Isolation and characterization of the lantibiotic salivaricin A and its structural gene salA from Streptococcus salivarius 20P3

K F Ross, C W Ronson, J R Tagg, K F Ross, C W Ronson, J R Tagg

Abstract

A bacteriocin-like inhibitory substance, salivaricin A, was purified from cultures of Streptococcus salivarius 20P3 and was shown by ion spray mass spectrometry to have a molecular mass of 2,315 +/- 1.1 Da. Amino acid composition analysis demonstrated the presence of lanthionine, indicating that salivaricin A may be a member of the lantibiotic class of antibiotic substances. The sequence of eight amino acids at the N terminus of the molecule was determined by Edman degradation, and mixed oligonucleotide probes based on part of this sequence (GSGWIA) were used to detect the salivaricin A structural gene. A 6.2-kb EcoRI fragment of chromosomal DNA from strain 20P3 that hybridized with the probes was cloned, and the hybridizing region was further localized to a 379-bp DraI-AluI fragment. Analysis of the nucleotide sequence of this fragment indicated that salivaricin A is synthesized as a 51-amino-acid prepeptide that is posttranslationally modified and cleaved to give a biologically active 22-residue peptide containing one lanthionine and two beta-methyllanthionine residues. The secondary structure of presalivaricin A was predicted to be similar to that of type A lantibiotics, with a hydrophilic alpha-helical leader sequence and a propeptide region with potential for beta-turn formation and a lack of alpha-helicity. The sequence around the cleavage site of presalivaricin A differed from that of other type A lantibiotics but was similar to that of several bacteriocin-like inhibitory substances produced by lactic acid bacteria.

References

    1. J Mol Biol. 1983 Jun 5;166(4):557-80
    1. Can J Microbiol. 1981 Sep;27(9):918-23
    1. Appl Environ Microbiol. 1992 Aug;58(8):2360-7
    1. J Bacteriol. 1991 Jun;173(12):3879-87
    1. FEMS Microbiol Lett. 1989 Apr;49(2-3):263-7
    1. J Bacteriol. 1991 Mar;173(5):1779-88
    1. J Mol Biol. 1982 May 5;157(1):105-32
    1. J Dent Res. 1970 Mar-Apr;49(2):415-8
    1. Antimicrob Agents Chemother. 1985 May;27(5):836-40
    1. J Clin Microbiol. 1976 Oct;4(4):375-8
    1. J Appl Bacteriol. 1981 Apr;50(2):305-13
    1. J Med Microbiol. 1992 Feb;36(2):132-8
    1. Arch Microbiol. 1989;152(1):16-9
    1. J Biol Chem. 1988 Nov 5;263(31):16260-6
    1. Methods Enzymol. 1990;183:63-98
    1. J Gen Microbiol. 1990 Mar;136(3):555-66
    1. Methods Enzymol. 1983;101:20-78
    1. Arch Oral Biol. 1982;27(2):151-7
    1. J Lab Clin Med. 1970 Jun;75(6):946-52
    1. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463-7
    1. Nature. 1988 May 19;333(6170):276-8
    1. Appl Environ Microbiol. 1992 Jan;58(1):279-84
    1. Virology. 1983 Oct 30;130(2):514-22
    1. J Med Microbiol. 1979 Nov;12(4):397-411
    1. Bacteriol Rev. 1976 Sep;40(3):722-56
    1. Am J Clin Pathol. 1975 Jul;64(1):116-20
    1. Biochemistry. 1974 Jan 15;13(2):222-45
    1. Gene. 1985;33(1):103-19
    1. Eur J Biochem. 1988 Oct 15;177(1):53-9
    1. Arch Oral Biol. 1983;28(10):911-5
    1. J Bacteriol. 1989 Mar;171(3):1597-601
    1. Appl Environ Microbiol. 1991 Feb;57(2):492-8
    1. Antimicrob Agents Chemother. 1975 Jun;7(6):764-72
    1. J Biol Chem. 1988 Jul 5;263(19):9508-14
    1. J Infect Dis. 1982 Nov;146(5):683-90
    1. Gene. 1983 Dec;26(1):101-6
    1. J Bacteriol. 1991 Dec;173(23):7491-500
    1. Int J Pept Protein Res. 1983 Nov;22(5):515-24

Source: PubMed

3
Se inscrever