Clinical strategies for implementing lung and diaphragm-protective ventilation: avoiding insufficient and excessive effort

Ewan C Goligher, Annemijn H Jonkman, Jose Dianti, Katerina Vaporidi, Jeremy R Beitler, Bhakti K Patel, Takeshi Yoshida, Samir Jaber, Martin Dres, Tommaso Mauri, Giacomo Bellani, Alexandre Demoule, Laurent Brochard, Leo Heunks, Ewan C Goligher, Annemijn H Jonkman, Jose Dianti, Katerina Vaporidi, Jeremy R Beitler, Bhakti K Patel, Takeshi Yoshida, Samir Jaber, Martin Dres, Tommaso Mauri, Giacomo Bellani, Alexandre Demoule, Laurent Brochard, Leo Heunks

Abstract

Mechanical ventilation may have adverse effects on both the lung and the diaphragm. Injury to the lung is mediated by excessive mechanical stress and strain, whereas the diaphragm develops atrophy as a consequence of low respiratory effort and injury in case of excessive effort. The lung and diaphragm-protective mechanical ventilation approach aims to protect both organs simultaneously whenever possible. This review summarizes practical strategies for achieving lung and diaphragm-protective targets at the bedside, focusing on inspiratory and expiratory ventilator settings, monitoring of inspiratory effort or respiratory drive, management of dyssynchrony, and sedation considerations. A number of potential future adjunctive strategies including extracorporeal CO2 removal, partial neuromuscular blockade, and neuromuscular stimulation are also discussed. While clinical trials to confirm the benefit of these approaches are awaited, clinicians should become familiar with assessing and managing patients' respiratory effort, based on existing physiological principles. To protect the lung and the diaphragm, ventilation and sedation might be applied to avoid excessively weak or very strong respiratory efforts and patient-ventilator dysynchrony.

Keywords: Diaphragm weakness; Lung injury; Mechanical ventilation’; Respiratory effort.

Conflict of interest statement

EG is supported by an Early Career Investigator award from the Canadian Institutes of Health Research (AR7-162822). He has received research support in the form of equipment from Getinge and Timpel and personal fees from Getinge. SJ reports receiving consulting fees from Drager, Medtronic, Baxter, Fresenius Medical and Fisher & Paykel. TM received personal fees from Fisher and Paykel, Drager, Mindray, Braun outside of the submitted work. LB’s laboratory reports grants from Medtronic Covidien, grants and non-financial support from Fisher Paykel, non-financial support from Air Liquide, non-financial support from Sentec, non-financial support from Philips, a patent with General Electric, outside the submitted work. LH received research grants from Liberate Medical and Orion Pharma, and travel and speakers fee from Getinge and Orion Pharma.

Figures

Fig. 1
Fig. 1
Principles of lung and diaphragm-protective ventilation. ΔP: change in airway pressure during inspiration; PEEP: positive end-expiratory pressure; P-SILI: patient self-inflicted lung injury; VILI: ventilator-induced lung injury; VT: tidal volume
Fig. 2
Fig. 2
Map of interventions to achieve lung and diaphragm-protective mechanical ventilation. ECCO2R: extracorporeal carbon dioxide removal
Fig. 3
Fig. 3
Clinical-physiological pathway for achieving lung and diaphragm-protective ventilation targets. It should be stressed that at each step clinical evaluation of the patient, including signs of high breathing effort, agitation, and over-sedation is of major importance and should be interpreted together with clinical-physiological measurements as outlined in this pathway. ΔP: change in airway pressure during inspiration; P0.1: decrease in airway pressure during the first 100 ms of inspiratory effort against an occluded airway; PaCO2: arterial carbon dioxide tension; PEEP: positive end-expiratory pressure; Pes: esophageal pressure; PL: transpulmonary pressure; Pocc: airway pressure deflection during a whole breath occlusion; RR: respiratory rate; VT: tidal volume

References

    1. Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med. 2013;369:2126–2136. doi: 10.1056/NEJMra1208707.
    1. Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med. 2017;195:438–442. doi: 10.1164/rccm.201605-1081CP.
    1. Chiumello D, Carlesso E, Cadringher P, et al. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med. 2008;178:346–355. doi: 10.1164/rccm.200710-1589OC.
    1. Beitler JR, Majumdar R, Hubmayr RD, et al. Volume delivered during recruitment maneuver predicts lung stress in acute respiratory distress syndrome. Crit Care Med. 2016;44:91–99. doi: 10.1097/CCM.0000000000001355.
    1. Amato MB, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372:747–755. doi: 10.1056/NEJMsa1410639.
    1. Coudroy R, Vimpere D, Aissaoui N, et al. Prevalence of complete airway closure according to body mass index in acute respiratory distress syndrome: pooled cohort analysis. Anesthesiology (Philadelphia) 2020;133:867–878. doi: 10.1097/ALN.0000000000003444.
    1. Shi ZH, Jonkman A, de Vries H, et al. Expiratory muscle dysfunction in critically ill patients: towards improved understanding. Intensive Care Med. 2019;45:1061–1071. doi: 10.1007/s00134-019-05664-4.
    1. Goligher EC, Dres M, Fan E, et al. Mechanical ventilation-induced diaphragm atrophy strongly impacts clinical outcomes. Am J Respir Crit Care Med. 2018;197:204–213. doi: 10.1164/rccm.201703-0536OC.
    1. Demoule A, Jung B, Prodanovic H, et al. Diaphragm dysfunction on admission to the intensive care unit. Prevalence, risk factors, and prognostic impact-a prospective study. Am J Respir Crit Care Med. 2013;188:213–219. doi: 10.1164/rccm.201209-1668OC.
    1. Dres M, Dube BP, Mayaux J, et al. Coexistence and impact of limb muscle and diaphragm weakness at time of liberation from mechanical ventilation in medical intensive care unit patients. Am J Respir Crit Care Med. 2017;195:57–66. doi: 10.1164/rccm.201602-0367OC.
    1. Dres M, Goligher EC, Heunks LMA, Brochard LJ. Critical illness-associated diaphragm weakness. Intensive Care Med. 2017;43:1441–1452. doi: 10.1007/s00134-017-4928-4.
    1. Levine S, Nguyen T, Taylor N, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358:1327–1335. doi: 10.1056/NEJMoa070447.
    1. Hooijman PE, Beishuizen A, Witt CC, et al. Diaphragm muscle fiber weakness and ubiquitin-proteasome activation in critically ill patients. Am J Respir Crit Care Med. 2015;191:1126–1138. doi: 10.1164/rccm.201412-2214OC.
    1. Jaber S, Petrof BJ, Jung B, et al. Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans. Am J Respir Crit Care Med. 2011;183:364–371. doi: 10.1164/rccm.201004-0670OC.
    1. Goligher EC, Fan E, Herridge MS, et al. Evolution of diaphragm thickness during mechanical ventilation. Impact of inspiratory effort. Am J Respir Crit Care Med. 2015;192:1080–1088. doi: 10.1164/rccm.201503-0620OC.
    1. Goligher EC, Dres M, Patel BK, et al. Lung and diaphragm-protective ventilation. Am J Respir Crit Care Med. 2020 doi: 10.1164/rccm.202003-0655CP.
    1. Bellani G, Grassi A, Sosio S, Gatti S, Kavanagh BP, Pesenti A, Foti G. Driving pressure is associated with outcome during assisted ventilation in acute respiratory distress syndrome. Anesthesiology. 2019;131:594–604. doi: 10.1097/ALN.0000000000002846.
    1. Vaporidi K, Psarologakis C, Proklou A, et al. Driving pressure during proportional assist ventilation: an observational study. Ann Intensive Care. 2019;9:1–4. doi: 10.1186/s13613-018-0477-4.
    1. Soundoulounaki S, Akoumianaki E, Kondili E, Pediaditis E, Prinianakis G, Vaporidi K, Georgopoulos D. Airway pressure morphology and respiratory muscle activity during end-inspiratory occlusions in pressure support ventilation. Crit Care. 2020;24:467–x. doi: 10.1186/s13054-020-03169-x.
    1. Mauri T, Yoshida T, Bellani G, et al. Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive Care Med. 2016;42:1360–1373. doi: 10.1007/s00134-016-4400-x.
    1. Yoshida T, Torsani V, Gomes S, et al. Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med. 2013;188:1420–1427. doi: 10.1164/rccm.201303-0539OC.
    1. Yoshida T, Amato MBP, Kavanagh BP. Understanding spontaneous vs. ventilator breaths: impact and monitoring. Intensive Care Med. 2018;44:2235–2238. doi: 10.1007/s00134-018-5145-5.
    1. Yoshida T, Amato MBP, Grieco DL, et al. Esophageal manometry and regional transpulmonary pressure in lung injury. Am J Respir Crit Care Med. 2018;197:1018–1026. doi: 10.1164/rccm.201709-1806OC.
    1. Doorduin J, van Hees HW, van der Hoeven JG, Heunks LM. Monitoring of the respiratory muscles in the critically ill. Am J Respir Crit Care Med. 2013;187:20–27. doi: 10.1164/rccm.201206-1117CP.
    1. Bellani G, Mauri T, Coppadoro A, et al. Estimation of patient’s inspiratory effort from the electrical activity of the diaphragm. Crit Care Med. 2013;41:1483–1491. doi: 10.1097/CCM.0b013e31827caba0.
    1. Piquilloud L, Beloncle F, Richard JM, Mancebo J, Mercat A, Brochard L. Information conveyed by electrical diaphragmatic activity during unstressed, stressed and assisted spontaneous breathing: a physiological study. Ann Intensive Care. 2019;9:89–1. doi: 10.1186/s13613-019-0564-1.
    1. Telias I, Junhasavasdikul D, Rittayamai N, et al. Airway occlusion pressure as an estimate of respiratory drive and inspiratory effort during assisted ventilation. Am J Respir Crit Care Med. 2020 doi: 10.1164/rccm.201907-1425OC.
    1. Dianti J, Bertoni M, Goligher EC. Monitoring patient-ventilator interaction by an end-expiratory occlusion maneuver. Intensive Care Med. 2020 doi: 10.1007/s00134-020-06167-3.
    1. Bertoni M, Telias I, Urner M, et al. A novel non-invasive method to detect excessively high respiratory effort and dynamic transpulmonary driving pressure during mechanical ventilation. Crit Care. 2019;23:346. doi: 10.1186/s13054-019-2617-0.
    1. Tuinman PR, Jonkman AH, Dres M et al (2020) Respiratory muscle ultrasonography: methodology, basic and advanced principles and clinical applications in ICU and ED patients-a narrative review. Intensive Care Med. doi: 10.1007/s00134-019-05892-8
    1. Goligher EC, Laghi F, Detsky ME, et al. Measuring diaphragm thickness with ultrasound in mechanically ventilated patients: feasibility, reproducibility and validity. Intensive Care Med. 2015;41:734–2. doi: 10.1007/s00134-015-3724-2.
    1. Jonkman AH, de Vries HJ, Heunks LMA (2020) Physiology of the respiratory drive in icu patients: implications for diagnosis and treatment. Crit Care 24:104-z. doi: 10.1186/s13054-020-2776-z
    1. Vaporidi K, Akoumianaki E, Telias I, Goligher EC, Brochard L, Georgopoulos D. Respiratory drive in critically ill patients. pathophysiology and clinical implications. Am J Respir Crit Care Med. 2020;201:20–32. doi: 10.1164/rccm.201903-0596SO.
    1. Akoumianaki E, Vaporidi K, Georgopoulos D. The injurious effects of elevated or nonelevated respiratory rate during mechanical ventilation. Am J Respir Crit Care Med. 2019;199:149–157. doi: 10.1164/rccm.201804-0726CI.
    1. Pesenti A, Rossi N, Calori A, Foti G, Rossi GP. Effects of short-term oxygenation changes on acute lung injury patients undergoing pressure support ventilation. Chest. 1993;103:1185–1189. doi: 10.1378/chest.103.4.1185.
    1. Bonmarchand G, Chevron V, Menard JF, Girault C, Moritz-Berthelot F, Pasquis P, Leroy J. Effects of pressure ramp slope values on the work of breathing during pressure support ventilation in restrictive patients. Crit Care Med. 1999;27:715–722. doi: 10.1097/00003246-199904000-00023.
    1. Yoshida T, Nakahashi S, Nakamura MAM, et al. Volume-controlled ventilation does not prevent injurious inflation during spontaneous effort. Am J Respir Crit Care Med. 2017;196:590–601. doi: 10.1164/rccm.201610-1972OC.
    1. Sinderby C, Navalesi P, Beck J, et al. Neural control of mechanical ventilation in respiratory failure. Nat Med. 1999;5:1433–1436. doi: 10.1038/71012.
    1. Carteaux G, Córdoba-Izquierdo A, Lyazidi A, Heunks L, Thille AW, Brochard L. Comparison between neurally adjusted ventilatory assist and pressure support ventilation levels in terms of respiratory effort. Crit Care Med. 2016;44:503–511. doi: 10.1097/ccm.0000000000001418.
    1. Liu L, Xu X, Sun Q, et al. Neurally adjusted ventilatory assist versus pressure support ventilation in difficult weaning: a randomized trial. Anesthesiology (Philadelphia) 2020;132:1482–1493. doi: 10.1097/ALN.0000000000003207.
    1. Kacmarek RM, Villar J, Parrilla D et al (2020) Neurally adjusted ventilatory assist in acute respiratory failure: a randomized controlled trial. Intensive Care Med pp 1–11. doi: 10.1007/s00134-020-06181-5
    1. Sahetya SK, Goligher EC, Brower RG. Fifty years of research in ARDS. Setting positive end-expiratory pressure in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;195:1429–1438. doi: 10.1164/rccm.201610-2035CI.
    1. Suter PM, Fairley B, Isenberg MD. Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med. 1975;292:284–289. doi: 10.1056/NEJM197502062920604.
    1. Fan E, Del Sorbo L, Goligher EC, et al. An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med. 2017;195:1253–1263. doi: 10.1164/rccm.201703-0548ST.
    1. Morais CCA, Koyama Y, Yoshida T, et al. High positive end-expiratory pressure renders spontaneous effort noninjurious. Am J Respir Crit Care Med. 2018;197:1285–1296. doi: 10.1164/rccm.201706-1244OC.
    1. Grassino A, Goldman MD, Mead J, Sears TA. Mechanics of the human diaphragm during voluntary contraction: statics. J Appl Physiol Respir Environ Exerc Physiol. 1978;44:829–839. doi: 10.1152/jappl.1978.44.6.829.
    1. Laghi F, Shaikh HS, Morales D, Sinderby C, Jubran A, Tobin MJ. Diaphragmatic neuromechanical coupling and mechanisms of hypercapnia during inspiratory loading. Respir Physiol Neurobiol. 2014;198:32–41. doi: 10.1016/j.resp.2014.03.004.
    1. Pengelly LD, Alderson AM, Milic-Emili J. Mechanics of the diaphragm. J Appl Physiol. 1971;30:797–805. doi: 10.1152/jappl.1971.30.6.797.
    1. Patel BK, Wolfe KS, Pohlman AS, Hall JB, Kress JP. Effect of noninvasive ventilation delivered by helmet vs face mask on the rate of endotracheal intubation in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA. 2016;315:2435–2441. doi: 10.1001/jama.2016.6338.
    1. Teggia Droghi M, De Santis Santiago RR, Pinciroli R, et al. High positive end-expiratory pressure allows extubation of an obese patient. Am J Respir Crit Care Med. 2018;198:524–525. doi: 10.1164/rccm.201712-2411IM.
    1. Rossi FS, Costa ELV, Iope DDM, et al. Pendelluft detection using electrical impedance tomography in an infant. keep those images in mind. Am J Respir Crit Care Med. 2019;200:1427–1429. doi: 10.1164/rccm.201902-0461IM.
    1. Lindqvist J, van den Berg M, van der Pijl R, et al. Positive end-expiratory pressure ventilation induces longitudinal atrophy in diaphragm fibers. Am J Respir Crit Care Med. 2018;198:472–485. doi: 10.1164/rccm.201709-1917OC.
    1. Pham T, Brochard LJ, Slutsky AS. Mechanical Ventilation: State of the Art. Mayo Clin Proc. 2017;92:1382–1400. doi: 10.1016/j.mayocp.2017.05.004.
    1. Akoumianaki E, Lyazidi A, Rey N, et al. Mechanical ventilation-induced reverse-triggered breaths: a frequently unrecognized form of neuromechanical coupling. Chest. 2013;143:927–938. doi: 10.1378/chest.12-1817.
    1. Beitler JR, Sands SA, Loring SH, et al. Quantifying unintended exposure to high tidal volumes from breath stacking dyssynchrony in ARDS: the BREATHE criteria. Intensive Care Med. 2016;42:1427–1436. doi: 10.1007/s00134-016-4423-3.
    1. Goligher EC, Brochard LJ, Reid WD, et al. Diaphragmatic myotrauma: a mediator of prolonged ventilation and poor patient outcomes in acute respiratory failure. Lancet Respir Med. 2019;7:90–98. doi: 10.1016/S2213-2600(18)30366-7.
    1. Pham T, Telias I, Piraino T, Yoshida T, Brochard LJ. Asynchrony consequences and management. Crit Care Clin. 2018;34:325–341. doi: 10.1016/j.ccc.2018.03.008.
    1. Demoule A, Clavel M, Rolland-Debord C, et al. Neurally adjusted ventilatory assist as an alternative to pressure support ventilation in adults: a French multicentre randomized trial. Intensive Care Med. 2016;42:1723–1732. doi: 10.1007/s00134-016-4447-8.
    1. de Wit M, Pedram S, Best AM, Epstein SK. Observational study of patient-ventilator asynchrony and relationship to sedation level. J Crit Care. 2009;24:74–80. doi: 10.1016/j.jcrc.2008.08.011.
    1. Devlin JW, Skrobik Y, Gelinas C, et al. Clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care Med. 2018;46:e825–e873. doi: 10.1097/CCM.0000000000003299.
    1. Vaschetto R, Cammarota G, Colombo D, et al. Effects of propofol on patient-ventilator synchrony and interaction during pressure support ventilation and neurally adjusted ventilatory assist. Crit Care Med. 2014;42:74–82. doi: 10.1097/CCM.0b013e31829e53dc.
    1. Liu L, Wu AP, Yang Y, et al. Effects of propofol on respiratory drive and patient-ventilator synchrony during pressure support ventilation in postoperative patients: a prospective study. Chin Med J (Engl) 2017;130:1155–1160. doi: 10.4103/0366-6999.205864.
    1. Forster A, Gardaz JP, Suter PM, Gemperle M. Respiratory depression by midazolam and diazepam. Anesthesiology. 1980;53:494–497. doi: 10.1097/00000542-198012000-00010.
    1. Pandharipande P, Shintani A, Peterson J, et al. Lorazepam is an independent risk factor for transitioning to delirium in intensive care unit patients. Anesthesiology. 2006;104:21–26. doi: 10.1097/00000542-200601000-00005.
    1. Jerath A, Ferguson ND, Cuthbertson B. Inhalational volatile-based sedation for COVID-19 pneumonia and ARDS. Intensive Care Med. 2020 doi: 10.1007/s00134-020-06154-8.
    1. Belleville JP, Ward DS, Bloor BC, Maze M. Effects of intravenous dexmedetomidine in humans. I. Sedation, ventilation, and metabolic rate. Anesthesiology. 1992;77:1125–1133. doi: 10.1097/00000542-199212000-00013.
    1. Gattinoni L, Busana M, Giosa L, Macri MM, Quintel M. Prone positioning in acute respiratory distress syndrome. Semin Respir Crit Care Med. 2019;40:94–100. doi: 10.1055/s-0039-1685180.
    1. Guerin C, Reignier J, Richard JC, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368:2159–2168. doi: 10.1056/NEJMoa1214103.
    1. Elharrar X, Trigui Y, Dols AM, Touchon F, Martinez S, Prud'homme E, Papazian L. Use of prone positioning in nonintubated patients with COVID-19 and hypoxemic acute respiratory failure. JAMA. 2020 doi: 10.1001/jama.2020.8255.
    1. Telias I, Katira BH, Brochard L. Is the prone position helpful during spontaneous breathing in patients with COVID-19? JAMA. 2020 doi: 10.1001/jama.2020.8539.
    1. Goligher EC, Combes A, Brodie D, et al. Determinants of the effect of extracorporeal carbon dioxide removal in the SUPERNOVA trial: implications for trial design. Intensive Care Med. 2019;45:1219–1230. doi: 10.1007/s00134-019-05708-9.
    1. Kolobow T, Gattinoni L, Tomlinson TA, Pierce JE. Control of breathing using an extracorporeal membrane lung. Anesthesiology. 1977;46:138–141. doi: 10.1097/00000542-197702000-00012.
    1. Karagiannidis C, Lubnow M, Philipp A, Riegger GA, Schmid C, Pfeifer M, Mueller T. Autoregulation of ventilation with neurally adjusted ventilatory assist on extracorporeal lung support. Intensive Care Med. 2010;36:2038–2044. doi: 10.1007/s00134-010-1982-6.
    1. Mauri T, Grasselli G, Suriano G, et al. Control of respiratory drive and effort in extracorporeal membrane oxygenation patients recovering from severe acute respiratory distress syndrome. Anesthesiology. 2016;125:159–167. doi: 10.1097/ALN.0000000000001103.
    1. Crotti S, Bottino N, Ruggeri GM, et al. Spontaneous breathing during extracorporeal membrane oxygenation in acute respiratory failure. Anesthesiology. 2017;126:678–687. doi: 10.1097/ALN.0000000000001546.
    1. Hoeper MM, Wiesner O, Hadem J, et al. Extracorporeal membrane oxygenation instead of invasive mechanical ventilation in patients with acute respiratory distress syndrome. Intensive Care Med. 2013;39:2056–2057. doi: 10.1007/s00134-013-3052-3.
    1. Kurihara C, Walter JM, Singer BD, et al. Extracorporeal membrane oxygenation can successfully support patients with severe acute respiratory distress syndrome in lieu of mechanical ventilation. Crit Care Med. 2018;46:e1070–e1073. doi: 10.1097/CCM.0000000000003354.
    1. Spinelli E, Mauri T, Lissoni A, et al. Spontaneous breathing patterns during maximum extracorporeal CO2 removal in subjects with early severe ARDS. Respir Care. 2020;65:911–919. doi: 10.4187/respcare.07391.
    1. Combes A, Fanelli V, Pham T, Ranieri VM, European Society of Intensive Care Medicine Trials Group and the "Strategy of Ultra-Protective lung ventilation with Extracorporeal CO2 Removal for New-Onset moderate to severe ARDS" (SUPERNOVA) investigators Feasibility and safety of extracorporeal CO2 removal to enhance protective ventilation in acute respiratory distress syndrome: the SUPERNOVA study. Intensive Care Med. 2019;45:592–600. doi: 10.1007/s00134-019-05567-4.
    1. Diehl JL, Mercat A, Pesenti A. Understanding hypoxemia on ECCO2R: back to the alveolar gas equation. Intensive Care Med. 2019;45:255–256. doi: 10.1007/s00134-018-5409-0.
    1. Doorduin J, Nollet JL, Roesthuis LH, et al. Partial neuromuscular blockade during partial ventilatory support in sedated patients with high tidal volumes. Am J Respir Crit Care Med. 2017;195:1033–1042. doi: 10.1164/rccm.201605-1016OC.
    1. Froese AB, Bryan AC. Effects of anesthesia and paralysis on diaphragmatic mechanics in man. Anesthesiology. 1974;41:242–255. doi: 10.1097/00000542-197409000-00006.
    1. Le Pimpec-Barthes F, Legras A, Arame A, Pricopi C, Boucherie JC, Badia A, Panzini CM. Diaphragm pacing: the state of the art. J Thorac Dis. 2016;8:376. doi: 10.21037/jtd.2016.03.97.
    1. Masmoudi H, Coirault C, Demoule A, et al. Can phrenic stimulation protect the diaphragm from mechanical ventilation-induced damage? Eur Respir J. 2013;42:280–283. doi: 10.1183/09031936.00045613.
    1. Reynolds SC, Meyyappan R, Thakkar V, et al. Mitigation of ventilator-induced diaphragm atrophy by transvenous phrenic nerve stimulation. Am J Respir Crit Care Med. 2017;195:339–348. doi: 10.1164/rccm.201502-0363OC.
    1. Reynolds S, Ebner A, Meffen T, et al. Diaphragm activation in ventilated patients using a novel transvenous phrenic nerve pacing catheter. Crit Care Med. 2017;45:e691–e694. doi: 10.1097/CCM.0000000000002366.
    1. McCaughey EJ, Jonkman AH, Boswell-Ruys CL, et al. Abdominal functional electrical stimulation to assist ventilator weaning in critical illness: a double-blinded, randomised, sham-controlled pilot study. Crit Care. 2019;23:261. doi: 10.1186/s13054-019-2544-0.

Source: PubMed

3
Se inscrever