3
Se inscrever