Increased resting state functional connectivity in the fronto-parietal and default mode network in anorexia nervosa

Ilka Boehm, Daniel Geisler, Joseph A King, Franziska Ritschel, Maria Seidel, Yacila Deza Araujo, Juliane Petermann, Heidi Lohmeier, Jessika Weiss, Martin Walter, Veit Roessner, Stefan Ehrlich, Ilka Boehm, Daniel Geisler, Joseph A King, Franziska Ritschel, Maria Seidel, Yacila Deza Araujo, Juliane Petermann, Heidi Lohmeier, Jessika Weiss, Martin Walter, Veit Roessner, Stefan Ehrlich

Abstract

The etiology of anorexia nervosa (AN) is poorly understood. Results from functional brain imaging studies investigating the neural profile of AN using cognitive and emotional task paradigms are difficult to reconcile. Task-related imaging studies often require a high level of compliance and can only partially explore the distributed nature and complexity of brain function. In this study, resting state functional connectivity imaging was used to investigate well-characterized brain networks potentially relevant to understand the neural mechanisms underlying the symptomatology and etiology of AN. Resting state functional magnetic resonance imaging data was obtained from 35 unmedicated female acute AN patients and 35 closely matched healthy controls female participants (HC) and decomposed using spatial group independent component analyses (ICA). Using validated templates, we identified components covering the fronto-parietal "control" network, the default mode network (DMN), the salience network, the visual and the sensory-motor network. Group comparison revealed an increased functional connectivity between the angular gyrus and the other parts of the fronto-parietal network in patients with AN in comparison to HC. Connectivity of the angular gyrus was positively associated with self-reported persistence in HC. In the DMN, AN patients also showed an increased functional connectivity strength in the anterior insula in comparison to HC. Anterior insula connectivity was associated with self-reported problems with interoceptive awareness. This study, with one of the largest sample to date, shows that acute AN is associated with abnormal brain connectivity in two major resting state networks (RSN). The finding of an increased functional connectivity in the fronto-parietal network adds novel support for the notion of AN as a disorder of excessive cognitive control, whereas the elevated functional connectivity of the anterior insula with the DMN may reflect the high levels of self- and body-focused ruminations when AN patients are at rest.

Keywords: anorexia nervosa; cognitive control; default mode network; fMRI; fronto-parietal network; insula; interoceptive awareness; resting state connectivity.

Figures

Figure 1
Figure 1
Spatial maps of 10 independent components of interest grouped by network: DMN, somato-sensory, visual, fronto-parietal and salience network. Spatial maps are plotted as t-statistics thresholded at p = 0.05 (FWE).
Figure 2
Figure 2
Differences between patients with acute anorexia nervosa and healthy controls (A) in component 18, representing the frontal-parietal network and (B) in component 24, representing the default-mode network (for illustrative purposes shown at p = 0.001 uncorrected). Color bar represents t-values.

References

    1. Agosta F., Pievani M., Geroldi C., Copetti M., Frisoni G. B., Filippi M. (2012). Resting state fMRI in Alzheimer’s disease: beyond the default mode network. Neurobiol. Aging 33, 1564–1578 10.1016/j.neurobiolaging.2011.06.007
    1. American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders. 5th Edn. Arlington, VA: American Psychiatric Publishing
    1. Anderluh M. B., Tchanturia K., Rabe-Hesketh S., Treasure J. (2003). Childhood obsessive-compulsive personality traits in adult women with eating disorders: defining a broader eating disorder phenotype. Am. J. Psychiatry 160, 242–247 10.1176/appi.ajp.160.2.242
    1. Ashburner J. (2007). A fast diffeomorphic image registration algorithm. Neuroimage 38, 95–113 10.1016/j.neuroimage.2007.07.007
    1. Assaf M., Jagannathan K., Calhoun V. D., Miller L., Stevens M. C., Sahl R., et al. (2010). Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients. Neuroimage 53, 247–256 10.1016/j.neuroimage.2010.05.067
    1. Bell A. J., Sejnowski T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7, 1129–1159 10.1162/neco.1995.7.6.1129
    1. Bird G., Silani G., Brindley R., White S., Frith U., Singer T. (2010). Empathic brain responses in insula are modulated by levels of alexithymia but not autism. Brain 133(Pt. 5), 1515–1525 10.1093/brain/awq060
    1. Bischoff-Grethe A., McCurdy D., Grenesko-Stevens E., Irvine L. E., Wagner A., Wendy Yau W.-Y., et al. (2013). Altered brain response to reward and punishment in adolescents with Anorexia nervosa. Psychiatry Res. 214, 331–340 10.1016/j.pscychresns.2013.07.004
    1. Bluhm R. L., Miller J., Lanius R. A., Osuch E. A., Boksman K., Neufeld R., et al. (2007). Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients: anomalies in the default network. Schizophr. Bull. 33, 1004–1012 10.1093/schbul/sbm052
    1. Bomba M., Corbetta F., Gambera A., Nicosia F., Bonini L., Neri F., et al. (2014). Heart rate variability in adolescents with functional hypothalamic amenorrhea and anorexia nervosa. Psychiatry Res. 215, 406–409 10.1016/j.psychres.2013.11.012
    1. Brett M., Anton J., Valabregue R., Poline J. (2002). “Region of interest analysis using an SPM toolbox ,” in 8th International Conference on Functional Mapping of the Human Brain (Sendai, Japan).
    1. Brooks S. J., O’Daly O. G., Uher R., Friederich H. C., Giampietro V., Brammer M., et al. (2011). Differential neural responses to food images in women with bulimia versus anorexia nervosa. PLoS One 6:e22259 10.1371/journal.pone.0022259
    1. Buckner R. L., Andrews-Hanna J. R., Schacter D. L. (2008). The brain’s default network: anatomy, function, and relevance to disease. Ann. N Y Acad. Sci. 1124, 1–38 10.1196/annals.1440.011
    1. Calhoun V. D., Adali T., Pearlson G. D., Pekar J. J. (2001). A method for making group inferences from functional MRI data using independent component analysis. Hum. Brain Mapp. 14, 140–151 10.1002/hbm.1048
    1. Camus M., Halelamien N., Plassmann H., Shimojo S., O’Doherty J., Camerer C., et al. (2009). Repetitive transcranial magnetic stimulation over the right dorsolateral prefrontal cortex decreases valuations during food choices. Eur. J. Neurosci. 30, 1980–1988 10.1111/j.1460-9568.2009.06991.x
    1. Chang C., Metzger C. D., Glover G. H., Duyn J. H., Heinze H.-J., Walter M. (2013). Association between heart rate variability and fluctuations in resting-state functional connectivity. Neuroimage 68, 93–104 10.1016/j.neuroimage.2012.11.038
    1. Cloninger C. R. (1994). Temperament and personality. Curr. Opin. Neurobiol. 4, 266–273 10.1016/0959-4388(94)90083-3
    1. Cole M. W., Schneider W. (2007). The cognitive control network: integrated cortical regions with dissociable functions. Neuroimage 37, 343–360 10.1016/j.neuroimage.2007.03.071
    1. Cowdrey F. A., Filippini N., Park R. J., Smith S. M., McCabe C. (2014). Increased resting state functional connectivity in the default mode network in recovered anorexia nervosa. Hum. Brain Mapp. 35, 483–491 10.1002/hbm.22202
    1. Cowdrey F. A., Park R. J., Harmer C. J., Mccabe C. (2011). Increased neural processing of rewarding and aversive food stimuli in recovered anorexia nervosa. Biol. Psychiatry 70, 736–743 10.1016/j.biopsych.2011.05.028
    1. Craig A. D. (2009). How do you feel—now? the anterior insula and human awareness. Nat. Rev. Neurosci. 10, 59–70 10.1038/nrn2555
    1. Damoiseaux J. S., Rombouts S. A., Barkhof F., Scheltens P., Stam C. J., Smith S. M., et al. (2006). Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. U S A 103, 13848–13853 10.1073/pnas.0601417103
    1. Daseking M., Petermann U., Petermann F. (2007). Intelligenzdiagnostik mit dem HAWIK-IV. Child. Dev. 16, 250–259 10.1026/0942-5403.16.4.250
    1. Dennis E. L., Gotlib I. H., Thompson P. M., Thomason M. E. (2011). Anxiety modulates insula recruitment in resting-state functional magnetic resonance imaging in youth and adults. Brain Connect. 1, 245–254 10.1089/brain.2011.0030
    1. de Reus M. A., van den Heuvel M. P. (2013). The parcellation-based connectome: limitations and extensions. Neuroimage 80, 397–404 10.1016/j.neuroimage.2013.03.053
    1. Dolan R. J., Dayan P. (2013). Goals and habits in the brain. Neuron 80, 312–325 10.1016/j.neuron.2013.09.007
    1. Eryilmaz H., Van De Ville D., Schwartz S., Vuilleumier P. (2011). Impact of transient emotions on functional connectivity during subsequent resting state: a wavelet correlation approach. Neuroimage 54, 2481–2491 10.1016/j.neuroimage.2010.10.021
    1. Fassbender C., Simoes-Franklin C., Murphy K., Hester R., Meaney J., Robertson I., et al. (2006). The role of a right fronto-parietal network in cognitive control. J. Psychophysiol. 20, 286–296 10.1027/0269-8803.20.4.286
    1. Fassino S., Pierò A., Gramaglia C., Abbate-Daga G. (2004). Clinical, psychopathological and personality correlates of interoceptive awareness in anorexia nervosa, bulimia nervosa and obesity. Psychopathology 37, 168–174 10.1159/000079420
    1. Favaro A., Clementi M., Manara R., Bosello R., Forzan M., Bruson A., et al. (2013). Catechol-O-methyltransferase genotype modifies executive functioning and prefrontal functional connectivity in women with anorexia nervosa. J. Psychiatry Neurosci. 38, 241–248 10.1503/jpn.120068
    1. Favaro A., Santonastaso P., Manara R., Bosello R., Bommarito G., Tenconi E., et al. (2012). Disruption of visuospatial and somatosensory functional connectivity in anorexia nervosa. Biol. Psychiatry 72, 864–870 10.1016/j.biopsych.2012.04.025
    1. Favaro A., Tenconi E., Degortes D., Manara R., Santonastaso P. (2014). Effects of obstetric complications on volume and functional connectivity of striatum in anorexia nervosa patients. Int. J. Eat. Disord. [Epub ahead of print]. 10.1002/eat.22320
    1. Fichter M. M., Quadflieg N. (1999). Strukturiertes inventar für anorektische und bulimische essstörungen (SIAB). Fragebogen (SIAB-S) und Interview (SIAB-EX) nach DSM-IV und ICD-10 (Göttingen: Hogrefe; ).
    1. Fox M. D., Halko M. A., Eldaief M. C., Pascual-Leone A. (2012). Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS). Neuroimage 62, 2232–2243 10.1016/j.neuroimage.2012.03.035
    1. Fox M. D., Raichle M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700–711 10.1038/nrn2201
    1. Frank G. K. (2013). Altered brain reward circuits in eating disorders: chicken or egg? Curr. Psychiatry Rep. 15:396 10.1007/s11920-013-0396-x
    1. Frank G. K., Reynolds J. R., Shott M. E., Jappe L., Yang T. T., Tregellas J. R., et al. (2012). Anorexia nervosa and obesity are associated with opposite brain reward response. Neuropsychopharmacology 37, 2031–2046 10.1038/npp.2012.51
    1. Frank G. K., Shott M. E., Hagman J. O., Mittal V. A. (2013). Alterations in brain structures related to taste reward circuitry in ill and recovered anorexia nervosa and in bulimia nervosa. Am. J. Psychiatry 170, 1152–1160 10.1176/appi.ajp.2013.12101294
    1. Friederich H.-C., Brooks S., Uher R., Campbell I. C., Giampietro V., Brammer M., et al. (2010). Neural correlates of body dissatisfaction in anorexia nervosa. Neuropsychologia 48, 2878–2885 10.1016/j.neuropsychologia.2010.04.036
    1. Friederich H. C., Wu M., Simon J. J., Herzog W. (2013). Neurocircuit function in eating disorders. Int. J. Eat. Disord. 46, 425–432 10.1002/eat.22099
    1. Gaudio S., Quattrocchi C. C. (2012). Neural basis of a multidimensional model of body image distortion in anorexia nervosa. Neurosci. Biobehav. Rev. 36, 1839–1847 10.1016/j.neubiorev.2012.05.003
    1. Gorgolewski K., Burns C. D., Madison C., Clark D., Halchenko Y. O., Waskom M. L., et al. (2011). Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python. Front. Neuroinform. 5:13 10.3389/fninf.2011.00013
    1. Goth K., Schmeck K. (eds.). (2009). Das Junior Temprament und Character Inventar (JTCI). Goettingen: Hogrefe
    1. Greicius M. D., Srivastava G., Reiss A. L., Menon V. (2004). Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc. Natl. Acad. Sci. U S A 101, 4637–4642 10.1073/pnas.0308627101
    1. Harris P. A., Taylor R., Thielke R., Payne J., Gonzalez N., Conde J. G. (2009). Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 42, 377–381 10.1016/j.jbi.2008.08.010
    1. Holliday J., Tchanturia K., Landau S., Collier D., Treasure J. (2005). Is impaired set-shifting an endophenotype of anorexia nervosa? Am. J. Psychiatry 162, 2269–2275 10.1176/appi.ajp.162.12.2269
    1. Holsen L. M., Lawson E. A., Blum J., Ko E., Makris N., Fazeli P. K., et al. (2012). Food motivation circuitry hypoactivation related to hedonic and nonhedonic aspects of hunger and satiety in women with active anorexia nervosa and weight-restored women with anorexia nervosa. J. Psychiatry Neurosci. 37, 322–332 10.1503/jpn.110156
    1. Honey G., Bullmore E. (2004). Human pharmacological MRI. Trends Pharmacol. Sci. 25, 366–374 10.1016/j.tips.2004.05.009
    1. Horn D. I., Yu C., Steiner J., Buchmann J., Kaufmann J., Osoba A., et al. (2010). Glutamatergic and resting-state functional connectivity correlates of severity in major depression-the role of pregenual anterior cingulate cortex and anterior insula. Front. Syst. Neurosci. 4:33 10.3389/fnsys.2010.00033
    1. Kaye W., Fudge J., Paulus M. (2009). New insights into symptoms and neurocircuit function of anorexia nervosa. Nat. Rev. Neurosci. 10, 573–584 10.1038/nrn2682
    1. Kaye W., Wierenga C. E., Bailer U. F., Simmons A. N., Bischoff-Grethe A. (2013). Nothing tastes as good as skinny feels: the neurobiology of anorexia nervosa. Trends Neurosci. 36, 110–120 10.1016/j.tins.2013.01.003
    1. Kennedy D. P., Courchesne E. (2008). The intrinsic functional organization of the brain is altered in autism. Neuroimage 39, 1877–1885 10.1016/j.neuroimage.2007.10.052
    1. Kullmann S., Giel K. E., Hu X., Bischoff S. C., Teufel M., Thiel A., et al. (2014a). Impaired inhibitory control in anorexia nervosa elicited by physical activity stimuli. Soc. Cogn. Affect. Neurosci. 9, 917–923 10.1093/scan/nst070
    1. Kullmann S., Giel K. E., Teufel M., Thiel A., Zipfel S., Preissl H. (2014b). Aberrant network integrity of the inferior frontal cortex in women with anorexia nervosa. Neuroimage Clin. 4, 615–622 10.1016/j.nicl.2014.04.002
    1. Kullmann S., Heni M., Veit R., Ketterer C., Schick F., Häring H. U., et al. (2012). The obese brain: association of body mass index and insulin sensitivity with resting state network functional connectivity. Hum. Brain Mapp. 33, 1052–1061 10.1002/hbm.21268
    1. Kurth F., Zilles K., Fox P. T., Laird A. R., Eickhoff S. B. (2010). A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct. Funct. 214, 519–534 10.1007/s00429-010-0255-z
    1. Lawson E. A., Holsen L. M., Santin M., Meenaghan E., Eddy K. T., Becker A. E., et al. (2012). Oxytocin secretion is associated with severity of disordered eating psychopathology and insular cortex hypoactivation in anorexia nervosa. J. Clin. Endocrinol. Metab. 97, E1898–E1908 10.1210/jc.2012-1702
    1. Lee S., Ran Kim K., Ku J., Lee J.-H., Namkoong K., Jung Y.-C. (2014). Resting-state synchrony between anterior cingulate cortex and precuneus relates to body shape concern in anorexia nervosa and bulimia nervosa. Psychiatry Res. 221, 43–48 10.1016/j.pscychresns.2013.11.004
    1. Li Y. O., Adali T., Calhoun V. D. (2007). Estimating the number of independent components for functional magnetic resonance imaging data. Hum. Brain Mapp. 28, 1251–1266 10.1002/hbm.20359
    1. Lilenfeld L. R., Wonderlich S., Riso L. P., Crosby R., Mitchell J. (2006). Eating disorders and personality: a methodological and empirical review. Clin. Psychol. Rev. 26, 299–320 10.1016/j.cpr.2005.10.003
    1. Lock J., Garrett A., Beenhakker J., Reiss A. L. (2011). Aberrant brain activation during a response inhibition task in adolescent eating disorder subtypes. Am. J. Psychiatry 168, 55–64 10.1176/appi.ajp.2010.10010056
    1. McFadden K. L., Tregellas J. R., Shott M. E., Frank G. K. (2014). Reduced salience and default mode network activity in women with anorexia nervosa. J. Psychiatry Neurosci. 39, 178–188 10.1503/jpn.130046
    1. Menon V. (2011). Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn. Sci. 15, 483–506 10.1016/j.tics.2011.08.003
    1. Mohr H. M., Zimmermann J., Röder C., Lenz C., Overbeck G., Grabhorn R. (2010). Separating two components of body image in anorexia nervosa using fMRI. Psychol. Med. 40, 1519–1529 10.1017/s0033291709991826
    1. Moncrieff J., Leo J. (2010). A systematic review of the effects of antipsychotic drugs on brain volume. Psychol. Med. 40, 1409–1422 10.1017/s0033291709992297
    1. Munkres J. (1957). Algorithms for the assignment and transportation problems. J. Soc. Ind. Appl. Math. 5, 32–38 10.1137/0105003
    1. Nederkoorn C., Houben K., Hofmann W., Roefs A., Jansen A. (2010). Control yourself or just eat what you like? Weight gain over a year is predicted by an interactive effect of response inhibition and implicit preference for snack foods. Health Psychol. 29, 389–393 10.1037/a0019921
    1. Niendam T. A., Laird A. R., Ray K. L., Dean Y. M., Glahn D. C., Carter C. S. (2012). Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cogn. Affect. Behav. Neurosci. 12, 241–268 10.3758/s13415-011-0083-5
    1. Nunn K., Frampton I., Gordon I., Lask B. (2008). The fault is not in her parents but in her insula—a neurobiological hypothesis of anorexia nervosa. Eur. Eat. Disord. Rev. 16, 355–360 10.1002/erv.890
    1. Oberndorfer T. A., Kaye W. H., Simmons A. N., Strigo I. A., Matthews S. C. (2011). Demand-specific alteration of medial prefrontal cortex response during an inhibition task in recovered anorexic women. Int. J. Eat. Disord. 44, 1–8 10.1002/eat.20750
    1. Oberndorfer T., Simmons A., McCurdy D., Strigo I., Matthews S., Yang T., et al. (2013). Greater anterior insula activation during anticipation of food images in women recovered from anorexia nervosa versus controls. Psychiatry Res. 214, 132–141 10.1016/j.pscychresns.2013.06.010
    1. Paul T., Thiel A. (2005). Eating Disorder Inventory-2 (EDI-2): German Version. Göttingen: Hogrefe
    1. Petermann F., Petermann U. (2008). HAWIK-IV: Hamburg-Wechsler Intelligenztest für Kinder-IV. New York: H. Huber
    1. Phillips M. L., Drevets W. C., Rauch S. L., Lane R. (2003a). Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biol. Psychiatry 54, 504–514 10.1016/s0006-3223(03)00168-9
    1. Phillips M. L., Drevets W. C., Rauch S. L., Lane R. (2003b). Neurobiology of emotion perception II: implications for major psychiatric disorders. Biol. Psychiatry 54, 515–528 10.1016/s0006-3223(03)00171-9
    1. Roberts M. E., Tchanturia K., Stahl D., Southgate L., Treasure J. (2007). A systematic review and meta-analysis of set-shifting ability in eating disorders. Psychol. Med. 37, 1075–1084 10.1017/s0033291707009877
    1. Salbach-Andrae H., Klinkowski N., Lenz K., Pfeiffer E., Lehmkuhl U., Ehrlich S. (2008). Correspondence between self-reported and parent-reported psychopathology in adolescents with eating disorders. Psychopathology 41, 307–312 10.1159/000146068
    1. Seitz J., Bühren K., von Polier G. G., Heussen N., Herpertz-Dahlmann B., Konrad K. (2014). Morphological changes in the brain of acutely ill and weight-recovered patients with anorexia nervosa. A meta-analysis and qualitative review. Z. Kinder Jugendpsychiatr. Psychother. 42, 7–18 10.1024/1422-4917/a000265
    1. Sternheim L., Startup H., Saeidi S., Morgan J., Hugo P., Russell A., et al. (2012). Understanding catastrophic worry in eating disorders: process and content characteristics. J. Behav. Ther. Exp. Psychiatry 43, 1095–1103 10.1016/j.jbtep.2012.05.006
    1. Taylor P. A., Gohel S., Di X., Walter M., Biswal B. B. (2012). Functional covariance networks: obtaining resting-state networks from intersubject variability. Brain Connect. 2, 203–217 10.1089/brain.2012.0095
    1. van den Heuvel M. P., Hulshoff Pol H. E. (2010). Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 20, 519–534 10.1016/j.euroneuro.2010.03.008
    1. von Aster M., Neubauer A. C., Horn R. (2006). WIE. Wechsler intelligenztest für erwachsene. Deutschsprachige Bearbeitung und Adaptation des WAIS-III von David Wechsler. Frankfurt/Main: Harcourt Test Services
    1. Wagner A., Aizenstein H., Mazurkewicz L., Fudge J., Frank G., Putnam K., et al. (2007a). Altered insula response to taste stimuli in individuals recovered from restricting-type anorexia nervosa. Neuropsychopharmacology 33, 513–523 10.1038/sj.npp.1301443
    1. Wagner A., Aizenstein H., Venkatraman V., Fudge J., May J., Mazurkewicz L., et al. (2007b). Altered reward processing in women recovered from anorexia nervosa. Am. J. Psychiatry 164, 1842–1849 10.1176/appi.ajp.2007.07040575
    1. Whitfield-Gabrieli S., Thermenos H. W., Milanovic S., Tsuang M. T., Faraone S. V., Mccarley R. W., et al. (2009). Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc. Natl. Acad. Sci. U S A 106, 1279–1284 10.1073/pnas.0809141106
    1. Wildes J. E., Marcus M. D. (2011). Development of emotion acceptance behavior therapy for anorexia nervosa: a case series. Int. J. Eat. Disord. 44, 421–427 10.1002/eat.20826
    1. Yeo B. T., Krienen F. M., Sepulcre J., Sabuncu M. R., Lashkari D., Hollinshead M., et al. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 10.1152/jn.00338.2011
    1. Yook K., Kim K.-H., Suh S. Y., Lee K. S. (2010). Intolerance of uncertainty, worry and rumination in major depressive disorder and generalized anxiety disorder. J. Anxiety Disord. 24, 623–628 10.1016/j.janxdis.2010.04.003
    1. Zalesky A., Fornito A., Cocchi L., Gollo L. L., Breakspear M. (2014). Time-resolved resting-state brain networks. Proc. Natl. Acad. Sci. U S A 111, 10341–10346 10.1073/pnas.1400181111
    1. Zastrow A., Kaiser S., Stippich C., Walther S., Herzog W., Tchanturia K., et al. (2009). Neural correlates of impaired cognitive-behavioral flexibility in anorexia nervosa. Am. J. Psychiatry 166, 608–616 10.1176/appi.ajp.2008.08050775

Source: PubMed

3
Se inscrever