Resurgence of persisting non-cultivable Borrelia burgdorferi following antibiotic treatment in mice

Emir Hodzic, Denise Imai, Sunlian Feng, Stephen W Barthold, Emir Hodzic, Denise Imai, Sunlian Feng, Stephen W Barthold

Abstract

The agent of Lyme borreliosis, Borrelia burgdorferi, evades host immunity and establishes persistent infections in its varied mammalian hosts. This persistent biology may pose challenges to effective antibiotic treatment. Experimental studies in dogs, mice, and non-human primates have found persistence of B. burgdorferi DNA following treatment with a variety of antibiotics, but persisting spirochetes are non-cultivable. Persistence of B. burgdorferi DNA has been documented in humans following treatment, but the significance remains unknown. The present study utilized a ceftriaxone treatment regimen in the C3H mouse model that resulted in persistence of non-cultivable B. burgdorferi in order to determine their long-term fate, and to examine their effects on the host. Results confirmed previous studies, in which B. burgdorferi could not be cultured from tissues, but low copy numbers of B. burgdorferi flaB DNA were detectable in tissues at 2, 4 and 8 months after completion of treatment, and the rate of PCR-positive tissues appeared to progressively decline over time. However, there was resurgence of spirochete flaB DNA in multiple tissues at 12 months, with flaB DNA copy levels nearly equivalent to those found in saline-treated mice. Despite the continued non-cultivable state, RNA transcription of multiple B. burgdorferi genes was detected in host tissues, flaB DNA was acquired by xenodiagnostic ticks, and spirochetal forms could be visualized within ticks and mouse tissues by immunofluorescence and immunohistochemistry, respectively. A number of host cytokines were up- or down-regulated in tissues of both saline- and antibiotic-treated mice in the absence of histopathology, indicating host response to the presence of non-cultivable, despite the lack of inflammation in tissues.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Borrelia burgdorferi levels resurge in…
Figure 1. Borrelia burgdorferi levels resurge in tissues at 12 months after antibiotic treatment.
Copy numbers of B. burgdorferi flaB DNA, determined by quantitative PCR, in ear, inoculation site (Inoc), heart base (HB), ventricular muscle (VM), quadriceps muscle (QM), and tibiotarsus (Tt) tissues of saline- and antibiotic-treated mice at 12 months after treatment.
Figure 2. Antibody titers to Borrelia burgdorferi…
Figure 2. Antibody titers to Borrelia burgdorferi are significantly lower following antibiotic treatment, and do not rise in response to resurgence at 12 months.
Reciprocal end-point dilutions of sera reacted against B. burgdorferi lysate antigen.
Figure 3. Spirochetes are present within xenodiagnostic…
Figure 3. Spirochetes are present within xenodiagnostic ticks that fed upon saline- or antibiotic-treated mice at 12 months after treatment.
Indirect immunofluorescent staining of B. burgdorferi in the midguts of ticks that fed upon saline-treated (A) or ceftriaxone-treated mice (B) at 12 months after treatment.
Figure 4. Persisting B. burgdorferi elicit host…
Figure 4. Persisting B. burgdorferi elicit host cytokine responses at 12 months following saline or antibiotic treatment.
Transcription of 19 host cytokine cDNAs, relative to uninfected, age-matched control mice in heart base (HB), ventricular muscle (VM), quadriceps muscle (QM) and tibiotarsus (Tt) at 12 months after treatment with saline or antibiotic.
Figure 5. Spirochetes can be visualized within…
Figure 5. Spirochetes can be visualized within tissue of a mouse at 12 months following antibiotic treatment.
Indirect immunohistochemical staining of B. burgdorferi spirochetes (arrows) in the heart base connective tissue.

References

    1. Barthold SW, deSouza MS, Janotka JL, Smith AL, Persing DH (1993) Chronic Lyme borreliosis in the laboratory mouse. Am J Pathol 143: 951–971.
    1. Baum E, Hue F, Barbour AG (2012) Experimental infections of the reservoir species Peromyscus leucopus with diverse strains of Borrelia burgdorferi, a Lyme disease agent. MBio 3: e00434–12.
    1. Donahue JG, Piesman J, Spielman A (1987) Reservoir competence of white-footed mice for Lyme disease spirochetes. Am J Trop Med Hyg 36: 92–96.
    1. Schwan TG, Burgdorfer W, Schrumpf ME, Karstens RH (1988) The urinary bladder: a consistent source of Borrelia burgdorferi in experimentally infected white-footed mice (Peromyscus leucopus). J Clin Microbiol 26: 893–895.
    1. Moody KD, Barthold SW, Terwilliger GA, Beck DS, Hansen GM, et al. (1990) Experimental chronic Lyme borreliosis in Lewis rats. Am J trop Med Hyg 42: 65–74.
    1. Goodman JL, Jurkovich P, Kodner C, Johnson RC (1991) Persistent cardiac and urinary tract infections with Borrelia burgdorferi in experimentally infected Syrian hamsters. J Clin Microbiol 29: 894–896.
    1. Sonnesyn SW, Manivel JC, Johnson RC, Goodman JL (1993) A guinea pig model for Lyme disease. Infect Immun 61: 4777–4784.
    1. Preac-Mursic V, Patsouris E, Wilske B, Reinhardt S, Gos B, et al. (1990) Persistence of Borrelia burgdorferi and histopathological alterations in experimentally infected animals; comparison with histopathological findings in human Lyme disease. Infection 18: 332–341.
    1. Straubinger RK, Summers BA, Chang YF, Appel MJG (1997) Persistence of Borrelia burgdorferi in experimentally infected dogs after antibiotic treatment. J Clin Microbiol 35: 111–116.
    1. Roberts ED, BohmJr RP, Cogswell FB, Lanners HN, Lowrie Jr RC, et al. (1995) Chronic Lyme disease in the rhesus monkey. Lab Invest 72: 146–160.
    1. Hefty PS, Brooks CS, Jett AM, White GL, Wikel SK, et al. (2002) OspE-related, OspF-related, and Elp lipoproteins are immunogenic in baboons experimentally infected with Borrelia burgdorferi and in human Lyme disease patients. J Clin Microbiol 40: 4256–4265.
    1. Li X, McHugh GA, Damle N, Sikland VI, Glickstein L, et al. (2011) Burden and viability of Borrelia burgdorferi in skin and joints of patients with erythema migrans or Lyme arthritis. Arthritis Rheum 63: 2238–2247.
    1. Embers M, Barthold SW (2012) Borrelia burgdorferi Persistence Post-Antibiotic Treatment. In: Embers ME, editor. The Pathogenic Spirochetes: Strategies for Evasion of Host Immunity and Persistence New York: Springer. 229–252.
    1. Barthold SW, Hodzic E, Imai D, Feng S, Yang X, et al. (2010) Ineffectiveness of tigecycline against persistent Borrelia burgdorferi . Antimicrob Agents Chemother 54: 643–651.
    1. Bockenstedt LK, Mao J, Hodzic E, Barthold SW, Fish D (2002) Detection of attenuated, non-infectious spirochetes after antibiotic treatment of Borrelia burgdorferi-infected mice. J Infect Dis 186: 1430–1437.
    1. Bockenstedt LK, Gonzalez DG, Hamberman AM, Belperron A (2012) Spirochete antigens persist near cartilage after murine Lyme borreliosis therapy. J Clin Invest 122: 2652–2660.
    1. Hodzic E, Feng S, Holden K, Freet KJ, Barthold SW (2008) Persistence of Borrelia burgdorferi following antibiotic treatment in mice. Antimicrob Agents Chemother 52: 1728–1736.
    1. Yrianainen H, Hytonen J, Soderstrom KO, Oksi J, Hartiala K, et al. (2006) Persistent joint swelling and Borrelia-specific antibodies in Borrelia garinii-infected mice after eradication of vegetative spirochetes with antibiotic treatment. Microbes Infect 8: 2044–2051.
    1. Yrjanainen H, Hyotenen J, Song SR, Oksi J, Hartiala K, et al. (2007) Anti-tumor necrosis factor-alpha treatment activates Borrelia burgdorferi spirochetes in 4 weeks after ceftriaxone treatment in C3H/He mice. J Infect Dis 195: 1489–1496.
    1. Yrjanainen H, Hytonen J, Hartiala P, Oksi J, Viljanen MK (2010) Persistence of borrelial DNA in the joints of Borrelia burgdorferi-infected mice after ceftriaxone treatment. APMIS 118: 665–673.
    1. Straubinger RK, Straubinger AF, Summers BA, Jacobson RH (2000) Status of Borrelia burgdorferi infection after antibiotic treatment and the effects of corticosteroids: An experimental study. J Infect Dis 181: 1069–1081.
    1. Embers M, Barthold SW, Borda JT, Bowers L, Doyle L, et al. (2012) Persistence of Borrelia burgdorferi in rhesus macaques following antibiotic treatment of disseminated infection. PLoS ONE 7: e29914.
    1. Battafarano DF, Combs JA, Enzenauer RJ, Fitzpatrick JE (1993) Chronic septic arthritis caused by Borrelia burgdorferi. . Clinical Orthop 297: 238–241.
    1. Bradley JF, Johnson RC, Goodman JL (1994) The persistence of spirochetal nucleic acids in active Lyme arthritis. Ann Int Med 120: 487–489.
    1. Oksi J, Marjamaki M, Nikoskelainen J, Viljanen MK (1999) Borrelia burgdorferi detected by culture and PCR in clinical relapse of disseminated Lyme borreliosis. Ann Med 31: 225–232.
    1. Picha D, Moravcova L, Holeckova D, Zd’arsky E, Valesova M, et al. (2008) Examination of specific DNA by PCR in patients with different forms of Lyme borreliosis. Int J Dermatol 47: 1004–1010.
    1. Priem S, Burmester GR, Kamradt T, Wolbart K, Rittig MG, et al. (1998) Detection of Borrelia burgdorferi by polymerase chain reaction in synovial membrane, but not in synovial fluid from patients with persisting Lyme arthritis after antibiotic therapy. Ann Rheum Dis 57: 118–121.
    1. Wormser GP, Schwartz I (2009) Antibiotic treatment of animals infected with Borrelia burgdorferi. . Clin Microbiol Rev 22: 387–395.
    1. Wormser GP, Dattwyler RJ, Shapiro ED, Halperin JJ, Steere AC, et al. (2006) The clinical assessment, treatment, and prevention of Lyme disease, human granulocytic anaplasmosis, and babesiosis: clinical practice guidelines by the Infectious Diseases Society of America. Erratum in: Clin Infect Dis 45: 941, 2007. Clin Infect Dis 43: 1089–1134.
    1. Barthold SW, Cadavid D, Philipp MT (2010) Animal Models of Borreliosis. In: Samuels DS, Radolph JD, editors. Borrelia: Molecular Biology, Host Interaction and Pathogenesis. Norfolk, UK: Caister Academic Press. 359–411.
    1. AVMA (2013) AVMA Guidelines for the Euthanasia of Animals: 2013 Edition. Schumberg, IL: American Veterinary Medical Association.
    1. Barbour AG (1984) Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med 57: 521–525.
    1. Moody KD, Adams RL, Barthold SW (1994) Effectiveness of antimicrobial treatment against Borrelia burgdorferi infection in mice. Antimicrob Agents Chemother 38: 1567–1572.
    1. Hodzic E, Feng S, Freet K, Barthold SW (2003) Borrelia burgdorferi population dynamics and prototype gene expression during infection of immunocompetent and immunodeficient mice. Infect Immun 71: 5042–5055.
    1. Hodzic E, Feng S, Barthold SW (2013) Assessment of transcriptional activity of Borrelia burgdorferi and host cytokine genes during early and late infection in a mouse model. J Vector Borne Dis 13: 694–711.
    1. Armstrong AL, Barthold SW, Persing DH, Beck DS (1992) Carditis in Lyme disease susceptible and resistant strains of laboratory mice infected with Borrelia burgdorferi . Am J Trop Med Hyg 47: 249–258.
    1. Hodzic E, Feng S, Freet KJ, Borjesson DL, Barthold SW (2002) Borrelia burgdorferi population kinetics and selected gene expression at the host-vector interface. Infect Immun 70: 3382–3388.
    1. Schutzer SE, Fraser-Liggett CM, Casjens SR, Qui WG, Dunn JJ, et al. (2011) Whole-genome sequences of thirteen isolates of Borreia burgdorferi. . J Bacteriol 193: 1018–1020.
    1. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30: e36.
    1. Barthold SW, Hodzic E, Tunev S, Feng S (2006) Antibody-mediated disease remission in the mouse model of Lyme borreliosis. Infect Immun 74: 4817–4825.
    1. Feng S, Hodzic E, Stevenson B, Barthold SW (1998) Humoral immunity to Borrelia burgdorferi N40 decorin binding proteins during infection of laboratory mice. Infect Immun 66: 2827–2835.
    1. Wang E, Bergeron Y, Bergeron MG (2005) Ceftriaxone pharmacokinetics in interleukin-10-treated murine pneumococcal pneumonia. J Antimicrob Chemother 55: 721–726.
    1. Koomanachai P, Crandon JL, Banevicius MA, Peng L, Nicolau DP (2009) Pharmakodynamic profile of tigecycline against methicillin-resistant Staphylococcu aureus in an experimental pneumonia model. Antimicrob Agents Chemother 53: 5060–5063.
    1. Wormser GP, Nadelman RB, Dattwyler RJ, Dennis DT, Shapiro ED, et al. (2000) Practice guidelines for the treatment of Lyme disease. Clin Infect Dis 31 (Supplement 1)S1–S14.
    1. MacDonald AB, Berger BW, Schwan TG (1990) Clinical implications of delayed growth of the Lyme borreliosis spirochete, Borrelia burgdorferi. . Acta Trop 48: 89–94.
    1. Barthold SW, deSouza M, Feng S (1996) Serum-mediated resolution of Lyme arthritis in mice. Lab Invest 74: 57–67.
    1. Barthold SW, Feng S, Bockenstedt LK, Fikrig E, Feen K (1997) Protective and arthritis-resolving activity in serum from mice infected with Borrelia burgdorferi . Clin Infect Dis 25: S9–S17.
    1. Imai D, Hodzic E, Barthold SW (2013) Dynamics of connective tissue localization during chronic Borrelia burgdorferi infection. Lab Invest 93: 900–910.
    1. Tunev SS, Hastey CJ, Hodzic E, Feng S, Barthold SW, et al. (2011) Lymphadenopathy during Lyme borreliosis is caused by spirochete migration-induced specific B cell activation. PLoS Pathog 7: e1002066.
    1. Straubinger RK, Straubinger AF, Summers BA, Jacobson RH, Erb HN (1998) Clinical manifestations, pathogenesis, and effect of antibiotic treatment on Lyme borreliosis in dogs. Wien Klin Wochednschr 110: 874–881.

Source: PubMed

3
Se inscrever