A Multicentric, Open-Label, Randomized, Comparative Clinical Trial of Two Different Doses of Expanded hBM-MSCs Plus Biomaterial versus Iliac Crest Autograft, for Bone Healing in Nonunions after Long Bone Fractures: Study Protocol

Enrique Gómez-Barrena, Norma G Padilla-Eguiluz, Cristina Avendaño-Solá, Concepción Payares-Herrera, Ana Velasco-Iglesias, Ferran Torres, Philippe Rosset, Florian Gebhard, Nicola Baldini, Juan C Rubio-Suarez, Eduardo García-Rey, José Cordero-Ampuero, Javier Vaquero-Martin, Francisco Chana, Fernando Marco, Javier García-Coiradas, Pedro Caba-Dessoux, Pablo de la Cuadra, Philippe Hernigou, Charles-Henri Flouzat-Lachaniette, François Gouin, Didier Mainard, Jean Michel Laffosse, Miriam Kalbitz, Ingo Marzi, Norbert Südkamp, Ulrich Stöckle, Gabriela Ciapetti, Davide Maria Donati, Luigi Zagra, Ugo Pazzaglia, Guido Zarattini, Rodolfo Capanna, Fabio Catani, Enrique Gómez-Barrena, Norma G Padilla-Eguiluz, Cristina Avendaño-Solá, Concepción Payares-Herrera, Ana Velasco-Iglesias, Ferran Torres, Philippe Rosset, Florian Gebhard, Nicola Baldini, Juan C Rubio-Suarez, Eduardo García-Rey, José Cordero-Ampuero, Javier Vaquero-Martin, Francisco Chana, Fernando Marco, Javier García-Coiradas, Pedro Caba-Dessoux, Pablo de la Cuadra, Philippe Hernigou, Charles-Henri Flouzat-Lachaniette, François Gouin, Didier Mainard, Jean Michel Laffosse, Miriam Kalbitz, Ingo Marzi, Norbert Südkamp, Ulrich Stöckle, Gabriela Ciapetti, Davide Maria Donati, Luigi Zagra, Ugo Pazzaglia, Guido Zarattini, Rodolfo Capanna, Fabio Catani

Abstract

ORTHOUNION is a multicentre, open, comparative, three-arm, randomized clinical trial (EudraCT number 2015-000431-32) to compare the efficacy, at one and two years, of autologous human bone marrow-derived expanded mesenchymal stromal cell (hBM-MSC) treatments versus iliac crest autograft (ICA) to enhance bone healing in patients with diaphyseal and/or metaphysodiaphyseal fracture (femur, tibia, and humerus) status of atrophic or oligotrophic nonunion (more than 9 months after the acute fracture, including recalcitrant cases after failed treatments). The primary objective is to determine if the treatment with hBM-MSCs combined with biomaterial is superior to ICA in obtaining bone healing. If confirmed, a secondary objective is set to determine if the dose of 100 × 106 hBM-MSCs is noninferior to that of 200 × 106 hBM-MSCs. The participants (n = 108) will be randomly assigned to either the experimental low dose (n = 36), the experimental high dose (n = 36), or the comparator arm (n = 36) using a central randomization service. The trial will be conducted in 20 clinical centres in Spain, France, Germany, and Italy under the same clinical protocol. The confirmation of superiority for the proposed ATMP in nonunions may foster the future of bone regenerative medicine in this indication. On the contrary, absence of superiority may underline its limitations in clinical use.

Figures

Figure 1
Figure 1
CONSORT diagram of the ORTHOUNION clinical trial.
Figure 2
Figure 2
Flow diagram of the ORTHOUNION clinical trial.

References

    1. Giorgio Calori M., Capanna R., Colombo M., et al. Cost effectiveness of tibial nonunion treatment: a comparison between rhBMP-7 and autologous bone graft in two Italian centres. Injury. 2013;44(12):1871–1879. doi: 10.1016/j.injury.2013.08.012.
    1. Blokhuis T. J., Calori G. M., Schmidmaier G. Autograft versus BMPs for the treatment of non-unions: what is the evidence? Injury. 2013;44(Supplement 1):S40–S42. doi: 10.1016/S0020-1383(13)70009-3.
    1. Bhandari M., Guyatt G. H., Swiontkowski M. F., Tornetta P., III, Sprague S., Schemitsch E. H. A lack of consensus in the assessment of fracture healing among orthopaedic surgeons. Journal of Orthopaedic Trauma. 2002;16(8):562–566. doi: 10.1097/00005131-200209000-00004.
    1. Food and Drug Administration. Guidance Document for Industry and CDRH Staff for the Preparation of Investigational Device Exemptions and Premarket Approval Applications for Bone Growth Stimulator Devices. Rockville, MD, USA: US Food and Drug Administration; 1998.
    1. Bishop J. A., Palanca A. A., Bellino M. J., Lowenberg D. W. Assessment of compromised fracture healing. Journal of the American Academy of Orthopaedic Surgeons. 2012;20(5):273–282. doi: 10.5435/JAAOS-20-05-273.
    1. Müller M. E., Allgöwer M., Schneider R., Willenegger H. Manual of Internal Fixation. 3rd. Berlin, Heildeberg: Springer Verlag; 1991.
    1. Hernigou P., Desroches A., Queinnec S., et al. Morbidity of graft harvesting versus bone marrow aspiration in cell regenerative therapy. International Orthopaedics. 2014;38(9):1855–1860. doi: 10.1007/s00264-014-2318-x.
    1. Friedlaender G. E., Perry C. R., Dean Cole J., et al. Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. The Journal of Bone and Joint Surgery-American. 2001;83-A(Supplement 1, Part 2):S151–S158.
    1. Gómez-Barrena E., Rosset P., Müller I., et al. Bone regeneration: stem cell therapies and clinical studies in orthopaedics and traumatology. Journal of Cellular and Molecular Medicine. 2011;15(6):1266–1286. doi: 10.1111/j.1582-4934.2011.01265.x.
    1. Gómez-Barrena E., Rosset P., Lozano D., Stanovici J., Ermthaller C., Gerbhard F. Bone fracture healing: cell therapy in delayed unions and nonunions. Bone. 2015;70:93–101. doi: 10.1016/j.bone.2014.07.033.
    1. European Medicines Agency. Scientific Guidelines for Human Medicinal Products, Clinical Efficacy and Safety Guidelines, General Guidelines. .
    1. Veronesi E., Murgia A., Caselli A., et al. Transportation conditions for prompt use of ex vivo expanded and freshly harvested clinical-grade bone marrow mesenchymal stromal/stem cells for bone regeneration. Tissue Engineering Part C: Methods. 2014;20(3):239–251. doi: 10.1089/ten.tec.2013.0250.
    1. Brennan M. A., Renaud A., Amiaud J., et al. Pre-clinical studies of bone regeneration with human bone marrow stromal cells and biphasic calcium phosphate. Stem Cell Research & Therapy. 2014;5(5):p. 114. doi: 10.1186/scrt504.
    1. Rapp A. E., Bindl R., Recknagel S., et al. Fracture Healing Is Delayed in Immunodeficient NOD/scid‑IL2Rγcnull Mice. PLoS One. 2016;11(2, article e0147465) doi: 10.1371/journal.pone.0147465.
    1. Bassi G., Guilloton F., Menard C., et al. Effects of a ceramic biomaterial on immune modulatory properties and differentiation potential of human mesenchymal stromal cells of different origin. Tissue Engineering Part A. 2015;21(3-4):767–781. doi: 10.1089/ten.tea.2014.0269.
    1. Miramond T., Corre P., Borget P., et al. Osteoinduction of biphasic calcium phosphate scaffolds in a nude mouse model. Journal of Biomaterials Applications. 2014;29(4):595–604. doi: 10.1177/0885328214537859.
    1. Gamblin A. L., Brennan M. A., Renaud A., et al. Bone tissue formation with human mesenchymal stem cells and biphasic calcium phosphate ceramics: the local implication of osteoclasts and macrophages. Biomaterials. 2014;35(36):9660–9667. doi: 10.1016/j.biomaterials.2014.08.018.
    1. Mebarki M., Coquelin L., Layrolle P., et al. Enhanced human bone marrow mesenchymal stromal cell adhesion on scaffolds promotes cell survival and bone formation. Acta Biomaterialia. 2017;59:94–107. doi: 10.1016/j.actbio.2017.06.018.
    1. Fekete N., Gadelorge M., Fürst D., et al. Platelet lysate from whole blood-derived pooled platelet concentrates and apheresis-derived platelet concentrates for the isolation and expansion of human bone marrow mesenchymal stromal cells: production process, content and identification of active components. Cytotherapy. 2012;14(5):540–554. doi: 10.3109/14653249.2012.655420.
    1. Léotot J., Lebouvier A., Hernigou P., Bierling P., Rouard H., Chevallier N. Bone-forming capacity and biodistribution of bone marrow-derived stromal cells directly loaded into scaffolds: a novel and easy approach for clinical application of bone regeneration. Cell Transplantation. 2015;24(10):1945–1955. doi: 10.3727/096368914X685276.
    1. Machin D., Campbell M. J. Statistical Tables for Design of Clinical Trials. Oxford: Blackwell; 1987.
    1. Fleiss J. L., Tytun A., Ury H. K. A simple approximation for calculating sample sizes for comparing independent proportions. Biometrics. 1980;36(2):343–346. doi: 10.2307/2529990.
    1. Hauschke D., Kieser M., Diletti E., Burke M. Sample size determination for proving equivalence based on the ratio of two means for normally distributed data. Statistics in Medicine. 1999;18(1):93–105. doi: 10.1002/(SICI)1097-0258(19990115)18:1<93::AID-SIM992>;2-8.
    1. Elashoff J. D. nQuery Version 7.0 Advisor User’s Guide. Los Angeles, CA, USA: Statistical Solutions Ltd; 2007.
    1. Liebergall M., Schroeder J., Mosheiff R., et al. Stem cell–based therapy for prevention of delayed fracture union: a randomized and prospective preliminary study. Molecular Therapy. 2013;21(8):1631–8. doi: 10.1038/mt.2013.109.
    1. Tressler M. A., Richards J. E., Sofianos D., Comrie F. K., Kregor P. J., Obremskey W. T. Bone morphogenetic protein-2 compared to autologous iliac crest bone graft in the treatment of long bone nonunion. Orthopedics. 2011;34(12):e877–e884. doi: 10.3928/01477447-20111021-09.
    1. Goulet J. A., Senunas L. E., DeSilva G. L., Greenfield M. L. V. H. Autogenous iliac crest bone graft: Complications and functional assessment. Clinical Orthopaedics and Related Research. 1997;339:76–81. doi: 10.1097/00003086-199706000-00011.
    1. Sen M. K., Miclau T. Autologous iliac crest bone graft: should it still be the gold standard for treating nonunions? Injury. 2007;38(1):S75–S80. doi: 10.1016/j.injury.2007.02.012.
    1. Bajada S., Harrison P. E., Ashton B. A., Cassar-Pullicino V. N., Ashammakhi N., Richardson J. B. Successful treatment of refractory tibial nonunion using calcium sulphate and bone marrow stromal cell implantation. Journal of Bone and Joint Surgery - British Volume. 2007;89-B(10):1382–1386. doi: 10.1302/0301-620X.89B10.19103.
    1. Giannotti S., Bottai V., Ghilardi M., et al. Treatment of pseudoarthrosis of the upper limb using expanded mesenchymal stem cells: a pilot study. European Review for Medical and Pharmacological Sciences. 2013;17(2):224–227.
    1. Ismail H. D., Phedy P., Kholinne E., et al. Mesenchymal stem cell implantation in atrophic nonunion of the long bones: a translational study. Bone & Joint Research. 2016;5(7):287–293. doi: 10.1302/2046-3758.57.2000587.
    1. Marcacci M., Kon E., Moukhachev V., et al. Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Engineering. 2007;13(5):947–955. doi: 10.1089/ten.2006.0271.
    1. Dilogo I. H., Kamal A. F., Gunawan B., Rawung R. V. Autologous mesenchymal stem cell (MSCs) transplantation for critical-sized bone defect following a wide excision of osteofibrous dysplasia. International Journal of Surgery Case Reports. 2015;17:106–111. doi: 10.1016/j.ijscr.2015.10.040.
    1. Labibzadeh N., Emadedin M., Fazeli R., et al. Mesenchymal stromal cells implantation in combination with platelet lysate product is safe for reconstruction of human long bone nonunion. Cell Journal. 2016;18(3):302–309. doi: 10.22074/cellj.2016.4557.
    1. Gomez-Barrena E., Sola C. A., Bunu C. P. Regulatory authorities and orthopaedic clinical trials on expanded mesenchymal stem cells. International Orthopaedics. 2014;38(9):1803–9. doi: 10.1007/s00264-014-2332-z.
    1. Jensen M. P., Chen C., Brugger A. M. Interpretation of visual analog scale ratings and change scores: a reanalysis of two clinical trials of postoperative pain. The Journal of Pain. 2003;4(7):407–414. doi: 10.1016/S1526-5900(03)00716-8.

Source: PubMed

3
Se inscrever