Antibiotics and the Human Gut Microbiome: Dysbioses and Accumulation of Resistances

M P Francino, M P Francino

Abstract

The human microbiome is overly exposed to antibiotics, due, not only to their medical use, but also to their utilization in farm animals and crops. Microbiome composition can be rapidly altered by exposure to antibiotics, with potential immediate effects on health, for instance through the selection of resistant opportunistic pathogens that can cause acute disease. Microbiome alterations induced by antibiotics can also indirectly affect health in the long-term. The mutualistic microbes in the human body interact with many physiological processes, and participate in the regulation of immune and metabolic homeostasis. Therefore, antibiotic exposure can alter many basic physiological equilibria, promoting long-term disease. In addition, excessive antibiotic use fosters bacterial resistance, and the overly exposed human microbiome has become a significant reservoir of resistance genes, contributing to the increasing difficulty in controlling bacterial infections. Here, the complex relationships between antibiotics and the human microbiome are reviewed, with focus on the intestinal microbiota, addressing (1) the effects of antibiotic use on the composition and function of the gut microbiota, (2) the impact of antibiotic-induced microbiota alterations on immunity, metabolism, and health, and (3) the role of the gut microbiota as a reservoir of antibiotic resistances.

Keywords: antibiotics; atopy; autoimmunity; dysbiosis; human gut microbiota; immunotolerance; inflammation; resistance reservoir.

Figures

FIGURE 1
FIGURE 1
Antibiotic effects on the gut microbiota and associated health problems. The main biological consequences of antibiotic-induced dysbioses and the potential diseases that can ensue from them are shown (only diseases with published evidence of association with antibiotic exposure are included). Involved mechanisms are shown in pink-shaded boxes.

References

    1. Aagaard K., Ma J., Antony K. M., Ganu R., Petrosino J., Versalovic J. (2014). The placenta harbors a unique microbiome. Sci. Transl. Med. 6:237ra265 10.1126/scitranslmed.3008599
    1. Abbas A. K. (1996). Die and let live: eliminating dangerous lymphocytes. Cell 84 655–657. 10.1016/S0092-8674(00)81042-9
    1. Abrahamsson T. R., Jakobsson H. E., Andersson A. F., Bjorksten B., Engstrand L., Jenmalm M. C. (2012). Low diversity of the gut microbiota in infants with atopic eczema. J. Allergy Clin. Immunol. 129 434–440, 440.e1–2 10.1016/j.jaci.2011.10.025
    1. Ajslev T. A., Andersen C. S., Gamborg M., Sorensen T. I., Jess T. (2011). Childhood overweight after establishment of the gut microbiota: the role of delivery mode, pre-pregnancy weight and early administration of antibiotics. Int. J. Obes. (Lond.) 35 522–529. 10.1038/ijo.2011.27
    1. Akdis C. A., Akdis M. (2009). Mechanisms and treatment of allergic disease in the big picture of regulatory T cells. J. Allergy Clin. Immunol. 123 735–746. 10.1016/j.jaci.2009.02.030
    1. Alicea-Serrano A. M., Contreras M., Magris M., Hidalgo G., Dominguez-Bello M. G. (2013). Tetracycline resistance genes acquired at birth. Arch. Microbiol. 195 447–451. 10.1007/s00203-012-0864-4
    1. Alm J. S., Swartz J., Lilja G., Scheynius A., Pershagen G. (1999). Atopy in children of families with an anthroposophic lifestyle. Lancet 353 1485–1488. 10.1016/S0140-6736(98)09344-1
    1. Alpert C. A., Mater D. D., Muller M. C., Ouriet M. F., Duval-Iflah Y., Corthier G. (2003). Worst-case scenarios for horizontal gene transfer from Lactococcus lactis carrying heterologous genes to Enterococcus faecalis in the digestive tract of gnotobiotic mice. Environ. Biosaf. Res. 2 173–180. 10.1051/ebr/2003010e
    1. Angelakis E., Armougom F., Million M., Raoult D. (2012). The relationship between gut microbiota and weight gain in humans. Future Microbiol. 7 91–109. 10.2217/fmb.11.142
    1. Atarashi K., Tanoue T., Shima T., Imaoka A., Kuwahara T., Momose Y., et al. (2011). Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331 337–341. 10.1126/science.1198469
    1. Baba N., Samson S., Bourdet-Sicard R., Rubio M., Sarfati M. (2008). Commensal bacteria trigger a full dendritic cell maturation program that promotes the expansion of non-Tr1 suppressor T cells. J. Leukoc. Biol. 84 468–476. 10.1189/jlb.0108017
    1. Backhed F., Ding H., Wang T., Hooper L. V., Koh G. Y., Nagy A., et al. (2004). The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. U.S.A. 101 15718–15723. 10.1073/pnas.0407076101
    1. Bahl M. I., Sorensen S. J., Hansen L. H., Licht T. R. (2004). Effect of tetracycline on transfer and establishment of the tetracycline-inducible conjugative transposon Tn916 in the guts of gnotobiotic rats. Appl. Environ. Microbiol. 70 758–764. 10.1128/AEM.70.2.758-764.2004
    1. Bedford Russell A. R., Murch S. H. (2006). Could peripartum antibiotics have delayed health consequences for the infant? BJOG 113 758–765. 10.1111/j.1471-0528.2006.00952.x
    1. Bindels L. B., Porporato P., Dewulf E. M., Verrax J., Neyrinck A. M., Martin J. C., et al. (2012). Gut microbiota-derived propionate reduces cancer cell proliferation in the liver. Br. J. Cancer 107 1337–1344. 10.1038/bjc.2012.409
    1. Bisgaard H., Li N., Bonnelykke K., Chawes B. L., Skov T., Paludan-Muller G., et al. (2011). Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J. Allergy Clin. Immunol. 128 e641–e645. 10.1016/j.jaci.2011.04.060
    1. Bjorksten B., Naaber P., Sepp E., Mikelsaar M. (1999). The intestinal microflora in allergic Estonian and Swedish 2-year-old children. Clin. Exp. Allergy 29 342–346. 10.1016/j.jaci.2011.04.060
    1. Bjorksten B., Sepp E., Julge K., Voor T., Mikelsaar M. (2001). Allergy development and the intestinal microflora during the first year of life. J. Allergy Clin. Immunol. 108 516–520. 10.1067/mai.2001.118130
    1. Boursi B., Mamtani R., Haynes K., Yang Y. X. (2015). The effect of past antibiotic exposure on diabetes risk. Eur. J. Endocrinol. 172 639–648. 10.1530/EJE-14-1163
    1. Brandl K., Plitas G., Mihu C. N., Ubeda C., Jia T., Fleisher M., et al. (2008). Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 455 804–807. 10.1038/nature07250
    1. Buffie C. G., Jarchum I., Equinda M., Lipuma L., Gobourne A., Viale A., et al. (2012). Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect. Immun. 80 62–73. 10.1128/IAI.05496-11
    1. Burch D. G. (1996). Is it time to ban all antibiotics as animal growth-promoting agents? Lancet 348 1455–1456. 10.1016/S0140-6736(04)70104-X
    1. Candon S., Perez-Arroyo A., Marquet C., Valette F., Foray A. P., Pelletier B., et al. (2015). Antibiotics in early life alter the gut microbiome and increase disease incidence in a spontaneous mouse model of autoimmune insulin-dependent diabetes. PLoS ONE 10:e0125448 10.1371/journal.pone.0125448
    1. Cani P. D., Amar J., Iglesias M. A., Poggi M., Knauf C., Bastelica D., et al. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56 1761–1772.
    1. Card R. M., Warburton P. J., MacLaren N., Mullany P., Allan E., Anjum M. F. (2014). Application of microarray and functional-based screening methods for the detection of antimicrobial resistance genes in the microbiomes of healthy humans. PLoS ONE 9:e86428 10.1371/journal.pone.0086428
    1. Celedon J. C., Fuhlbrigge A., Rifas-Shiman S., Weiss S. T., Finkelstein J. A. (2004). Antibiotic use in the first year of life and asthma in early childhood. Clin. Exp. Allergy 34 1011–1016. 10.1111/j.1365-2222.2004.01994.xCEA1994
    1. Celedon J. C., Litonjua A. A., Ryan L., Weiss S. T., Gold D. R. (2002). Lack of association between antibiotic use in the first year of life and asthma, allergic rhinitis, or eczema at age 5 years. Am. J. Respir. Crit. Care Med. 166 72–75. 10.1164/rccm.2109074
    1. Cerutti A., Rescigno M. (2008). The biology of intestinal immunoglobulin A responses. Immunity 28 740–750. 10.1016/j.immuni.2008.05.001
    1. Chen J. W., Scaria J., Mao C., Sobral B., Zhang S., Lawley T., et al. (2013) Proteomic comparison of historic and recently emerged hypervirulent Clostridium difficile strains. J. Proteome Res. 12 1151–1161. 10.1021/pr3007528
    1. Cho I., Yamanishi S., Cox L., Methe B. A., Zavadil J., Li K., et al. (2012). Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488 621–626. 10.1038/nature11400
    1. Clarke T. B., Davis K. M., Lysenko E. S., Zhou A. Y., Yu Y., Weiser J. N. (2010). Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat. Med. 16 228–231. 10.1038/nm.2087
    1. Clemente J. C., Pehrsson E. C., Blaser M. J., Sandhu K., Gao Z., Wang B., et al. (2015). The microbiome of uncontacted Amerindians. Sci. Adv. 348:e1500183.
    1. De La Cochetiere M. F., Durand T., Lepage P., Bourreille A., Galmiche J. P., Dore J. (2005). Resilience of the dominant human fecal microbiota upon short-course antibiotic challenge. J. Clin. Microbiol. 43 5588–5592. 10.1128/JCM.43.11.5588-5592.2005
    1. de Vries L. E., Valles Y., Agerso Y., Vaishampayan P. A., Garcia-Montaner A., Kuehl J. V., et al. (2011). The gut as reservoir of antibiotic resistance: microbial diversity of tetracycline resistance in mother and infant. PLoS ONE 6:e21644 10.1371/journal.pone.0021644
    1. Deshpande G., Rao S., Patole S., Bulsara M. (2010). Updated meta-analysis of probiotics for preventing necrotizing enterocolitis in preterm neonates. Pediatrics 125 921–930. 10.1542/peds.2009-1301
    1. Dethlefsen L., Huse S., Sogin M. L., Relman D. A. (2008). The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 6:e280 10.1371/journal.pbio.0060280
    1. Dethlefsen L., Relman D. A. (2011). Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl. Acad. Sci. U.S.A. 108(Suppl. 1), 4554–4561. 10.1073/pnas.1000087107
    1. DiGiulio D. B., Romero R., Amogan H. P., Kusanovic J. P., Bik E. M., Gotsch F., et al. (2008). Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PLoS ONE 3:e3056 10.1371/journal.pone.0003056
    1. Dimmitt R. A., Staley E. M., Chuang G., Tanner S. M., Soltau T. D., Lorenz R. G. (2010). Role of postnatal acquisition of the intestinal microbiome in the early development of immune function. J. Pediatr. Gastroenterol. Nutr. 51 262–273. 10.1097/MPG.0b013e3181e1a114
    1. Doucet-Populaire F., Trieu-Cuot P., Dosbaa I., Andremont A., Courvalin P. (1991). Inducible transfer of conjugative transposon Tn1545 from Enterococcus faecalis to Listeria monocytogenes in the digestive tracts of gnotobiotic mice. Antimicrob. Agents Chemother. 35 185–187. 10.1128/AAC.35.1.185
    1. Droste J. H., Wieringa M. H., Weyler J. J., Nelen V. J., Vermeire P. A., Van Bever H. P. (2000). Does the use of antibiotics in early childhood increase the risk of asthma and allergic disease? Clin. Exp. Allergy 30 1547–1553. 10.1046/j.1365-2222.2000.00939.x
    1. Dufour V., Millon L., Faucher J. F., Bard E., Robinet E., Piarroux R., et al. (2005). Effects of a short-course of amoxicillin/clavulanic acid on systemic and mucosal immunity in healthy adult humans. Int. Immunopharmacol. 5 917–928. 10.1016/j.intimp.2005.01.007
    1. Durban A., Abellan J. J., Jimenez-Hernandez N., Salgado P., Ponce M., Ponce J., et al. (2012). Structural alterations of faecal and mucosa-associated bacterial communities in irritable bowel syndrome. Environ. Microbiol. Rep. 4 242–247. 10.1111/j.1758-2229.2012.00327.x
    1. Emanuela F., Grazia M., Marco de R., Maria Paola L., Giorgio F., Marco B. (2012). Inflammation as a link between obesity and metabolic syndrome. J. Nutr. Metab. 2012:476380 10.1155/2012/476380
    1. Field W., Hershberg R. (2015). Alarmingly high segregation frequencies of quinolone resistance alleles within human and animal microbiomes are not explained by direct clinical antibiotic exposure. Genome Biol. Evol. 7 1743–1757. 10.1093/gbe/evv102
    1. Foliaki S., Pearce N., Bjorksten B., Mallol J., Montefort S., von Mutius E. (2009). Antibiotic use in infancy and symptoms of asthma, rhinoconjunctivitis, and eczema in children 6 and 7 years old: international study of asthma and allergies in childhood phase III. J. Allergy Clin. Immunol. 124 982–989. 10.1016/j.jaci.2009.08.017
    1. Forslund K., Sunagawa S., Kultima J. R., Mende D. R., Arumugam M., Typas A., et al. (2013). Country-specific antibiotic use practices impact the human gut resistome. Genome Res. 23 1163–1169. 10.1101/gr.155465.113
    1. Fouhy F., Guinane C. M., Hussey S., Wall R., Ryan C. A., Dempsey E. M., et al. (2012). High-throughput sequencing reveals the incomplete, short-term recovery of infant gut microbiota following parenteral antibiotic treatment with ampicillin and gentamicin. Antimicrob. Agents Chemother. 56 5811–5820. 10.1128/AAC.00789-12
    1. Fouhy F., Ogilvie L. A., Jones B. V., Ross R. P., Ryan A. C., Dempsey E. M., et al. (2014a). Identification of aminoglycoside and beta-lactam resistance genes from within an infant gut functional metagenomic library. PLoS ONE 9:e108016 10.1371/journal.pone.0108016
    1. Fouhy F., Ross R. P., Fitzgerald G. F., Stanton C., Cotter P. D. (2014b). A degenerate PCR-based strategy as a means of identifying homologues of aminoglycoside and beta-lactam resistance genes in the gut microbiota. BMC Microbiol. 14:25 10.1186/1471-2180-14-25
    1. Francino M. P. (2014). Early development of the gut microbiota and immune health. Pathogens 3 769–790. 10.3390/pathogens3030769
    1. Francino M. P., Moya A. (2013). Effects of antibiotic use on the microbiota of the gut and associated alterations of immunity and metabolism. EMJ Gastroenterol. 1 74–80.
    1. Franzosa E. A., Hsu T., Sirota-Madi A., Shafquat A., Abu-Ali G., Morgan X. C., et al. (2015). Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling. Nat. Rev. Microbiol. 13 360–372. 10.1038/nrmicro3451
    1. Ghosh T. S., Gupta S. S., Nair G. B., Mande S. S. (2013). In silico analysis of antibiotic resistance genes in the gut microflora of individuals from diverse geographies and age-groups. PLoS ONE 8:e83823 10.1371/journal.pone.0083823
    1. Gosalbes M. J., Llop S., Valles Y., Moya A., Ballester F., Francino M. P. (2013). Meconium microbiota types dominated by lactic acid or enteric bacteria are differentially associated with maternal eczema and respiratory problems in infants. Clin. Exp. Allergy 43 198–211. 10.1111/cea.12063
    1. Gosalbes M. J., Valles Y., Jimenez-Hernandez N., Balle C., Riva P., Miravet-Verde S., et al. (2015). High frequencies of antibiotic resistance genes in infants’ meconium and early fecal samples. J. Dev. Orig. Health Dis. 1–10. [Epub ahead of print].
    1. Gueimonde M., Salminen S., Isolauri E. (2006). Presence of specific antibiotic (tet) resistance genes in infant faecal microbiota. FEMS Immunol. Med. Microbiol. 48 21–25. 10.1111/j.1574-695X.2006.00112.x
    1. Harris J. M., Mills P., White C., Moffat S., Newman Taylor A. J., Cullinan P. (2007). Recorded infections and antibiotics in early life: associations with allergy in UK children and their parents. Thorax 62 631–637. 10.1136/thx.2006.072124
    1. He F., Ouwehand A. C., Isolauri E., Hosoda M., Benno Y., Salminen S. (2001). Differences in composition and mucosal adhesion of bifidobacteria isolated from healthy adults and healthy seniors. Curr. Microbiol. 43 351–354. 10.1007/s002840010315
    1. Hernandez E., Bargiela R., Diez M. S., Friedrichs A., Perez-Cobas A. E., Gosalbes M. J., et al. (2013). Functional consequences of microbial shifts in the human gastrointestinal tract linked to antibiotic treatment and obesity. Gut Microbes 4 306–315. 10.4161/gmic.25321
    1. Hildebrand H., Malmborg P., Askling J., Ekbom A., Montgomery S. M. (2008). Early-life exposures associated with antibiotic use and risk of subsequent Crohn’s disease. Scand. J. Gastroenterol. 43 961–966. 10.1080/00365520801971736
    1. Hu Y., Yang X., Lu N., Zhu B. (2014). The abundance of antibiotic resistance genes in human guts has correlation to the consumption of antibiotics in animal. Gut Microbes 5 245–249. 10.4161/gmic.27916
    1. Illi S., von Mutius E., Lau S., Bergmann R., Niggemann B., Sommerfeld C., et al. (2001). Early childhood infectious diseases and the development of asthma up to school age: a birth cohort study. BMJ 322 390–395. 10.1136/bmj.322.7283.390
    1. Ivanov I. I., Atarashi K., Manel N., Brodie E. L., Shima T., Karaoz U., et al. (2009). Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139 485–498. 10.1016/j.cell.2009.09.033
    1. Jedrychowski W., Galas A., Whyatt R., Perera F. (2006). The prenatal use of antibiotics and the development of allergic disease in one year old infants. Int. J. Occup. Med. Environ. Health 19 70–76. 10.2478/v10001-006-0010-0
    1. Jernberg C., Lofmark S., Edlund C., Jansson J. K. (2007). Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 1 56–66. 10.1038/ismej.2007.3
    1. Jimenez E., Fernandez L., Marin M. L., Martin R., Odriozola J. M., Nueno-Palop C., et al. (2005). Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Curr. Microbiol. 51 270–274. 10.1007/s00284-005-0020-3
    1. Jimenez E., Marin M. L., Martin R., Odriozola J. M., Olivares M., Xaus J., et al. (2008). Is meconium from healthy newborns actually sterile? Res. Microbiol. 159 187–193. 10.1016/j.resmic.2007.12.007
    1. Jutel M., Akdis C. A. (2011). T-cell subset regulation in atopy. Curr. Allergy Asthma Rep. 11 139–145. 10.1007/s11882-011-0178-7
    1. Kalliomaki M., Kirjavainen P., Eerola E., Kero P., Salminen S., Isolauri E. (2001). Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J. Allergy Clin. Immunol. 107 129–134. 10.1067/mai.2001.111237
    1. Karami N., Martner A., Enne V. I., Swerkersson S., Adlerberth I., Wold A. E. (2007). Transfer of an ampicillin resistance gene between two Escherichia coli strains in the bowel microbiota of an infant treated with antibiotics. J. Antimicrob. Chemother. 60 1142–1145. 10.1093/jac/dkm327
    1. Kenyon S. L., Taylor D. J., Tarnow-Mordi W. (2001). Broad-spectrum antibiotics for preterm, prelabour rupture of fetal membranes: the ORACLE I randomised trial. ORACLE Collaborative Group. Lancet 357 979–988. 10.1016/S0140-6736(00)04234-3
    1. Kline J. N. (2007). Eat dirt: CpG DNA and immunomodulation of asthma. Proc. Am. Thorac Soc. 4 283–288. 10.1513/pats.200701-019AW
    1. Knoop K. A., McDonald K. G., Kulkarni D. H., Newberry R. D. (2015). Antibiotics promote inflammation through the translocation of native commensal colonic bacteria. Gut [Epub ahead of print].
    1. Kozyrskyj A. L., Ernst P., Becker A. B. (2007). Increased risk of childhood asthma from antibiotic use in early life. Chest 131 1753–1759. 10.1378/chest.06-3008
    1. Kuo C. H., Kuo H. F., Huang C. H., Yang S. N., Lee M. S., Hung C. H. (2013). Early life exposure to antibiotics and the risk of childhood allergic diseases: an update from the perspective of the hygiene hypothesis. J. Microbiol. Immunol. Infect. 46 320–329. 10.1016/j.jmii.2013.04.005
    1. Kuvaeva I. B., Orlova N. G., Veselova O. L., Kuznezova G. G., Borovik T. E. (1984). Microecology of the gastrointestinal tract and the immunological status under food allergy. Nahrung 28 689–693. 10.1002/food.19840280645
    1. Lawley T. D., Clare S., Walker A. W., Goulding D., Stabler R. A., Croucher N., et al. (2009). Antibiotic treatment of Clostridium difficile carrier mice triggers a supershedder state, spore-mediated transmission, and severe disease in immunocompromised hosts. Infect. Immun. 77 3661–3669. 10.1128/IAI.00558-09
    1. Lu N., Hu Y., Zhu L., Yang X., Yin Y., Lei F., et al. (2014). DNA microarray analysis reveals that antibiotic resistance-gene diversity in human gut microbiota is age related. Sci. Rep. 4:4302 10.1038/srep04302
    1. Macfarlane G. T., Macfarlane S. (2011). Fermentation in the human large intestine: its physiologic consequences and the potential contribution of prebiotics. J. Clin. Gastroenterol. 45(Suppl.), S120–S127. 10.1097/MCG.0b013e31822fecfe
    1. Madan J. C., Salari R. C., Saxena D., Davidson L., O’Toole G. A., Moore J. H., et al. (2012). Gut microbial colonisation in premature neonates predicts neonatal sepsis. Arch. Dis. Child. Fetal Neonatal Ed. 97 F456–F462. 10.1136/fetalneonatal-2011-301373
    1. Mah K. W., Bjorksten B., Lee B. W., van Bever H. P., Shek L. P., Tan T. N., et al. (2006). Distinct pattern of commensal gut microbiota in toddlers with eczema. Int. Arch. Allergy Immunol. 140 157–163. 10.1159/000092555
    1. Mai V., Torrazza R. M., Ukhanova M., Wang X., Sun Y., Li N., et al. (2013). Distortions in development of intestinal microbiota associated with late onset sepsis in preterm infants. PLoS ONE 8:e52876 10.1371/journal.pone.0052876
    1. Mai V., Young C. M., Ukhanova M., Wang X., Sun Y., Casella G., et al. (2011). Fecal microbiota in premature infants prior to necrotizing enterocolitis. PLoS ONE 6:e20647 10.1371/journal.pone.0020647
    1. Mai X. M., Kull I., Wickman M., Bergstrom A. (2010). Antibiotic use in early life and development of allergic diseases: respiratory infection as the explanation. Clin. Exp. Allergy 40 1230–1237. 10.1111/j.1365-2222.2010.03532.x
    1. Manichanh C., Rigottier-Gois L., Bonnaud E., Gloux K., Pelletier E., Frangeul L., et al. (2006). Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 55 205–211. 10.1136/gut.2005.073817
    1. Marra F., Marra C. A., Richardson K., Lynd L. D., Kozyrskyj A., Patrick D. M., et al. (2009). Antibiotic use in children is associated with increased risk of asthma. Pediatrics 123 1003–1010. 10.1542/peds.2008-1146
    1. Maurice C. F., Haiser H. J., Turnbaugh P. J. (2013). Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152 39–50. 10.1016/j.cell.2012.10.052
    1. McKeever T. M., Lewis S. A., Smith C., Collins J., Heatlie H., Frischer M., et al. (2002). Early exposure to infections and antibiotics and the incidence of allergic disease: a birth cohort study with the West Midlands General Practice Research Database. J. Allergy Clin. Immunol. 109 43–50. 10.1067/mai.2002.121016
    1. Mendall M. A., Kumar D. (1998). Antibiotic use, childhood affluence and irritable bowel syndrome (IBS). Eur. J. Gastroenterol. Hepatol. 10 59–62. 10.1097/00042737-199801000-00011
    1. Mitsou E. K., Kirtzalidou E., Pramateftaki P., Kyriacou A. (2010). Antibiotic resistance in faecal microbiota of Greek healthy infants. Benef. Microbes. 1 297–306. 10.3920/BM2010.0007
    1. Moore A. M., Ahmadi S., Patel S., Gibson M. K., Wang B., Ndao M. I., et al. (2015). Gut resistome development in healthy twin pairs in the first year of life. Microbiome 3:27 10.1186/s40168-015-0090-9
    1. Moore A. M., Patel S., Forsberg K. J., Wang B., Bentley G., Razia Y., et al. (2013). Pediatric fecal microbiota harbor diverse and novel antibiotic resistance genes. PLoS ONE 8:e78822 10.1371/journal.pone.0078822
    1. Murphy K. M. (2003). In search of the CTD. Nat. Immunol. 4:645 10.1038/ni0703-645
    1. Murray C. S., Tannock G. W., Simon M. A., Harmsen H. J., Welling G. W., Custovic A., et al. (2005). Fecal microbiota in sensitized wheezy and non-sensitized non-wheezy children: a nested case-control study. Clin. Exp. Allergy 35 741–745. 10.1111/j.1365-2222.2005.02259.x
    1. Nakae S., Komiyama Y., Nambu A., Sudo K., Iwase M., Homma I., et al. (2002). Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 17 375–387. 10.1016/S1074-7613(02)00391-6
    1. Oboki K., Ohno T., Saito H., Nakae S. (2008). Th17 and allergy. Allergol. Int. 57 121–134. 10.2332/allergolint.R-07-160
    1. Ouwehand A. C., Isolauri E., He F., Hashimoto H., Benno Y., Salminen S. (2001). Differences in Bifidobacterium flora composition in allergic and healthy infants. J. Allergy Clin. Immunol. 108 144–145. 10.1067/mai.2001.115754
    1. Pallecchi L., Lucchetti C., Bartoloni A., Bartalesi F., Mantella A., Gamboa H., et al. (2007). Population structure and resistance genes in antibiotic-resistant bacteria from a remote community with minimal antibiotic exposure. Antimicrob. Agents Chemother. 51 1179–1184. 10.1128/AAC.01101-06
    1. Pehrsson E. C., Forsberg K. J., Gibson M. K., Ahmadi S., Dantas G. (2013). Novel resistance functions uncovered using functional metagenomic investigations of resistance reservoirs. Front. Microbiol. 4:145 10.3389/fmicb.2013.00145
    1. Penders J., Stobberingh E. E., Thijs C., Adams H., Vink C., van Ree R., et al. (2006). Molecular fingerprinting of the intestinal microbiota of infants in whom atopic eczema was or was not developing. Clin. Exp. Allergy 36 1602–1608. 10.1111/j.1365-2222.2006.02599.x
    1. Penders J., Stobberingh E. E., van den Brandt P. A., Thijs C. (2007a). The role of the intestinal microbiota in the development of atopic disorders. Allergy 62 1223–1236. 10.1111/j.1398-9995.2007.01462.x
    1. Penders J., Thijs C., van den Brandt P. A., Kummeling I., Snijders B., Stelma F., et al. (2007b). Gut microbiota composition and development of atopic manifestations in infancy: the KOALA Birth Cohort Study. Gut 56 661–667. 10.1136/gut.2006.100164
    1. Perez-Cobas A. E., Gosalbes M. J., Friedrichs A., Knecht H., Artacho A., Eismann K., et al. (2012). Gut microbiota disturbance during antibiotic therapy: a multi-omic approach. Gut 62 1591–1601. 10.1136/gutjnl-2012-303184
    1. Rautava S., Ruuskanen O., Ouwehand A., Salminen S., Isolauri E. (2004). The hygiene hypothesis of atopic disease–an extended version. J. Pediatr. Gastroenterol. Nutr. 38 378–388. 10.1097/00005176-200404000-00004
    1. Risnes K. R., Belanger K., Murk W., Bracken M. B. (2011). Antibiotic exposure by 6 months and asthma and allergy at 6 years: findings in a cohort of 1,401 US children. Am. J. Epidemiol. 173 310–318. 10.1093/aje/kwq400
    1. Romagnani S. (2004). The increased prevalence of allergy and the hygiene hypothesis: missing immune deviation, reduced immune suppression, or both? Immunology 112 352–363. 10.1111/j.1365-2567.2004.01925.xIMM1925
    1. Rook G. A., Brunet L. R. (2005). Microbes, immunoregulation, and the gut. Gut 54 317–320. 10.1136/gut.2004.053785
    1. Round J. L., Mazmanian S. K. (2010). Inducible Foxp3++ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl. Acad. Sci. U.S.A. 107 12204–12209. 10.1073/pnas.0909122107
    1. Rupnik M., Wilcox M. H., Gerding D. N. (2009) Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat. Rev. Microbiol. 7 526–536. 10.1038/nrmicro2164
    1. Salyers A. A., Gupta A., Wang Y. (2004). Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol. 12 412–416. 10.1016/j.tim.2004.07.004
    1. Samuel B. S., Shaito A., Motoike T., Rey F. E., Backhed F., Manchester J. K., et al. (2008). Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc. Natl. Acad. Sci. U.S.A. 105 16767–16772. 10.1073/pnas.0808567105
    1. Sekirov I., Russell S. L., Antunes L. C., Finlay B. B. (2010). Gut microbiota in health and disease. Physiol. Rev. 90 859–904. 10.1152/physrev.00045.2009
    1. Sepp E., Julge K., Mikelsaar M., Bjorksten B. (2005). Intestinal microbiota and immunoglobulin E responses in 5-year-old Estonian children. Clin. Exp. Allergy 35 1141–1146. 10.1111/j.1365-2222.2005.02315.x
    1. Sepp E., Julge K., Vasar M., Naaber P., Bjorksten B., Mikelsaar M. (1997). Intestinal microflora of Estonian and Swedish infants. Acta Paediatr. 86 956–961. 10.1111/j.1651-2227.1997.tb15178.x
    1. Seville L. A., Patterson A. J., Scott K. P., Mullany P., Quail M. A., Parkhill J., et al. (2009). Distribution of tetracycline and erythromycin resistance genes among human oral and fecal metagenomic DNA. Microb. Drug Resist. 15 159–166. 10.1089/mdr.2009.0916
    1. Shen X., Du J., Guan W., Zhao Y. (2014). The balance of intestinal Foxp3+ regulatory T cells and Th17 cells and its biological significance. Exp. Rev. Clin. Immunol. 10 353–362. 10.1586/1744666X.2014.882232
    1. Shoemaker N. B., Vlamakis H., Hayes K., Salyers A. A. (2001). Evidence for extensive resistance gene transfer among Bacteroides spp. and among Bacteroides and other genera in the human colon. Appl. Environ. Microbiol. 67 561–568. 10.1128/AEM.67.2.561-568.2001
    1. Sjogren Y. M., Jenmalm M. C., Bottcher M. F., Bjorksten B., Sverremark-Ekstrom E. (2009). Altered early infant gut microbiota in children developing allergy up to 5 years of age. Clin. Exp. Allergy 39 518–526. 10.1111/j.1365-2222.2008.03156.x
    1. Sommer M. O., Dantas G., Church G. M. (2009). Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 325 1128–1131. 10.1126/science.1176950
    1. Song H. J., Shim K. N., Jung S. A., Choi H. J, Lee M. A., Ryu K. H., et al. (2008). Antibiotic-associated diarrhea: candidate organisms other than Clostridium difficile. Korean J. Intern. Med. 23 9–15. 10.3904/kjim.2008.23.1.9
    1. Steel J. H., Malatos S., Kennea N., Edwards A. D., Miles L., Duggan P., et al. (2005). Bacteria and inflammatory cells in fetal membranes do not always cause preterm labor. Pediatr. Res. 57 404–411. 10.1203/01.PDR.0000153869.96337.90
    1. Strauch U. G., Obermeier F., Grunwald N., Gurster S., Dunger N., Schultz M., et al. (2005). Influence of intestinal bacteria on induction of regulatory T cells: lessons from a transfer model of colitis. Gut 54 1546–1552. 10.1136/gut.2004.059451
    1. Su Y., Rothers J., Stern D. A., Halonen M., Wright A. L. (2010). Relation of early antibiotic use to childhood asthma: confounding by indication? Clin. Exp. Allergy 40 1222–1229. 10.1111/j.1365-2222.2010.03539.x
    1. Sudo N., Yu X. N., Aiba Y., Oyama N., Sonoda J., Koga Y., et al. (2002). An oral introduction of intestinal bacteria prevents the development of a long-term Th2-skewed immunological memory induced by neonatal antibiotic treatment in mice. Clin. Exp. Allergy 32 1112–1116. 10.1046/j.1365-2222.2002.01430.x
    1. Tan J., McKenzie C., Potamitis M., Thorburn A. N., Mackay C. R., Macia L. (2014). The role of short-chain fatty acids in health and disease. Adv. Immunol. 121 91–119. 10.1016/B978-0-12-800100-4.00003-9
    1. Tanaka S., Kobayashi T., Songjinda P., Tateyama A., Tsubouchi M., Kiyohara C., et al. (2009). Influence of antibiotic exposure in the early postnatal period on the development of intestinal microbiota. FEMS Immunol. Med. Microbiol. 56 80–87. 10.1111/j.1574-695X.2009.00553.x
    1. Thomas C., Gioiello A., Noriega L., Strehle A., Oury J., Rizzo G., et al. (2009). TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab 10 167–177. 10.1016/j.cmet.2009.08.001
    1. Thomas M., Custovic A., Woodcock A., Morris J., Simpson A., Murray C. S. (2006). Atopic wheezing and early life antibiotic exposure: a nested case-control study. Pediatr. Allergy Immunol. 17 184–188. 10.1111/j.1399-3038.2006.00389.x
    1. Thompson-Chagoyan O. C., Fallani M., Maldonado J., Vieites J. M., Khanna S., Edwards C., et al. (2011). Faecal microbiota and short-chain fatty acid levels in faeces from infants with cow’s milk protein allergy. Int. Arch. Allergy Immunol. 156 325–332. 10.1159/000323893
    1. Thuny F., Richet H., Casalta J. P., Angelakis E., Habib G., Raoult D. (2010). Vancomycin treatment of infective endocarditis is linked with recently acquired obesity. PLoS ONE 5:e9074 10.1371/journal.pone.0009074
    1. Tolhurst G., Heffron H., Lam Y. S., Parker H. E., Habib A. M., Diakogiannaki E., et al. (2012). Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61 364–371. 10.2337/db11-1019
    1. Turnbaugh P. J., Hamady M., Yatsunenko T., Cantarel B. L., Duncan A., Ley R. E., et al. (2009). A core gut microbiome in obese and lean twins. Nature 457 480–484. 10.1038/nature07540
    1. Turnbaugh P. J., Ley R. E., Mahowald M. A., Magrini V., Mardis E. R., Gordon J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444 1027–1031. 10.1038/nature05414
    1. Ubeda C., Pamer E. G. (2012). Antibiotics, microbiota, and immune defense. Trends Immunol. 33 459–466. 10.1016/j.it.2012.05.003
    1. Ubeda C., Taur Y., Jenq R. R., Equinda M. J., Son T., Samstein M., et al. (2010). Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J. Clin. Invest. 120 4332–4341. 10.1172/JCI43918
    1. Vaishampayan P. A., Kuehl J. V., Froula J. L., Morgan J. L., Ochman H., Francino M. P. (2010). Comparative metagenomics and population dynamics of the gut microbiota in mother and infant. Genome Biol. Evol. 2 53–66. 10.1093/gbe/evp057
    1. Vaishnava S., Behrendt C. L., Ismail A. S., Eckmann L., Hooper L. V. (2008). Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc. Natl. Acad. Sci. U.S.A. 105 20858–20863. 10.1073/pnas.0808723105
    1. Vanderploeg R., Panaccione R., Ghosh S., Rioux K. (2010). Influences of intestinal bacteria in human inflammatory bowel disease. Infect. Dis. Clin. North Am. 24 977–993. 10.1016/j.idc.2010.07.008
    1. Vanner S. (2008). The small intestinal bacterial overgrowth. Irritable bowel syndrome hypothesis: implications for treatment. Gut 57 1315–1321. 10.1136/gut.2007.133629
    1. Vijay-Kumar M., Aitken J. D., Carvalho F. A., Cullender T. C., Mwangi S., Srinivasan S., et al. (2010). Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328 228–231. 10.1126/science.1179721
    1. von Mutius E., Illi S., Hirsch T., Leupold W., Keil U., Weiland S. K. (1999). Frequency of infections and risk of asthma, atopy and airway hyperresponsiveness in children. Eur. Respir. J. 14 4–11. 10.1034/j.1399-3003.1999.14a03.x
    1. von Wintersdorff C. J., Penders J., Stobberingh E. E., Oude Lashof A. M., Hoebe C. J., Savelkoul P. H., et al. (2014). High rates of antimicrobial drug resistance gene acquisition after international travel, The Netherlands. Emerg. Infect. Dis. 20 649–657. 10.3201/eid.2004.131718
    1. Vrieze A., Out C., Fuentes S., Jonker L., Reuling I., Kootte R. S., et al. (2014). Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J. Hepatol. 60 824–831. 10.1016/j.jhep.2013.11.034
    1. Wang M., Karlsson C., Olsson C., Adlerberth I., Wold A. E., Strachan D. P., et al. (2008). Reduced diversity in the early fecal microbiota of infants with atopic eczema. J. Allergy Clin. Immunol. 121 129–134. 10.1016/j.jaci.2007.09.011
    1. Whittle G., Shoemaker N. B., Salyers A. A. (2002). The role of Bacteroides conjugative transposons in the dissemination of antibiotic resistance genes. Cell Mol. Life. Sci. 59 2044–2054. 10.1007/s000180200004
    1. Wickens K., Ingham T., Epton M., Pattemore P., Town I., Fishwick D., et al. (2008). The association of early life exposure to antibiotics and the development of asthma, eczema and atopy in a birth cohort: confounding or causality? Clin. Exp. Allergy 38 1318–1324. 10.1111/j.1365-2222.2008.03024.x
    1. Wickens K. L., Crane J., Kemp T. J., Lewis S. J., D’Souza W. J., Sawyer G. M., et al. (1999). Family size, infections, and asthma prevalence in New Zealand children. Epidemiology 10 699–705. 10.1097/00001648-199911000-00009
    1. Wilcox M. H. (2003). Gastrointestinal disorders and the critically ill. Clostridium difficile infection and pseudomembranous colitis. Best Pract. Res. Clin. Gastroenterol. 17 475–493. 10.1016/S1521-6918(03)00017-9
    1. Wills-Karp M., Santeliz J., Karp C. L. (2001). The germless theory of allergic disease: revisiting the hygiene hypothesis. Nat. Rev. Immunol. 1 69–75. 10.1038/35095579
    1. Wjst M., Hoelscher B., Frye C., Wichmann H. E., Dold S., Heinrich J. (2001). Early antibiotic treatment and later asthma. Eur. J. Med. Res. 6 263–271.
    1. Wlodarska M., Willing B., Keeney K. M., Menendez A., Bergstrom K. S., Gill N., et al. (2011). Antibiotic treatment alters the colonic mucus layer and predisposes the host to exacerbated Citrobacter rodentium-induced colitis. Infect. Immun. 79 1536–1545. 10.1128/IAI.01104-10
    1. Wold A. E. (1998). The hygiene hypothesis revised: is the rising frequency of allergy due to changes in the intestinal flora? Allergy 53 20–25. 10.1111/j.1398-9995.1998.tb04953.x
    1. Yamini D., Pimentel M. (2010). Irritable bowel syndrome and small intestinal bacterial overgrowth. J. Clin. Gastroenterol. 44 672–675. 10.1097/MCG.0b013e3181ef3476
    1. Yazdanbakhsh M., Kremsner P. G., van Ree R. (2002). Allergy, parasites, and the hygiene hypothesis. Science 296 490–494. 10.1126/science.296.5567.490
    1. Young V. B., Schmidt T. M. (2004). Antibiotic-associated diarrhea accompanied by large-scale alterations in the composition of the fecal microbiota. J. Clin. Microbiol. 42 1203–1206. 10.1128/JCM.42.3.1203-1206.2004
    1. Zhang L., Kinkelaar D., Huang Y., Li Y., Li X., Wang H. H. (2011). Acquired antibiotic resistance: are we born with it? Appl. Environ. Microbiol. 77 7134–7141. 10.1128/AEM.05087-11

Source: PubMed

3
Se inscrever