Phase I Study of Anti-CD3 x Anti-Her2 Bispecific Antibody in Metastatic Castrate Resistant Prostate Cancer Patients

Ulka Vaishampayan, Archana Thakur, Ritesh Rathore, Nicola Kouttab, Lawrence G Lum, Ulka Vaishampayan, Archana Thakur, Ritesh Rathore, Nicola Kouttab, Lawrence G Lum

Abstract

Background. New nontoxic targeted approaches are needed for patients with castrate resistant prostate cancer (CRPC). Our preclinical studies show that activated T cells (ATC) armed with anti-CD3 x anti-Her2 bispecific antibody (Her2Bi) kill prostate cancer cells lines, induce a Th1 cytokine pattern upon engagement of tumor cells, prevent the development of prostate tumors, and retard tumor growth in immunodeficient mice. These studies provided strong rationale for our phase I dose-escalation pilot study to test ATC armed with Her2Bi (aATC) for safety in men with CRPC. Methods. Seven of 8 men with CRPC were evaluable after receiving two infusions per week for 4 weeks. The men received 2.5, 5 or 10 × 10(9) aATC per infusion with low dose interleukin-2 and granulocyte-macrophage colony stimulating factor. Results. There were no dose limiting toxicities, and there was 1 partial responder and 3 of 7 patients had significant decreases in their PSA levels and pain scores. Immune evaluations of peripheral blood mononuclear cells in 2 patients before and after immunotherapy showed increases in IFN-γ EliSpot responses and Th1 serum cytokines. Conclusions. These results provide a strong rationale for developing phase II trials to determine whether aATC are effective for treating CRPC.

Figures

Figure 1
Figure 1
The treatment schema. Her2Bi armed ATC (aATC) were administered twice weekly for four consecutive weeks. All patients received subcutaneous IL-2 (300,000 IU/m2/day) and GM-CSF (250 μg/m2/twice weekly), beginning 3 days before the first aATC infusion and ending 1 week after the last aATC infusion. Immune testing was performed at indicated time points.
Figure 2
Figure 2
(a) The transient decrease in PSA levels in two CRPC patients (60202 and 91760) who had minor responses. (b) A partial responder (60163) with the PSA levels declining by >50% within 6 months of completing therapy. (c) PostIT PSA levels in two nonresponding patients (FG00594 and FG00566) compared to their preIT baseline levels.
Figure 3
Figure 3
Number of IFN-γ producing cells when incubated overnight with prostate cancer cell line PC-3 in PBMC collected at baseline (preimmunotherapy [preIT]), during infusions (post inf#), and postimmunotherapy (1 week postimmunotherapy [1W postIT], 1 month postimmunotherapy [1 M postIT], and one year postimmunotherapy [1Y postIT]). (a) Increased number of IFN-γ producing cells during infusions and postIT time points in a partial responder (FG60163) when PBMC were incubated with prostate cancer specific PC-3 targets. (b) and (c) Enhanced IFN-γ responses in minor responders (FG60202 and FG91760).
Figure 4
Figure 4
Profile of serum cytokines. Analysis of sequential serum samples at baseline (preimmunotherapy [preIT]), during infusions (post inf#), and postimmunotherapy (1 week postimmunotherapy [1W postIT], 1 month postimmunotherapy [1 M postIT], and one year postimmunotherapy [1Y postIT]) shows increased levels of IL-2, IFN-γ, GM-CSF, and IL-10 and meanratio of Th1/Th2 = [IL-2+IFNγ]/[IL-4+IL-10] shows a dominant Th1 type response during aATC infusions in partial responder CRPC patient (FG60163). (b) and (c) Similar cytokine profiles and Th1 cytokine responses were seen in two minor responder CRPC patients (FG60202 and FG91760) during and after aATC infusions.

References

    1. Small E. J., Schellhammer P. F., Higano C. S., et al. Placebo-controlled phase III trial of immunologic therapy with Sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. Journal of Clinical Oncology. 2006;24(19):3089–3094. doi: 10.1200/jco.2005.04.5252.
    1. Nishio Y., Yamada Y., Kokubo H., et al. Prognostic significance of immunohistochemical expression of the HER-2/neu oncoprotein in bone metastatic prostate cancer. Urology. 2006;68(1):110–115. doi: 10.1016/j.urology.2006.01.060.
    1. Ricciardelli C., Jackson M. W., Choong C. S., et al. Elevated levels of HER-2/neu and androgen receptor in clinically localized prostate cancer identifies metastatic potential. Prostate. 2008;68(8):830–838. doi: 10.1002/pros.20747.
    1. Okegawa T., Kinjo M., Nutahara K., Higashihara E. Pretreatment serum level of HER2/nue as a prognostic factor in metastatic prostate cancer patients about to undergo endocrine therapy. International Journal of Urology. 2006;13(9):1197–1201. doi: 10.1111/j.1442-2042.2006.01533.x.
    1. Signoretti S., Montironi R., Manola J., et al. Her-2-neu expression and progression toward androgen independence in human prostate cancer. Journal of the National Cancer Institute. 2000;92(23):1918–1925. doi: 10.1093/jnci/92.23.1918.
    1. Osman I. A., Scher H., Drobnjak M., Fazzari M., Cordon-Cardo C. HER-2/neu membrane overexpression in prostate cancer. Proceedings of the American Association for Cancer Research. 2000;414572a
    1. Craft N., Shostak Y., Carey M., Sawyers C. L. A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nature Medicine. 1999;5(3):280–285. doi: 10.1038/6495.
    1. Lara P. N., Jr., Chee K. G., Longmate J., et al. Trastuzumab plus docetaxel in HER-2/neu-positive prostate carcinoma: final results from the California Cancer Consortium Screening and Phase II Trial. Cancer. 2004;100(10):2125–2131. doi: 10.1002/cncr.20228.
    1. Morris M. J., Reuter V. E., Kelly W. K., et al. HER-2 profiling and targeting in prostate carcinoma. Cancer. 2002;94(4):980–986. doi: 10.1002/cncr.10339.
    1. Ochoa A. C., Gromo G., Alter B. J., Sondel P. M., Bach F. H. Long-term growth of lymphokine-activated killer (LAK) cells: role of anti-CD3, beta-IL 1, interferon-gamma and -beta. The Journal of Immunology. 1987;138(8):2728–2733.
    1. Anderson P. M., Bach F. H., Ochoa A. C. Augmentation of cell number and LAK activity in peripheral blood mononuclear cells activated with anti-CD3 and interleukin-2-preliminary results in children with acute lymphocytic leukemia and neuroblastoma. Cancer Immunology Immunotherapy. 1988;27(1):82–88. doi: 10.1007/bf00205763.
    1. Chen B. P., Malkovsky M., Hank J. A., Sondel P. M. Nonrestricted cytotoxicity mediated by interleukin 2-expanded leukocytes is inhibited by anti-LFA-1 monoclonal antibodies (MoAb) but potentiated by anti-CD3 MoAb. Cellular Immunology. 1987;110(2):282–293. doi: 10.1016/0008-8749(87)90123-7.
    1. Lotzova E., Savary C. A., Herberman R. B., McCredie K. B., Keating M. J., Freireich E. J. Augmentation of antileukemia lytic activity by OKT3 monoclonal antibody: synergism of OKT3 and interleukin-2. Natural Immunity and Cell Growth Regulation. 1987;6(5):219–223.
    1. Yang S. C., Fry K. D., Grimm E. A., Roth J. A. Successful combination immunotherapy for the generation in vivo of antitumor activity with anti-CD3, interleukin 2, and tumor necrosis factor α . Archives of Surgery. 1990;125(2):220–225. doi: 10.1001/archsurg.1990.01410140098016.
    1. Ueda M., Joshi I. D., dan M., et al. Preclinical studies for adoptive immunotherapy in bone marrow transplantation: generation of anti-CD3 activated cytotoxic T cells from normal donors and autologous bone marrow transplant candidates. Transplantation. 1993;56(2):351–356. doi: 10.1097/00007890-199308000-00019.
    1. Uberti J. P., Joshi I., Ueda M., Martilotti F., Sensenbrenner L. L., Lum L. G. Preclinical studies using immobilized OKT3 to activate human T cells for adoptive immunotherapy: optimal conditions for the proliferation and induction of non-MHC-restricted cytotoxicity. Clinical Immunology and Immunopathology. 1994;70(3):234–240. doi: 10.1006/clin.1994.1034.
    1. Anderson P. M., Blazar B. R., Bach F. H., Ochoa A. C. Anti-CD3 + IL-2-stimulated murine killer cells. In vitro generation and in vivo antitumor activity. The Journal of Immunology. 1989;142(4):1383–1394.
    1. Anderson P. M., Ochoa A. C., Ramsay N. K. C., Hasz D., Weisdorf D. Anti-CD3+ interleukin-2 stimulation of marrow and blood: comparison of proliferation and cytotoxicity. Blood. 1992;80(7):1846–1853.
    1. Ting C.-C., Hargrove M. E., Yun Y. S. Augmentation by anti-T3 antibody of the lymphokine-activated killer cell-mediated cytotoxicity. Journal of Immunology. 1988;141(3):741–748.
    1. Ochoa A. C., Hasz D. E., Rezonzew R., Anderson P. M., Bach F. H. Lymphokine-activated killer activity in long-term cultures with anti-CD3 plus interleukin 2: identification and isolation of effector subsets. Cancer Research. 1989;49(4):963–968.
    1. Lum H. E., Miller M., Van Epps D., Lum L. G. Targeting Prostate Cancer Cells with T Cells Armed with Two Novel Bispecific Antibodies (OKT3 x 9187 and OKT3 x 9189) 29th 2001.
    1. Lum L. G., Rathore R., Lum H. E. Targeting of Prostate Cancer with T Cells Armed with OKT3 x Anti-HER2/New Bispecific Monoclonal Antibodies(Biabs) 29 2001.
    1. Davol P. A., Lum L. G. How important is HER2/neu amplification and expression when selecting patients for HER2/neu-targeted therapies? Clinical Breast Cancer. 2004;5(1):70–71. doi: 10.1016/S1526-8209(11)70837-0.
    1. Sen M., Wankowski D. M., Garlie N. K., et al. Use of anti-CD3 × anti-HER2/neu bispecific antibody for redirecting cytotoxicity of activated T cells toward HER2/neu+ tumors. Journal of Hematotherapy & Stem Cell Research. 2001;10(2):247–260. doi: 10.1089/15258160151134944.
    1. Thakur A., Schalk D., Sarkar S. H., Al-Khadimi Z., Sarkar F. H., Lum L. G. A Th1 cytokine-enriched microenvironment enhances tumor killing by activated T cells armed with bispecific antibodies and inhibits the development of myeloid-derived suppressor cells. Cancer Immunology, Immunotherapy. 2012;61(4):497–509. doi: 10.1007/s00262-011-1116-1.
    1. Thakur A., Norkina O., Lum L. G. In vitro synthesis of primary specific anti-breast cancer antibodies by normal human peripheral blood mononuclear cells. Cancer Immunology, Immunotherapy. 2011;60(12):1707–1720. doi: 10.1007/s00262-011-1056-9.
    1. Thakur A., Littrup P., Paul E. N., Adam B., Heilbrun L. K., Lum L. G. Induction of specific cellular and humoral responses against renal cell carcinoma after combination therapy with cryoablation and granulocyte-macrophage colony stimulating factor: a pilot study. Journal of Immunotherapy. 2011;34(5):457–467. doi: 10.1097/cji.0b013e31821dcba5.
    1. Thakur A., Schalk D., Sarkar S. H., Al-Khadimi Z., Sarkar F. H., Lum L. G. A Th1 cytokine-enriched microenvironment enhances tumor killing by activated T cells armed with bispecific antibodies and inhibits the development of myeloid-derived suppressor cells. Cancer Immunology, Immunotherapy. 2012;61(4):497–509. doi: 10.1007/s00262-011-1116-1.
    1. Thakur A., Schalk D., Tomaszewski E., et al. Microenvironment generated during EGFR targeted killing of pancreatic tumor cells by ATC inhibits myeloid-derived suppressor cells through COX2 and PGE2 dependent pathway. Journal of Translational Medicine. 2013;11(1, article 35) doi: 10.1186/1479-5876-11-35.
    1. Grabert R. C., Cousens L. P., Smith J. A., et al. Human T cells armed with Her2/neu bispecific antibodies divide, are cytotoxic, and secrete cytokines with repeated stimulation. Clinical Cancer Research. 2006;12(2):569–576. doi: 10.1158/1078-0432.CCR-05-2005.
    1. Small E. J., Sacks N., Nemunaitis J., et al. Granulocyte macrophage colony-stimulating factor-secreting allogeneic cellular immunotherapy for hormone-refractory prostate cancer. Clinical Cancer Research. 2007;13(13):3883–3891. doi: 10.1158/1078-0432.CCR-06-2937.
    1. Kantoff P. W., Schuetz T. J., Blumenstein B. A., et al. Overall survival analysis of a phase II randomized controlled trial of a poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. Journal of Clinical Oncology. 2010;28(7):1099–1105. doi: 10.1200/jco.2009.25.0597.
    1. Hayden M. S., Linsley P. S., Gayle M. A., et al. Single-chain mono- and bispecific antibody derivatives with novel biological properties and antitumour activity from a COS cell transient expression system. Therapeutic Immunology. 1994;1(1):3–15.
    1. Shalaby M. R., Shepard H. M., Presta L., et al. Development of humanized bispecific antibodies reactive with cytotoxic lymphocytes and tumor cells overexpressing the HER2 protooncogene. Journal of Experimental Medicine. 1992;175(1):217–225. doi: 10.1084/jem.175.1.217.
    1. Zhu Z., Lewis G. D., Carter P. Engineering high affinity humanized anti-p185HER2/anti-CD3 F(ab')2 for efficient lysis of p185HER2 overexpressing tumor cells. International Journal of Cancer. 1995;62(3):319–324. doi: 10.1002/ijc.2910620315.
    1. Kuwahara M., Kuroki M., Arakawa F., et al. A mouse/human-chimeric bispecific antibody reactive with human carcinoembryonic antigen-expressing cells and human T-lymphocytes. Anticancer Research. 1996;16(5):2661–2667.
    1. Nakamura Y., Tokuda Y., Iwasawa M., et al. Large-scale culture system of human CD4+ helper/killer T cells for the application to adoptive tumour immunotherapy. British Journal of Cancer. 1992;66(1):20–26. doi: 10.1038/bjc.1992.210.
    1. James N. D., Atherton P. J., Jones J., Howie A. J., Tchekmedyian S., Curnow R. T. A phase II study of the bispecific antibody MDX-H210 (anti-HER2 x CD64) with GM-CSF in HER2+ advanced prostate cancer. British Journal of Cancer. 2001;85(2):152–156. doi: 10.1054/bjoc.2001.1878.

Source: PubMed

3
Se inscrever