Effect of early stellate ganglion block in cerebral vasospasm after aneurysmal subarachnoid hemorrhage (BLOCK-CVS): study protocol for a randomized controlled trial

Longnian Jing, Youxuan Wu, Fa Liang, Minyu Jian, Yang Bai, Yunzhen Wang, Haiyang Liu, Anxin Wang, Xiaolin Chen, Ruquan Han, Longnian Jing, Youxuan Wu, Fa Liang, Minyu Jian, Yang Bai, Yunzhen Wang, Haiyang Liu, Anxin Wang, Xiaolin Chen, Ruquan Han

Abstract

Introduction: Stellate ganglion block has been reported to expand cerebral vessels and alleviate vasospasm after aneurysmal subarachnoid hemorrhage. However, the causal relationship between early stellate ganglion block and cerebral vasospasm prevention has not yet been established. The purpose of this study was to explore the effectiveness and safety of early stellate ganglion block as a preventive treatment for cerebral vasospasm and delayed cerebral ischemia.

Methods/design: This is a single-center, prospective, randomized, controlled, blinded endpoint assessment superiority trial. A total of 228 patients will be randomized within 48 h of aneurysmal subarachnoid hemorrhage onset in a 1:1 ratio into two groups, one group receiving an additional e-SGB and the other group receiving only a camouflaging action before anesthesia induction in the operating room. The primary outcome is the incidence of symptomatic vasospasm within 14 days after aSAH. Further safety and efficacy parameters include the incidence of radiographic vasospasm, new cerebral infarction, postoperative delirium, and complications up to 90 days after surgery; postoperative cerebral hemodynamics; Mini-Mental State Examination score; modified Rankin scale score; and all-cause mortality up to 90 days after surgery.

Discussion: This is a randomized controlled trial to explore the effectiveness and safety of early stellate ganglion block as a preventive treatment to reduce cerebral vasospasm in patients with aneurysmal subarachnoid hemorrhage. If the results are positive, it may provide a new direction for the prevention and treatment of cerebral vasospasm and delayed cerebral ischemia.

Trial registration: The study was registered on Clincaltrials.gov on December 13, 2020 (NCT04691271).

Keywords: Cerebral vasospasm; Effectiveness; Prevention; Safety; Stellate ganglion block; Subarachnoid hemorrhage.

Conflict of interest statement

The authors declare no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Study implementation flow chart. The follow-up was completed by a special blinded team, including neurologists, radiologists, nurses, and graduate students. Asterisk symbol (*) indicates that the following time node starts from this moment. Hunt-hess, Hunt and Hess grading; mFisher, modified Fisher grading; GCS, Glasgow Outcome Scale; TCD, transcranial Doppler ultrasound; SGB, stellate ganglion block; HR, heart rate; BP, blood pressure; SpO2, pulse oxygen saturation; PaCO2, arterial partial pressure of carbon dioxide; EtCO2, end-tidal carbon dioxide; T, temperature; UV, urine volume. BIS, bispectral index; ICU, intensive care unit; AEs, adverse events; CAM-ICU, Confusion Assessment Method for the Intensive Care Unit; MMSE, Mini-Mental State Examination; mRS, modified Rankin Scale
Fig. 2
Fig. 2
Schematic diagram of stellate ganglion block under ultrasound guidance. After routine disinfection, 0.5% ropivacaine 8–10 mL will be injected into the surface of the longus colli muscle on the medial side of the prevertebral fascia at the level of the C6 anterior tubercle, and then the puncture point will be covered with sterile dressings. B The ultrasonic image of the cross-section of the sixth cervical segment: the blue arrow indicates the prevertebral fascia; the blue dotted line area is the longus colli muscle, and its lateral highlight area is the distribution of the stellate ganglion; and the green triangle indicates the drug injection site (the inner side of the prevertebral fascia), in which the stellate ganglion can be effectively blocked through the diffusion of the drug solution under the fascia and without nerve injury. C6, the sixth cervical segment; CA, carotid artery; CV, jugular vein; TH, thyroid; at, anterior tubercle; M, muscle; SCM, sternocleidomastoid muscle; LCol, longus colli muscle; LCap, longus capitis muscle; N, nerve from cervical plexus; pt, posterior tubercle. ASM, anterior scalene muscle; MSM, middle scalene muscle

References

    1. D'Souza S. Aneurysmal subarachnoid hemorrhage. J Neurosurg Anesthesiol. 2015;27(3):222–240. doi: 10.1097/ANA.0000000000000130.
    1. Neifert SN, Chapman EK, Martini ML, Shuman WH, Schupper AJ, Oermann EK, et al. Aneurysmal subarachnoid hemorrhage: the last decade. Transl Stroke Res. 2021;12(3):428–446. doi: 10.1007/s12975-020-00867-0.
    1. Veldeman M, Höllig A, Clusmann H, Stevanovic A, Rossaint R, Coburn M. Delayed cerebral ischaemia prevention and treatment after aneurysmal subarachnoid haemorrhage: a systematic review. Brit J Anaesth. 2016;117(1):17–40. doi: 10.1093/bja/aew095.
    1. Rouanet C, Silva GS. Aneurysmal subarachnoid hemorrhage: current concepts and updates. Arq Neuro-Psiquiat. 2019;77(11):806–814. doi: 10.1590/0004-282X20190112.
    1. Connolly ES, Rabinstein AA, Carhuapoma JR, Derdeyn CP, Dion J, Higashida RT, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage. Stroke. 2012;43(6):1711–1737. doi: 10.1161/STR.0b013e3182587839.
    1. Cho WS, Kim JE, Park SQ, Ko JK, Kim DW, Park JC, et al. Korean clinical practice guidelines for aneurysmal subarachnoid hemorrhage. J Korean Neurosurg Soc. 2018;61(2):127–166. doi: 10.3340/jkns.2017.0404.005.
    1. Solter VV, Roje-Bedekovic M, Breitenfeld T, Supanc V, Lovrencic-Huzjan A, Seric V, et al. Recommendations for the management of medical complications in patients following aneurysmal subarachnoid hemorrhage. Acta Clin Croat. 2014;53(1):113–138.
    1. Burns SK, Brewer KJ, Jenkins C, Miller S. Aneurysmal subarachnoid hemorrhage and vasospasm. AACN Adv Crit Care. 2018;29(2):163–174. doi: 10.4037/aacnacc2018491.
    1. Khey K, Huard A, Mahmoud SH. Inflammatory pathways following subarachnoid hemorrhage. Cell Mol Neurobiol. 2020;40(5):675–693. doi: 10.1007/s10571-019-00767-4.
    1. Zhang Z, Fang Y, Lenahan C, Chen S. The role of immune inflammation in aneurysmal subarachnoid hemorrhage. Exp Neurol. 2021;336:113535. doi: 10.1016/j.expneurol.2020.113535.
    1. Zheng VZ, Wong GKC. Neuroinflammation responses after subarachnoid hemorrhage: a review. J Clin Neurosci. 2017;42:7–11. doi: 10.1016/j.jocn.2017.02.001.
    1. Suzuki H, Fujimoto M, Kawakita F, Liu L, Nakano F, Nishikawa H, et al. Toll-like receptor 4 and tenascin-C signaling in cerebral vasospasm and brain injuries after subarachnoid hemorrhage. Acta Neurochir Suppl. 2020;127:91–96. doi: 10.1007/978-3-030-04615-6_15.
    1. Carlson AP, Hänggi D, Macdonald RL, Shuttleworth CW. Nimodipine reappraised: an old drug with a future. Curr Neuropharmacol. 2020;18(1):65–82. doi: 10.2174/1570159X17666190927113021.
    1. Dawley T, Claus CF, Tong D, Rajamand S, Sigler D, Bahoura M, et al. Efficacy and safety of cilostazol-nimodipine combined therapy on delayed cerebral ischaemia after aneurysmal subarachnoid haemorrhage: a prospective, randomised, double-blinded, placebo-controlled trial protocol. BMJ Open. 2020;10(10):e036217. doi: 10.1136/bmjopen-2019-036217.
    1. Veldeman M, Hollig A, Clusmann H, Stevanovic A, Rossaint R, Coburn M. Delayed cerebral ischaemia prevention and treatment after aneurysmal subarachnoid haemorrhage: a systematic review. Br J Anaesth. 2016;117(1):17–40. doi: 10.1093/bja/aew095.
    1. Charpentier C, Audibert G, Guillemin F, Civit T, Ducrocq X, Bracard S, et al. Multivariate analysis of predictors of cerebral vasospasm occurrence after aneurysmal subarachnoid hemorrhage. Stroke. 1999;30(7):1402–1408. doi: 10.1161/01.str.30.7.1402.
    1. Shan T, Zhang T, Qian W, Ma L, Li B, You C, et al. Effectiveness and feasibility of cilostazol in patients with aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. J Neurol. 2020;267(6):1577–1584. doi: 10.1007/s00415-019-09198-z.
    1. Shen J, Shen J, Zhu K, Zhou H, Tian H, Yu G. Efficacy of statins in cerebral vasospasm, mortality, and delayed cerebral ischemia in patients with aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis of randomized controlled trials. World Neurosurg. 2019;131:e65–e73. doi: 10.1016/j.wneu.2019.07.016.
    1. Kumar G, Shahripour RB, Harrigan MR. Vasospasm on transcranial Doppler is predictive of delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. J Neurosurg. 2016;124(5):1257–1264. doi: 10.3171/2015.4.JNS15428.
    1. Bederson JB, Connolly EJ, Batjer HH, Dacey RG, Dion JE, Michael ND, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council. American Heart Association Stroke. 2009;40(3):994–1025. doi: 10.1161/STROKEAHA.108.191395.
    1. Kenney MJ, Ganta CK. Autonomic nervous system and immune system interactions. Compr Physiol. 2014;4(3):1177–1200. doi: 10.1002/cphy.c130051.
    1. Li TT, Wan Q, Zhang X, Xiao Y, Sun LY, Zhang YR, et al. Stellate ganglion block reduces inflammation and improves neurological function in diabetic rats during ischemic stroke. Neural Regen Res. 2022;17(9):1991–1997. doi: 10.4103/1673-5374.335162.
    1. Hu N, Wu Y, Chen B, Han J, Zhou M. Protective effect of stellate ganglion block on delayed cerebral vasospasm in an experimental rat model of subarachnoid hemorrhage. Brain Res. 2014;1585:63–71. doi: 10.1016/j.brainres.2014.08.012.
    1. Chen Y, Guo L, Lang H, Hu X, Jing S, Luo M, et al. Effect of a stellate ganglion block on acute lung injury in septic rats. Inflammation. 2018;41(5):1601–1609. doi: 10.1007/s10753-018-0803-x.
    1. Lipov E, Gluncic V, Lukic IK, Candido K. How does stellate ganglion block alleviate immunologically-linked disorders? Med Hypotheses. 2020;144:110000. doi: 10.1016/j.mehy.2020.110000.
    1. Zhang J, Nie Y, Pang Q, Zhang X, Wang Q, Tang J. Effects of stellate ganglion block on early brain injury in patients with subarachnoid hemorrhage: a randomised control trial. Bmc Anesthesiol. 2021;21(1):23. doi: 10.1186/s12871-020-01215-3.
    1. Zhao HY, Yang GT, Sun NN, Kong Y, Liu YF. Efficacy and safety of stellate ganglion block in chronic ulcerative colitis. World J Gastroenterol. 2017;23(3):533–539. doi: 10.3748/wjg.v23.i3.533.
    1. Gupta MM, Bithal PK, Dash HH, Chaturvedi A, Mahajan RP. Effects of stellate ganglion block on cerebral haemodynamics as assessed by transcranial Doppler ultrasonography. Brit J Anaesth. 2005;95(5):669–673. doi: 10.1093/bja/aei230.
    1. Treggiari MM, Romand J, Martin J, Reverdin A, Rüfenacht DA, Tribolet ND. Cervical sympathetic block to reverse delayed ischemic neurological deficits after aneurysmal subarachnoid hemorrhage. Stroke. 2003;34(4):961–967. doi: 10.1161/01.STR.0000060893.72098.80.
    1. Dash H, Chouhan R, Jain V, Rath G, Bithal P, Suri A. Stellate ganglion block for treatment of cerebral vasospasm in patients with aneurysmal subarachnoid hemorrhage - a preliminary study. J Anaesthesiol Clin Pharmacol. 2011;27(4):516. doi: 10.4103/0970-9185.86598.
    1. Wendel C, Scheibe R, Wagner S, Tangemann W, Henkes H, Ganslandt O, et al. Decrease of blood flow velocity in the middle cerebral artery after stellate ganglion block following aneurysmal subarachnoid hemorrhage: a potential vasospasm treatment? J Neurosurg. 2020;133:773–779. doi: 10.3171/2019.5.JNS182890.
    1. Doi S, Cho N, Obara T. Stellate ganglion block increases blood flow in the anastomotic artery after superficial temporal artery–middle cerebral artery bypass. Brit J Anaesth. 2016;117(3):395–396. doi: 10.1093/bja/aew230.
    1. Pileggi M, Mosimann PJ, Isalberti M, Piechowiak EI, Merlani P, Reinert M, et al. Stellate ganglion block combined with intra-arterial treatment: a “one-stop shop” for cerebral vasospasm after aneurysmal subarachnoid hemorrhage-a pilot study. Neuroradiology. 2021;63(10):1701–1708. doi: 10.1007/s00234-021-02689-9.
    1. Frontera JA, Fernandez A, Schmidt JM, Claassen J, Wartenberg KE, Badjatia N, et al. Defining vasospasm after subarachnoid hemorrhage: what is the most clinically relevant definition? Stroke. 2009;40(6):1963–8. doi: 10.1161/STROKEAHA.108.544700.
    1. Suwatcharangkoon S, De Marchis GM, Witsch J, Meyers E, Velazquez A, Falo C, et al. Medical treatment failure for symptomatic vasospasm after subarachnoid hemorrhage threatens long-term outcome. Stroke. 2019;50(7):1696–1702. doi: 10.1161/STROKEAHA.118.022536.
    1. McGirt MJ, Garces AG, Huang J, Tamargo RJ. Simvastatin for the prevention of symptomatic cerebral vasospasm following aneurysmal subarachnoid hemorrhage: a single-institution prospective cohort study. J Neurosurg. 2009;110(5):968–974. doi: 10.3171/2008.10.JNS08901.
    1. Rae OK, Bartoszek M, Mulvaney S, Mclean B, Turabi A, Young R, et al. Effect of stellate ganglion block treatment on posttraumatic stress disorder symptoms: a randomized clinical trial. Jama Psychiat. 2020;77(2):130–138. doi: 10.1001/jamapsychiatry.2019.3474.
    1. Muhammad S, Hanggi D. Inflammation and anti-inflammatory targets after aneurysmal subarachnoid hemorrhage. Int J Mol Sci. 2021;22(14):7355. doi: 10.3390/ijms22147355.
    1. Nassiri F, Ibrahim GM, Badhiwala JH, Witiw CD, Mansouri A, Alotaibi NM, et al. A propensity score-matched study of the use of non-steroidal anti-inflammatory agents following aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2016;25(3):351–358. doi: 10.1007/s12028-016-0266-6.
    1. Solar P, Mackerle Z, Joukal M, Jancalek R. Non-steroidal anti-inflammatory drugs in the pathophysiology of vasospasms and delayed cerebral ischemia following subarachnoid hemorrhage: a critical review. Neurosurg Rev. 2021;44(2):649–658. doi: 10.1007/s10143-020-01276-5.
    1. Celik O, Bilginer B, Korkmaz A, Gurgor PN, Bavbek M, Ozgen T, et al. Effects of intramuscular parecoxib administration on vasospasm in an experimental subarachnoid hemorrhage model. Int J Neurosci. 2011;121(6):316–322. doi: 10.3109/00207454.2011.556284.
    1. Yokoyama M, Nakatsuka H, Itano Y, Hirakawa M. Stellate ganglion block modifies the distribution of lymphocyte subsets and natural-killer cell activity. Anesthesiology. 2000;92(1):109–115. doi: 10.1097/00000542-200001000-00021.
    1. Sugimoto M, Shimaoka M, Taenaka N, Kiyono H, Yoshiya I. Lymphocyte activation is attenuated by stellate ganglion block. Reg Anesth Pain Med. 1999;24(1):30–35. doi: 10.1016/s1098-7339(99)90162-1.
    1. Yang X, Shi Z, Li X, Li J. Impacts of stellate ganglion block on plasma NF-kappaB and inflammatory factors of TBI patients. Int J Clin Exp Med. 2015;8(9):15630–15638.

Source: PubMed

3
Se inscrever