Autonomic dysfunction in non-critically ill COVID-19 patients during the acute phase of disease: an observational, cross-sectional study

Irene Scala, Simone Bellavia, Marco Luigetti, Valerio Brunetti, Aldobrando Broccolini, Maurizio Gabrielli, Lorenzo Zileri Dal Verme, Paolo Calabresi, Giacomo Della Marca, Giovanni Frisullo, Irene Scala, Simone Bellavia, Marco Luigetti, Valerio Brunetti, Aldobrando Broccolini, Maurizio Gabrielli, Lorenzo Zileri Dal Verme, Paolo Calabresi, Giacomo Della Marca, Giovanni Frisullo

Abstract

Introduction: Evidence is emerging about an extra-pulmonary involvement of SARS-CoV-2, including the nervous system. Autonomic dysfunction in patients recovering from acute coronavirus disease 2019 (COVID-19) has been recently described. Dysautonomic symptoms have been reported in the acute phase of the disease, but clear evidence is lacking, especially in the non-critical forms of the infection.

Objective: The aim of this study is to assess the prevalence of dysautonomia in acute, non-critically ill COVID-19 patients.

Methods: In this observational, cross-sectional study, we compared 38 non-critically ill patients with acute COVID-19 (COVID + group) to 38 healthy volunteers (COVID - group) in order to assess the prevalence of signs and symptoms of dysautonomia through the administration of the composite autonomic symptom score 31 (COMPASS-31) and an active standing test. Comparisons between groups were performed by means of both univariate and multivariate analyses.

Results: The prevalence of orthostatic hypotension was significantly higher in the COVID + group. Higher total scores of COMPASS-31 were observed in the COVID + group than controls. Significant differences between groups emerged in the secretomotor, orthostatic intolerance, and gastrointestinal COMPASS-31 domains. All these results maintained the statistical significance after the adjustment for concomitant drugs with a known effect on the autonomic nervous system assumed by the study participants, except for the differences in the gastrointestinal domain of COMPASS-31.

Conclusion: Our results suggest that an autonomic dysfunction could be an early manifestation of COVID-19, even in the contest of mild forms of the infection.

Keywords: Autonomic dysfunction; COMPASS-31; COVID-19; Dysautonomia; Orthostatic hypotension; SARS-CoV-2.

Conflict of interest statement

The authors declare no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Flow diagram depicting the study enrolment process (COVID + group). Abbreviations: COVID, coronavirus disease 2019

References

    1. Frisullo G, Scala I, Bellavia S, Broccolini A, Brunetti V, Morosetti R, et al. COVID-19 and stroke: from the cases to the causes. Rev Neurosci. 2021;32:659–669. doi: 10.1515/revneuro-2020-0136.
    1. Gupta A, Madhavan MV, Sehgal K, Nair N, Mahajan S, Sehrawat TS, et al. Extrapulmonary manifestations of COVID-19. Nat Med. 2020;26:1017–1032. doi: 10.1038/s41591-020-0968-3.
    1. Luigetti M, Iorio R, Bentivoglio AR, Tricoli L, Riso V, Marotta J, et al. Assessment of neurological manifestations in hospitalized patients with COVID-19. Eur J Neurol. 2020;27:2322–8. doi: 10.1111/ene.14444.
    1. Petrosillo N, Viceconte G, Ergonul O, Ippolito G, Petersen E. COVID-19, SARS and MERS: are they closely related? Clin Microbiol Infect. 2020;26:729–734. doi: 10.1016/j.cmi.2020.03.026.
    1. Shahali H, Ghasemi A, Farahani RH, Nezami Asl A, Hazrati E. Acute transverse myelitis after SARS-CoV-2 infection: a rare complicated case of rapid onset paraplegia. J Neurovirol. 2021;27:354–358. doi: 10.1007/s13365-021-00957-1.
    1. Nath A (2020) Long-haul COVID neurology. 95:559–560. 10.1212/WNL.0000000000010640
    1. Carfi A, Bernabei R, Landi F, Gemelli Against C-P-ACSG. Persistent symptoms in patients after acute COVID-19. JAMA. 2020;324:603–605. doi: 10.1001/jama.2020.12603.
    1. Baig AM. Chronic COVID syndrome: need for an appropriate medical terminology for long-COVID and COVID long-haulers. J Med Virol. 2021;93:2555–2556. doi: 10.1002/jmv.26624.
    1. Moreno-Escobar MC, Kataria S, Khan E, Subedi R, Tandon M, Peshwe K, et al. Acute transverse myelitis with dysautonomia following SARS-CoV-2 infection: a case report and review of literature. J Neuroimmunol. 2021;353:577523. doi: 10.1016/j.jneuroim.2021.577523.
    1. Su XW, Palka SV, Rao RR, Chen FS, Brackney CR, Cambi F. SARS-CoV-2-associated Guillain-Barre syndrome with dysautonomia. Muscle Nerve. 2020;62:E48–E49. doi: 10.1002/mus.26988.
    1. Bellavia S, Scala I, Luigetti M, Brunetti V, Gabrielli M, Zileri Dal Verme L et al (2021) Instrumental evaluation of COVID-19 related dysautonomia in non-critically-ill patients: an observational, cross-sectional study. J Clin Med 10(24). 10.3390/jcm10245861
    1. Mattei J, Teyssier G, Pichot V, Barthelemy JC, Achour E, Pillet S, et al. Autonomic dysfunction in 2009 pandemic influenza A (H1N1) virus-related infection: a pediatric comparative study. Auton Neurosci. 2011;162:77–83. doi: 10.1016/j.autneu.2011.03.003.
    1. Freeman R, Abuzinadah AR, Gibbons C, Jones P, Miglis MG, Sinn DI. Orthostatic hypotension: JACC state-of-the-art review. J Am Coll Cardiol. 2018;72:1294–1309. doi: 10.1016/j.jacc.2018.05.079.
    1. Metzler M, Duerr S, Granata R, Krismer F, Robertson D, Wenning GK. Neurogenic orthostatic hypotension: pathophysiology, evaluation, and management. J Neurol. 2013;260:2212–2219. doi: 10.1007/s00415-012-6736-7.
    1. Treister R, O'Neil K, Downs HM, Oaklander AL. Validation of the composite autonomic symptom scale 31 (COMPASS-31) in patients with and without small fiber polyneuropathy. Eur J Neurol. 2015;22:1124–1130. doi: 10.1111/ene.12717.
    1. Sletten DM, Suarez GA, Low PA, Mandrekar J, Singer W. COMPASS 31: a refined and abbreviated Composite Autonomic Symptom Score. Mayo Clin Proc. 2012;87:1196–1201. doi: 10.1016/j.mayocp.2012.10.013.
    1. Pierangeli G, Turrini A, Giannini G, Del Sorbo F, Calandra-Buonaura G, Guaraldi P, et al. Translation and linguistic validation of the Composite Autonomic Symptom Score COMPASS 31. Neurol Sci. 2015;36:1897–1902. doi: 10.1007/s10072-015-2278-y.
    1. Greco C, Di Gennaro F, D'Amato C, Morganti R, Corradini D, Sun A, et al. Validation of the Composite Autonomic Symptom Score 31 (COMPASS 31) for the assessment of symptoms of autonomic neuropathy in people with diabetes. Diabet Med. 2017;34:834–838. doi: 10.1111/dme.13310.
    1. Lahrmann H, Cortelli P, Hilz M, Mathias CJ, Struhal W, Tassinari M. EFNS guidelines on the diagnosis and management of orthostatic hypotension. Eur J Neurol. 2006;13:930–936. doi: 10.1111/j.1468-1331.2006.01512.x.
    1. Freeman R, Wieling W, Axelrod FB, Benditt DG, Benarroch E, Biaggioni I, et al. Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome. Auton Neurosci. 2011;161:46–48. doi: 10.1016/j.autneu.2011.02.004.
    1. Romero-Sanchez CM, Diaz-Maroto I, Fernandez-Diaz E, Sanchez-Larsen A, Layos-Romero A, Garcia-Garcia J, et al. Neurologic manifestations in hospitalized patients with COVID-19: the ALBACOVID registry. Neurology. 2020;95:e1060–e1070. doi: 10.1212/WNL.0000000000009937.
    1. Blitshteyn S, Whitelaw S. Postural orthostatic tachycardia syndrome (POTS) and other autonomic disorders after COVID-19 infection: a case series of 20 patients. Immunol Res. 2021;69:205–211. doi: 10.1007/s12026-021-09185-5.
    1. Lo YL, Leong HN, Hsu LY, Tan TT, Kurup A, Fook-Chong S, et al. Autonomic dysfunction in recovered severe acute respiratory syndrome patients. Can J Neurol Sci. 2005;32:264. doi: 10.1017/S0317167100004108.
    1. Joseph A, Wanono R, Flamant M, Vidal-Petiot E. Orthostatic hypotension: a review. Nephrol Ther. 2017;1:S55–S67. doi: 10.1016/j.nephro.2017.01.003.
    1. Aragon-Benedi C, Oliver-Fornies P, Galluccio F, Yamak Altinpulluk E, Ergonenc T, El Sayed AA, et al. Is the heart rate variability monitoring using the analgesia nociception index a predictor of illness severity and mortality in critically ill patients with COVID-19? A pilot study. PLoS One. 2021;16:e0249128. doi: 10.1371/journal.pone.0249128.
    1. Eshak N, Abdelnabi M, Ball S, Elgwairi E, Creed K, Test V, et al. Dysautonomia: an overlooked neurological manifestation in a critically ill COVID-19 patient. Am J Med Sci. 2020;360:427–429. doi: 10.1016/j.amjms.2020.07.022.
    1. Suresh K, Alam MDU, Satkovich E. COVID-19-associated dysautonomia. Cureus. 2021;13:e17156. doi: 10.7759/cureus.17156.
    1. Tanaka R, Yamashiro K, Ogawa T, Oyama G, Nishioka K, Umemura A, et al. The absence of orthostatic heart rate increase is associated with cognitive impairment in Parkinson’s disease. PLoS ONE. 2020;15:e0240491. doi: 10.1371/journal.pone.0240491.
    1. Singh R, Arbaz M, Rai NK, Joshi R. Diagnostic accuracy of composite autonomic symptom scale 31 (COMPASS-31) in early detection of autonomic dysfunction in type 2 diabetes mellitus. Diabetes Metab Syndr Obes. 2019;12:1735–1742. doi: 10.2147/DMSO.S214085.
    1. Foschi M, Giannini G, Merli E, Mancinelli L, Zenesini C, Viti B, et al. Frequency and characteristics of dysautonomic symptoms in multiple sclerosis: a cross-sectional double-center study with the validated Italian version of the Composite Autonomic Symptom Score-31. Neurol Sci. 2021;42:1395–1403. doi: 10.1007/s10072-020-04620-1.
    1. Kim Y, Seok JM, Park J, Kim KH, Min JH, Cho JW, et al. The composite autonomic symptom scale 31 is a useful screening tool for patients with Parkinsonism. PLoS ONE. 2017;12:e0180744. doi: 10.1371/journal.pone.0180744.
    1. Anaya JM, Rojas M, Salinas ML, Rodriguez Y, Roa G, Lozano M, et al (2021) Post-COVID syndrome. A case series and comprehensive review. Autoimmun Rev 102947. 10.1016/j.autrev.2021.102947
    1. Buoite Stella A, Furlanis G, Frezza NA, Valentinotti R, Ajcevic M, Manganotti P. Autonomic dysfunction in post-COVID patients with and witfhout neurological symptoms: a prospective multidomain observational study. J Neurol. 2021;269:587–596. doi: 10.1007/s00415-021-10735-y.

Source: PubMed

3
Se inscrever