Making the Best Out of IT: Design and Development of Exergames for Older Adults With Mild Neurocognitive Disorder - A Methodological Paper

Patrick Manser, Eling D de Bruin, Patrick Manser, Eling D de Bruin

Abstract

Background: Utilizing information technology (IT) systems, for example in form of computerized cognitive screening or exergame-based (also called active videogames) training, has gained growing interest for supporting healthy aging and to detect, prevent and treat neurocognitive disorders (NCD). To ameliorate the effectiveness of exergaming, the neurobiological mechanisms as well as the most effective components for exergame-based training remain to be established. At the same time, it is important to account for the end-users' capabilities, preferences, and therapeutic needs during the design and development process to foster the usability and acceptance of the resulting program in clinical practice. This will positively influence adherence to the resulting exergame-based training program, which, in turn, favors more distinct training-related neurobiological effects. Objectives and Methods: This methodological paper describes the design and development process of novel exergame-based training concepts guided by a recently proposed methodological framework: The 'Multidisciplinary Iterative Design of Exergames (MIDE): A Framework for Supporting the Design, Development, and Evaluation of Exergames for Health' (Li et al., 2020). Case Study: A step-by-step application of the MIDE-framework as a specific guidance in an ongoing project aiming to design, develop, and evaluate an exergame-based training concept with the aim to halt and/or reduce cognitive decline and improve quality of life in older adults with mild neurocognitive disorder (mNCD) is illustrated. Discussion and Conclusion: The development of novel exergame-based training concepts is greatly facilitated when it is based on a theoretical framework (e.g., the MIDE-framework). Applying this framework resulted in a structured, iterative, and evidence-based approach that led to the identification of multiple key requirements for the exergame design as well as the training components that otherwise may have been overlooked or neglected. This is expected to foster the usability and acceptance of the resulting exergame intervention in "real life" settings. Therefore, it is strongly recommended to implement a theoretical framework (e.g., the MIDE-framework) for future research projects in line with well-known checklists to improve completeness of reporting and replicability when serious games for motor-cognitive rehabilitation purposes are to be developed.

Keywords: cognition; development; exercise; exergames; neurosciences; technology; training.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Manser and de Bruin.

Figures

FIGURE 1
FIGURE 1
Methodological framework for the contribution of physical- and neurocognitive- (i.e., game-) demands during exergaming.
FIGURE 2
FIGURE 2
Overview of the exergame-based intervention concept and the basic structure of each exergame session (here as an example for a patient with amnestic-single domain mNCD with a training focus on learning and memory in week 1).

References

    1. American College of Sports Medicine, Riebe D., Ehrman J., Liguori G., Magal M. (2017). ACSM’s Guidelines for Exercise Testing and Prescription. Philadelphia: Lippincott Williams & Wilkins.
    1. American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders (DSM-5§). Virginia: American Psychiatric Association.
    1. Aminov A., Rogers J. M., Middleton S., Caeyenberghs K., Wilson P. H. (2018). What do randomized controlled trials say about virtual rehabilitation in stroke? A systematic literature review and meta-analysis of upper-limb and cognitive outcomes. J. Neuroeng. Rehabil. 15:29. 10.1186/s12984-018-0370-2
    1. Apostolova L. G., Dutton R. A., Dinov I. D., Hayashi K. M., Toga A. W., Cummings J. L., et al. (2006). Conversion of mild cognitive impairment to Alzheimer disease predicted by hippocampal atrophy maps. Arch. Neurol. 63 693–699. 10.1001/archneur.63.5.693
    1. Bahar-Fuchs A., Martyr A., Goh A. M., Sabates J., Clare L. (2019). Cognitive training for people with mild to moderate dementia. Cochrane Database. Syst. Rev. 3:Cd013069. 10.1002/14651858.CD013069.pub2
    1. Bamidis P., Vivas A., Styliadis C., Frantzidis C., Klados M., Schlee W., et al. (2014). A review of physical and cognitive interventions in aging. Neurosci. Biobehav. Rev. 44 206–220.
    1. Barrado-Martín Y., Heward M., Polman R., Nyman S. R. (2021). Adherence to the class-based component of a tai chi exercise intervention for people living with dementia and their informal carers. J. Aging Phys. Act. 29 1–14. 10.1123/japa.2020-0119
    1. Beckett M. W., Ardern C. I., Rotondi M. A. (2015). A meta-analysis of prospective studies on the role of physical activity and the prevention of Alzheimer’s disease in older adults. BMC Geriat. 15:9. 10.1186/s12877-015-0007-2
    1. Begg C., Cho M., Eastwood S., Horton R., Moher D., Olkin I., et al. (1996). Improving the quality of reporting of randomized controlled trials. The CONSORT statement. JAMA 276 637–639. 10.1001/jama.276.8.637
    1. Behzadnia B., Deci E., DeHaan C. (2020). “Predicting relations among life goals, physical activity, health, and well-being in elderly adults: a self-determination theory perspective on healthy aging,” in Self-Determination Theory and Healthy Aging, eds Ng B., Ho G. (Singapore: Springer; ).
    1. Beishon L., Intharakham K., Swienton D., Panerai R. B., Robinson T. G., Haunton V. J. (2020). Neuroimaging outcomes in studies of cognitive training in mild cognitive impairment and early Alzheimer’s disease: a systematic review. Curr. Alzheimer Res. 17 472–486. 10.2174/1567205017666200624202425
    1. Beydoun M. A., Beydoun H. A., Gamaldo A. A., Teel A., Zonderman A. B., Wang Y. (2014). Epidemiologic studies of modifiable factors associated with cognition and dementia: systematic review and meta-analysis. BMC Public Health 14:643. 10.1186/1471-2458-14-643
    1. Biazus-Sehn L. F., Schuch F. B., Firth J., Stigger F. S. (2020). Effects of physical exercise on cognitive function of older adults with mild cognitive impairment: a systematic review and meta-analysis. Arch. Gerontol. Geriatr. 89:104048. 10.1016/j.archger.2020.104048
    1. Blondell S., Hammersley-Mather R., Veerman J. (2014). Does physical activity prevent cognitive decline and dementia?: a systematic review and meta-analysis of longitudinal studies. BMC Public Health 14:510. 10.1186/1471-2458-14-510
    1. Boletsis C., McCallum S. (2015). Connecting the player to the doctor: utilising serious games for cognitive training and screening. DAIMI PB 597 5–8.
    1. Bonnechère B., Langley C., Sahakian B. J. (2020). The use of commercial computerised cognitive games in older adults: a meta-analysis. Sci. Rep. 10:15276. 10.1038/s41598-020-72281-3
    1. Buitenweg J. I., Murre J. M., Ridderinkhof K. R. (2012). Brain training in progress: a review of trainability in healthy seniors. Front. Hum. Neurosci. 6:183. 10.3389/fnhum.2012.00183
    1. Butler M., Nelson V. A., Davila H., Ratner E., Fink H. A., Hemmy L. S., et al. (2018). Over-the-counter supplement interventions to prevent cognitive decline, mild cognitive impairment, and clinical alzheimer-type dementia: a systematic review. Ann. Intern. Med. 168 52–62. 10.7326/m17-1530
    1. Canu E., Sarasso E., Filippi M., Agosta F. (2018). Effects of pharmacological and nonpharmacological treatments on brain functional magnetic resonance imaging in Alzheimer’s disease and mild cognitive impairment: a critical review. Alzheimers Res. Ther. 10:21. 10.1186/s13195-018-0347-1
    1. Carvalho A., Rea I. M., Parimon T., Cusack B. J. (2014). Physical activity and cognitive function in individuals over 60 years of age: a systematic review. Clin. Intervent. Aging 9 661–682. 10.2147/CIA.S55520
    1. Caselli R. J., Dueck A. C., Osborne D., Sabbagh M. N., Connor D. J., Ahern G. L., et al. (2009). Longitudinal modeling of age-related memory decline and the APOE epsilon4 effect. N. Engl. J. Med. 361 255–263. 10.1056/NEJMoa0809437
    1. Chan J. S. Y., Wu J., Deng K., Yan J. H. (2020). The effectiveness of dance interventions on cognition in patients with mild cognitive impairment: a meta-analysis of randomized controlled trials. Neurosci. Biobehav. Rev. 118 80–88. 10.1016/j.neubiorev.2020.07.017
    1. Chan J. Y. C., Chan T. K., Kwok T. C. Y., Wong S. Y. S., Lee A. T. C., Tsoi K. K. F. (2020). Cognitive training interventions and depression in mild cognitive impairment and dementia: a systematic review and meta-analysis of randomized controlled trials. Age Ageing 49 738–747. 10.1093/ageing/afaa063
    1. Chehrehnegar N., Nejati V., Shati M., Rashedi V., Lotfi M., Adelirad F., et al. (2020). Early detection of cognitive disturbances in mild cognitive impairment: a systematic review of observational studies. Psychogeriatrics 20 212–228. 10.1111/psyg.12484
    1. Chen F. T., Etnier J. L., Chan K. H., Chiu P. K., Hung T. M., Chang Y. K. (2020). Effects of exercise training interventions on executive function in older adults: a systematic review and meta-analysis. Sports Med. 50 1451–1467. 10.1007/s40279-020-01292-x
    1. Chuang Y. F., An Y., Bilgel M., Wong D. F., Troncoso J. C., O’Brien R. J., et al. (2016). Midlife adiposity predicts earlier onset of Alzheimer’s dementia, neuropathology and presymptomatic cerebral amyloid accumulation. Mol. Psychiatry 21 910–915. 10.1038/mp.2015.129
    1. Cooper C., Li R., Lyketsos C., Livingston G. (2013). Treatment for mild cognitive impairment: systematic review. Br. J. Psychiatry 203 255–264. 10.1192/bjp.bp.113.127811
    1. Corregidor-Sánchez A. I., Segura-Fragoso A., Rodríguez-Hernández M., Jiménez-Rojas C., Polonio-López B., Criado-Álvarez J. J. (2020). Effectiveness of virtual reality technology on functional mobility of older adults: systematic review and meta-analysis. Age Ageing 50 370–379. 10.1093/ageing/afaa197
    1. Cunningham C., O’Sullivan R., Caserotti P., Tully M. A. (2020). Consequences of physical inactivity in older adults: a systematic review of reviews and meta-analyses. Scand. J. Med. Sci. Sports 30 816–827. 10.1111/sms.13616
    1. de Oliveira F. F., Pivi G. A., Chen E. S., Smith M. C., Bertolucci P. H. (2015). Risk factors for cognitive and functional change in one year in patients with Alzheimer’s disease dementia from São Paulo, Brazil. J. Neurol. Sci. 359 127–132. 10.1016/j.jns.2015.10.051
    1. de Souto Barreto P., Demougeot L., Vellas B., Rolland Y. (2018). Exercise training for preventing dementia, mild cognitive impairment, and clinically meaningful cognitive decline: a systematic review and meta-analysis. J. Gerontol. A Biol. Sci. Med. Sci. 73 1504–1511. 10.1093/gerona/glx234
    1. deBettencourt M. T., Cohen J. D., Lee R. F., Norman K. A., Turk-Browne N. B. (2015). Closed-loop training of attention with real-time brain imaging. Nat. Neurosci. 18 470–475. 10.1038/nn.3940
    1. Deci E. L., Ryan R. M. (2002). “Overview of self-determination theory: an organismic dialectical perspective,” in Handbook of Self-Determination Research, eds Deci E. L., Ryan R. M. (Rochester, NY: University of Rochester Press; ), 3–33.
    1. Devereux-Fitzgerald A., Powell R., Dewhurst A., French D. P. (2016). The acceptability of physical activity interventions to older adults: a systematic review and meta-synthesis. Soc. Sci. Med. 158 14–23. 10.1016/j.socscimed.2016.04.006
    1. Di Lorito C., Bosco A., Booth V., Goldberg S., Harwood R. H., Van der Wardt V. (2020). Adherence to exercise interventions in older people with mild cognitive impairment and dementia: a systematic review and meta-analysis. Prev. Med. Rep. 19:101139. 10.1016/j.pmedr.2020.101139
    1. Di Lorito C., Pollock K., Harwood R., das Nair R., Logan P., Goldberg S., et al. (2019). A scoping review of behaviour change theories in adults without dementia to adapt and develop the ‘PHYT in dementia’, a model promoting physical activity in people with dementia. Maturitas 121 101–113. 10.1016/j.maturitas.2019.01.008
    1. Diamond A., Ling D. S. (2016). Conclusions about interventions, programs, and approaches for improving executive functions that appear justified and those that, despite much hype, do not. Dev. Cogn. Neurosci. 18 34–48. 10.1016/j.dcn.2015.11.005
    1. Diaz Baquero A. A., Dröes R.-M., Perea Bartolomé M. V., Irazoki E., Toribio-Guzmán J. M., Franco-Martín M. A., et al. (2021). Methodological designs applied in the development of computer-based training programs for the cognitive rehabilitation in people with mild cognitive impairment (MCI) and mild dementia. systematic review. J. Clin. Med. 10:1222.
    1. Dodwell G., Muller H. J., Tollner T. (2019). Electroencephalographic evidence for improved visual working memory performance during standing and exercise. Br. J. Psychol. 110 400–427. 10.1111/bjop.12352
    1. Duncan L., Hall C., Wilson P., Jenny O. (2010). Exercise motivation: a cross-sectional analysis examining its relationships with frequency, intensity, and duration of exercise. Int. J. Behav. Nutr. Phys. Act 7:7. 10.1186/1479-5868-7-7
    1. Eldridge S. M., Chan C. L., Campbell M. J., Bond C. M., Hopewell S., Thabane L., et al. (2016). CONSORT 2010 statement: extension to randomised pilot and feasibility trials. Pilot Feasibility Stud. 2:64.
    1. Erickson K. I., Raji C. A., Lopez O. L., Becker J. T., Rosano C., Newman A. B., et al. (2010). Physical activity predicts gray matter volume in late adulthood: the Cardiovascular Health Study. Neurology 75 1415–1422. 10.1212/WNL.0b013e3181f88359
    1. Etnier J. L., Drollette E. S., Slutsky A. B. (2019). Physical activity and cognition: a narrative review of the evidence for older adults. Psychol. Sport Exerc. 42 156–166. 10.1016/j.psychsport.2018.12.006
    1. Ewing K. C., Fairclough S. H., Gilleade K. (2016). Evaluation of an adaptive game that uses EEG measures validated during the design process as inputs to a biocybernetic loop. Front. Hum. Neurosci. 10:223. 10.3389/fnhum.2016.00223
    1. Fabel K., Kempermann G. (2008). Physical activity and the regulation of neurogenesis in the adult and aging brain. Neuromol. Med. 10 59–66.
    1. Fairclough S. (2015). A Closed-Loop Perspective on Symbiotic Human-Computer Interaction. Cham: Springer.
    1. Farina N., Llewellyn D., Isaac M. G., Tabet N. (2017). Vitamin E for Alzheimer’s dementia and mild cognitive impairment. Cochrane Database Syst. Rev. 4:CD002854. 10.1002/14651858.CD002854.pub5
    1. Fink H. A., Jutkowitz E., McCarten J. R., Hemmy L. S., Butler M., Davila H., et al. (2018). Pharmacologic interventions to prevent cognitive decline, mild cognitive impairment, and clinical alzheimer-type dementia: a systematic review. Ann. Intern. Med. 168 39–51. 10.7326/m17-1529
    1. Firth J., Stubbs B., Vancampfort D., Schuch F., Lagopoulos J., Rosenbaum S., et al. (2018). Effect of aerobic exercise on hippocampal volume in humans: a systematic review and meta-analysis. Neuroimage 166 230–238.
    1. Fissler P., Küster O., Schlee W., Kolassa I.-T. (2013). Novelty interventions to enhance broad cognitive abilities and prevent dementia: synergistic approaches for the facilitation of positive plastic change. Prog. Brain Res. 207 403–434.
    1. Fitzpatrick-Lewis D., Warren R., Ali M. U., Sherifali D., Raina P. (2015). Treatment for mild cognitive impairment: a systematic review and meta-analysis. CMAJ Open 3 E419–E427. 10.9778/cmajo.20150057
    1. Forbes D., Forbes S. C., Blake C. M., Thiessen E. J., Forbes S. (2015). Exercise programs for people with dementia. Cochrane Database Syst. Rev. 4:Cd006489. 10.1002/14651858.CD006489.pub4
    1. Friederichs S. A., Bolman C., Oenema A., Lechner L. (2015). Profiling physical activity motivation based on self-determination theory: a cluster analysis approach. BMC Psychol. 3:1. 10.1186/s40359-015-0059-2
    1. Gallou-Guyot M., Mandigout S., Combourieu-Donnezan L., Bherer L., Perrochon A. (2020). Cognitive and physical impact of cognitive-motor dual-task training in cognitively impaired older adults: an overview. Neurophysiol. Clin. 50 441–453. 10.1016/j.neucli.2020.10.010
    1. Garber C. E., Blissmer B., Deschenes M. R., Franklin B. A., Lamonte M. J., Lee I. M., et al. (2011). American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med. Sci. Sports Exerc. 43 1334–1359. 10.1249/MSS.0b013e318213fefb
    1. García-Casal J. A., Loizeau A., Csipke E., Franco-Martín M., Perea-Bartolomé M. V., Orrell M. (2017). Computer-based cognitive interventions for people living with dementia: a systematic literature review and meta-analysis. Aging Ment. Health 21 454–467. 10.1080/13607863.2015.1132677
    1. Gates N. J., Rutjes A. W., Di Nisio M., Karim S., Chong L. Y., March E., et al. (2020). Computerised cognitive training for 12 or more weeks for maintaining cognitive function in cognitively healthy people in late life. Cochrane Database Syst. Rev. 2:Cd012277. 10.1002/14651858.CD012277.pub3
    1. Gates N. J., Vernooij R. W., Di Nisio M., Karim S., March E., Martínez G., et al. (2019). Computerised cognitive training for preventing dementia in people with mild cognitive impairment. Cochrane Database. Syst. Rev. 3:Cd012279. 10.1002/14651858.CD012279.pub2
    1. Gavelin H. M., Dong C., Minkov R., Bahar-Fuchs A., Ellis K. A., Lautenschlager N. T., et al. (2021). Combined physical and cognitive training for older adults with and without cognitive impairment: a systematic review and network meta-analysis of randomized controlled trials. Ageing Res. Rev. 66:101232. 10.1016/j.arr.2020.101232
    1. Geda Y. E., Roberts R. O., Knopman D. S., Christianson T. J., Pankratz V. S., Ivnik R. J., et al. (2010). Physical exercise, aging, and mild cognitive impairment: a population-based study. Arch. Neurol. 67 80–86.
    1. Gillis C., Mirzaei F., Potashman M., Ikram M. A., Maserejian N. (2019). The incidence of mild cognitive impairment: a systematic review and data synthesis. Alzheimers Dement. 11 248–256. 10.1016/j.dadm.2019.01.004
    1. Goessl V. C., Curtiss J. E., Hofmann S. G. (2017). The effect of heart rate variability biofeedback training on stress and anxiety: a meta-analysis. Psychol. Med. 47 2578–2586. 10.1017/s0033291717001003
    1. Gomes-Osman J., Cabral D. F., Morris T. P., McInerney K., Cahalin L. P., Rundek T., et al. (2018). Exercise for cognitive brain health in aging: a systematic review for an evaluation of dose. Neurol. Clin. Pract. 8 257–265. 10.1212/cpj.0000000000000460
    1. Gray W. D., Lindstedt J. K. (2017). Plateaus, dips, and leaps: where to look for inventions and discoveries during skilled performance. Cogn. Sci. 41 1838–1870. 10.1111/cogs.12412
    1. Groot C., Hooghiemstra A., Raijmakers P., Berckel B., Scheltens P., Scherder E., et al. (2015). The effect of physical activity on cognitive function in patients with dementia: a meta-analysis of randomized control trials. Ageing Res. Rev. 25 13–23. 10.1016/j.arr.2015.11.005
    1. Gummelt D. (2017). The Impact of Gameful Design on Sedentary Adults’ Motivation for Physical Activity and Physical Activity Levels. Bath: University of Bath.
    1. Guure C. B., Ibrahim N. A., Adam M. B., Said S. M. (2017). Impact of physical activity on cognitive decline, dementia, and its subtypes: meta-analysis of prospective studies. Biomed. Res. Int. 2017:9016924. 10.1155/2017/9016924
    1. Haeger A., Costa A. S., Schulz J. B., Reetz K. (2019). Cerebral changes improved by physical activity during cognitive decline: a systematic review on MRI studies. NeuroImage Clin. 23:101933. 10.1016/j.nicl.2019.101933
    1. Hagger M., Chatzisarantis N. (2008). Self-determination Theory and the psychology of exercise. Int. Rev. Sport Exerc. Psychol. 1 79–103. 10.1080/17509840701827437
    1. Hagger M. S., Chatzisarantis N. L. D. (2007). Intrinsic Motivation and Self-Determination in Exercise and Sport. Champaign, IL: Human Kinetics.
    1. Halson S. L. (2014). Monitoring training load to understand fatigue in athletes. Sports Med. 44 (Suppl. 2), S139–S147. 10.1007/s40279-014-0253-z
    1. Herold F., Hamacher D., Schega L., Müller N. G. (2018). Thinking while moving or moving while thinking – concepts of motor-cognitive training for cognitive performance enhancement. Front. Aging Neurosci. 10:228. 10.3389/fnagi.2018.00228
    1. Herold F., Törpel A., Schega L., Müller N. G. (2019b). Functional and/or structural brain changes in response to resistance exercises and resistance training lead to cognitive improvements - a systematic review. Eur. Rev. Aging Phys. Act. 16:10. 10.1186/s11556-019-0217-2
    1. Herold F., Müller P., Gronwald T., Müller N. G. (2019a). Dose–response matters! – a perspective on the exercise prescription in exercise–cognition research. Front. Psychol. 10:2338. 10.3389/fpsyg.2019.02338
    1. Hill N. T., Mowszowski L., Naismith S. L., Chadwick V. L., Valenzuela M., Lampit A. (2017). Computerized cognitive training in older adults with mild cognitive impairment or dementia: a systematic review and meta-analysis. Am. J. Psychiatry 174 329–340. 10.1176/appi.ajp.2016.16030360
    1. Hoffman J. (2014). Physiological Aspects of Sport Training and Performance. London: Human Kinetics.
    1. Howes S. C., Charles D. K., Marley J., Pedlow K., McDonough S. M. (2017). Gaming for health: systematic review and meta-analysis of the physical and cognitive effects of active computer gaming in older adults. Phys. Ther. 97 1122–1137. 10.1093/ptj/pzx088
    1. Hu C., Yu D., Sun X., Zhang M., Wang L., Qin H. (2017). The prevalence and progression of mild cognitive impairment among clinic and community populations: a systematic review and meta-analysis. Int. Psychogeriatr. 29 1595–1608. 10.1017/s1041610217000473
    1. Iadecola C., Yaffe K., Biller J., Bratzke L. C., Faraci F. M., Gorelick P. B., et al. (2016). Impact of hypertension on cognitive function: a scientific statement from the American Heart Association. Hypertension 68 e67–e94. 10.1161/hyp.0000000000000053
    1. Impellizzeri F., Marcora S., Coutts A. (2019). Internal and external training load: 15 Years On. Int. J. Sports Physiol. Perform. 14 1–4. 10.1123/ijspp.2018-0935
    1. International Organization for Standardization (2019). ISO 9241-210:2019 Ergonomics of Human-System Interaction — Part 210: Human-Centred Design for Interactive Systems. Available online at: (accessed April 6, 2021).
    1. Ismail Z., Elbayoumi H., Fischer C. E., Hogan D. B., Millikin C. P., Schweizer T., et al. (2017). Prevalence of depression in patients with mild cognitive impairment: a systematic review and meta-analysis. JAMA Psychiatry 74 58–67. 10.1001/jamapsychiatry.2016.3162
    1. Jamnick N. A., Pettitt R. W., Granata C., Pyne D. B., Bishop D. J. (2020). An examination and critique of current methods to determine exercise intensity. Sports Med. 50 1729–1756. 10.1007/s40279-020-01322-8
    1. Janelidze M., Botchorishvili N. (2018). “Mild cognitive impairment,” in Alzheimer’s Disease: The 21st Century Challenge, eds Dorszewska J., Kozubski W. (Norderstedt: Books on Demand; ).
    1. Jester D. J., Rozek E. K., McKelley R. A. (2019). Heart rate variability biofeedback: implications for cognitive and psychiatric effects in older adults. Aging Ment. Health 23 574–580. 10.1080/13607863.2018.1432031
    1. Jia R. X., Liang J. H., Xu Y., Wang Y. Q. (2019). Effects of physical activity and exercise on the cognitive function of patients with Alzheimer disease: a meta-analysis. BMC Geriatr. 19:181. 10.1186/s12877-019-1175-2
    1. Joubert C., Chainay H. (2018). Aging brain: the effect of combined cognitive and physical training on cognition as compared to cognitive and physical training alone - a systematic review. Clin. Interv. Aging 13 1267–1301. 10.2147/cia.S165399
    1. Kantarci K., Petersen R. C., Boeve B. F., Knopman D. S., Weigand S. D., O’Brien P. C., et al. (2005). DWI predicts future progression to Alzheimer disease in amnestic mild cognitive impairment. Neurology 64 902–904. 10.1212/01.Wnl.0000153076.46126.E9
    1. Karbach J., Verhaeghen P. (2014). Making working memory work: a meta-analysis of executive-control and working memory training in older adults. Psychol. Sci. 25 2027–2037. 10.1177/0956797614548725
    1. Karssemeijer E. G. A., Aaronson J. A., Bossers W. J. R., Donders R., Olde Rikkert M. G. M., Kessels R. P. C. (2019a). The quest for synergy between physical exercise and cognitive stimulation via exergaming in people with dementia: a randomized controlled trial. Alzheimers. Res. Ther. 11:3. 10.1186/s13195-018-0454-z
    1. Karssemeijer E. G. A., Bossers W. J. R., Aaronson J. A., Sanders L. M. J., Kessels R. P. C., Olde Rikkert M. G. M. (2019b). Exergaming as a physical exercise strategy reduces frailty in people with dementia: a randomized controlled trial. J. Am. Med. Dir. Assoc. 20 1502–1508. 10.1016/j.jamda.2019.06.026
    1. Karvonen J., Vuorimaa T. (1988). Heart rate and exercise intensity during sports activities. Sports Med. 5 303–311.
    1. Karvonen M. J., Kentala E., Mustala O. (1957). The effects of training on heart rate - a longitudinal study. Ann. Med. Exp. Biol. Fenniae 35:307.
    1. Kasper S., Bancher C., Eckert A., Förstl H., Frölich L., Hort J., et al. (2020). Management of mild cognitive impairment (MCI): the need for national and international guidelines. World J. Biol. Psychiatry 21 579–594. 10.1080/15622975.2019.1696473
    1. Kelly M. E., Loughrey D., Lawlor B. A., Robertson I. H., Walsh C., Brennan S. (2014). The impact of exercise on the cognitive functioning of healthy older adults: a systematic review and meta-analysis. Ageing Res. Rev. 16 12–31. 10.1016/j.arr.2014.05.002
    1. Kempermann G., Fabel K., Ehninger D., Babu H., Leal-Galicia P., Garthe A., et al. (2010). Why and how physical activity promotes experience-induced brain plasticity. Front. Neurosci. 4:189. 10.3389/fnins.2010.00189
    1. Lam F. M., Huang M. Z., Liao L. R., Chung R. C., Kwok T. C., Pang M. Y. (2018). Physical exercise improves strength, balance, mobility, and endurance in people with cognitive impairment and dementia: a systematic review. J. Physiother. 64 4–15. 10.1016/j.jphys.2017.12.001
    1. Lampit A., Hallock H., Valenzuela M. (2014). Computerized cognitive training in cognitively healthy older adults: a systematic review and meta-analysis of effect modifiers. PLoS Med. 11:e1001756. 10.1371/journal.pmed.1001756
    1. Langer K., O’Shea D. M., De Wit L., DeFeis B., Mejia A., Amofa P., et al. (2019). Self-efficacy mediates the association between physical function and perceived quality of life in individuals with mild cognitive impairment. J. Alzheimers Dis. 68 1511–1519. 10.3233/JAD-181020
    1. Lau H. M., Smit J. H., Fleming T. M., Riper H. (2016). Serious games for mental health: are they accessible, feasible, and effective? a systematic review and meta-analysis. Front. Psychiatry 7:209. 10.3389/fpsyt.2016.00209
    1. Lauenroth A., Ioannidis A. E., Teichmann B. (2016). Influence of combined physical and cognitive training on cognition: a systematic review. BMC Geriatr. 16:141. 10.1186/s12877-016-0315-1
    1. Law C.-K., Lam F. M. H., Chung R. C. K., Pang M. Y. C. (2020). Physical exercise attenuates cognitive decline and reduces behavioural problems in people with mild cognitive impairment and dementia: a systematic review. J. Physiother. 66 9–18. 10.1016/j.jphys.2019.11.014
    1. Lee J. (2018). The relationship between physical activity and dementia: a systematic review and meta-analysis of prospective cohort studies. J. Gerontol. Nurs. 44 22–29. 10.3928/00989134-20180814-01
    1. Lehert P., Villaseca P., Hogervorst E., Maki P. M., Henderson V. W. (2015). Individually modifiable risk factors to ameliorate cognitive aging: a systematic review and meta-analysis. Climacteric 18 678–689. 10.3109/13697137.2015.1078106
    1. Lehrer P., Kaur K., Sharma A., Shah K., Huseby R., Bhavsar J., et al. (2020). Heart rate variability biofeedback improves emotional and physical health and performance: a systematic review and meta analysis. Appl. Psychophysiol. Biofeedback 45 109–129. 10.1007/s10484-020-09466-z
    1. Lehrer P., Vaschillo B., Zucker T., Graves J., Katsamanis M., Aviles M., et al. (2013). Protocol for heart rate variability biofeedback training. Biofeedback 41 98–109. 10.5298/1081-5937-41.3.08
    1. Lehrer P. M., Gevirtz R. (2014). Heart rate variability biofeedback: how and why does it work? Front. Psychol. 5:756. 10.3389/fpsyg.2014.00756
    1. Lemos A., Wulf G., Lewthwaite R., Chiviacowsky S. (2017). Autonomy support enhances performance expectancies, positive affect, and motor learning. Psychol. Sport Exerc. 31 28–34. 10.1016/j.psychsport.2017.03.009
    1. Levin O., Netz Y., Ziv G. (2017). The beneficial effects of different types of exercise interventions on motor and cognitive functions in older age: a systematic review. Eur. Rev. Aging Phys. Act. 14:20. 10.1186/s11556-017-0189-z
    1. Levine M. E., Harrati A., Crimmins E. M. (2018). Predictors and implications of accelerated cognitive aging. Biodemogr. Soc. Biol. 64 83–101. 10.1080/19485565.2018.1552513
    1. Li Y., Muñoz J., Mehrabi S., Middleton L., Cao S., Boger J. (2020). “Multidisciplinary Iterative Design of Exergames (MIDE): a framework for supporting the design, development, and evaluation of exergames for health,” in HCI in Games. HCII 2020. Lecture Notes in Computer Science, ed. Fang X. (Cham: Springer; ).
    1. Liang J. H., Xu Y., Lin L., Jia R. X., Zhang H. B., Hang L. (2018). Comparison of multiple interventions for older adults with Alzheimer disease or mild cognitive impairment: a PRISMA-compliant network meta-analysis. Medicine 97:e10744. 10.1097/md.0000000000010744
    1. Lindbergh C. A., Dishman R. K., Miller L. S. (2016). Functional disability in mild cognitive impairment: a systematic review and meta-analysis. Neuropsychol. Rev. 26 129–159. 10.1007/s11065-016-9321-5
    1. Lox C. L., Ginis K. A. M., Petruzzello S. J. (2016). The Psychology of Exercise: Integrating Theory and Practice. Milton Park: Taylor & Francis.
    1. Ma L. (2020). Depression, anxiety, and apathy in mild cognitive impairment: current perspectives. Front. Aging Neurosci. 12:9. 10.3389/fnagi.2020.00009
    1. Malek-Ahmadi M. (2016). Reversion from mild cognitive impairment to normal cognition: a meta-analysis. Alzheimer Dis. Assoc. Disord. 30 324–330. 10.1097/wad.0000000000000145
    1. Mann T., Lamberts R. P., Lambert M. I. (2013). Methods of prescribing relative exercise intensity: physiological and practical considerations. Sports Med. 43 613–625. 10.1007/s40279-013-0045-x
    1. Manser P., Thalmann M., Adcock M., Knols R. H., de Bruin E. D. (2021). Can reactivity of heart rate variability be a potential biomarker and monitoring tool to promote healthy aging? A systematic review with meta-analyses. Front. Physiol. 12:686129. 10.3389/fphys.2021.686129
    1. Mansor N. S., Chow C. M., Halaki M. (2020). Cognitive effects of video games in older adults and their moderators: a systematic review with meta-analysis and meta-regression. Aging Ment. Health 24 841–856. 10.1080/13607863.2019.1574710
    1. Marinus N., Hansen D., Feys P., Meesen R., Timmermans A., Spildooren J. (2019). The impact of different types of exercise training on peripheral blood brain-derived neurotrophic factor concentrations in older adults: a meta-analysis. Sports Med. 49 1529–1546. 10.1007/s40279-019-01148-z
    1. Matallaoui A., Koivisto J., Hamari J., Zarnekow R. (2017). “How effective is “Exergamification”? A systematic review on the effectiveness of gamification features in exergames,” in Proceedings of the 50th Hawaii International Conference on System Sciences, (Cham: Springer; ).
    1. Melby-Lervåg M., Redick T. S., Hulme C. (2016). Working memory training does not improve performance on measures of intelligence or other measures of “far transfer”: evidence from a meta-analytic review. Perspect. Psychol. Sci. 11 512–534. 10.1177/1745691616635612
    1. Mewborn C. M., Lindbergh C. A., Stephen Miller L. (2017). Cognitive interventions for cognitively healthy, mildly impaired, and mixed samples of older adults: a systematic review and meta-analysis of randomized-controlled trials. Neuropsychol. Rev. 27 403–439. 10.1007/s11065-017-9350-8
    1. Michael D. R., Chen S. L. (2005). Serious games: Games that educate, train, and inform. New York, NY: Muska & Lipman/Premier-Trade.
    1. Miotto E. C., Batista A. X., Simon S. S., Hampstead B. M. (2018). Neurophysiologic and cognitive changes arising from cognitive training interventions in persons with mild cognitive impairment: a systematic review. Neural Plast. 2018:7301530. 10.1155/2018/7301530
    1. Mishra J., Anguera J. A., Gazzaley A. (2016). Video games for neuro-cognitive optimization. Neuron 90 214–218. 10.1016/j.neuron.2016.04.010
    1. Mitchell A. J., Shiri-Feshki M. (2009). Rate of progression of mild cognitive impairment to dementia–meta-analysis of 41 robust inception cohort studies. Acta Psychiatr. Scand. 119 252–265. 10.1111/j.1600-0447.2008.01326.x
    1. Moher D., Hopewell S., Schulz K. F., Montori V., Gotzsche P. C., Devereaux P. J., et al. (2010). CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. J. Clin. Epidemiol. 63 e1–e37. 10.1016/j.jclinepi.2010.03.004
    1. Moreau D., Conway A. R. (2014). The case for an ecological approach to cognitive training. Trends Cogn. Sci. 18 334–336. 10.1016/j.tics.2014.03.009
    1. Moreno A., Wall K. J., Thangavelu K., Craven L., Ward E., Dissanayaka N. N. (2019). A systematic review of the use of virtual reality and its effects on cognition in individuals with neurocognitive disorders. Alzheimers Dement. 5 834–850. 10.1016/j.trci.2019.09.016
    1. Muiños M., Ballesteros S. (2021). Does dance counteract age-related cognitive and brain declines in middle-aged and older adults? A systematic review. Neurosci. Biobehav. Rev. 121 259–276. 10.1016/j.neubiorev.2020.11.028
    1. Muñoz J., Cameirão M., Bermúdez i Badia S., Gouveia E. (2018). “Closing the loop in exergaming - health benefits of biocybernetic adaptation in senior adults,” in Proceedings of the Annual Symposium on Computer-Human Interaction in Play, CHI PLAY 2018, Melbourne.
    1. Murcia J. A. M., Román M. L. D. S., Galindo C. M., Alonso N., González-Cutre D. (2008). Peers’ influence on exercise enjoyment: a self-determination theory approach. J. Sports Sci. Med. 7 23–31.
    1. Netz Y. (2019). Is there a preferred mode of exercise for cognition enhancement in older age?-A narrative review. Front. Med. 6:57. 10.3389/fmed.2019.00057
    1. Ng T. P., Feng L., Nyunt M. S. Z., Feng L., Gao Q., Lim M. L., et al. (2016). Metabolic syndrome and the risk of mild cognitive impairment and progression to dementia: follow-up of the singapore longitudinal ageing study cohort. JAMA Neurol. 73 456–463. 10.1001/jamaneurol.2015.4899
    1. Nguyen L., Murphy K., Andrews G. (2019). Cognitive and neural plasticity in old age: a systematic review of evidence from executive functions cognitive training. Ageing Res. Rev. 53:100912. 10.1016/j.arr.2019.100912
    1. Northey J. M., Cherbuin N., Pumpa K. L., Smee D. J., Rattray B. (2018). Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis. Br. J. Sports Med. 52 154–160. 10.1136/bjsports-2016-096587
    1. O’Caoimh R. (2015). The Quick Mild Cognitive Impairment (Qmci) Screen: Developing A New Screening Test for Mild Cognitive Impairment and Dementia. Cork: University College Cork.
    1. Ogawa E. F., You T., Leveille S. G. (2016). Potential benefits of exergaming for cognition and dual-task function in older adults: a systematic review. J. Aging Phys. Act. 24:332. 10.1123/japa.2014-0267
    1. Oh Y., Yang S. (2010). Defining Exergames & Exergaming. Cham: Springer, 1–17.
    1. Pacheco T. B. F., de Medeiros C. S. P., de Oliveira V. H. B., Vieira E. R., de Cavalcanti F. A. C. (2020). Effectiveness of exergames for improving mobility and balance in older adults: a systematic review and meta-analysis. Syst. Rev. 9:163. 10.1186/s13643-020-01421-7
    1. Pal K., Mukadam N., Petersen I., Cooper C. (2018). Mild cognitive impairment and progression to dementia in people with diabetes, prediabetes and metabolic syndrome: a systematic review and meta-analysis. Soc. Psychiatry Psychiatr. Epidemiol. 53 1149–1160. 10.1007/s00127-018-1581-3
    1. Panza G. A., Taylor B. A., MacDonald H. V., Johnson B. T., Zaleski A. L., Livingston J., et al. (2018). Can exercise improve cognitive symptoms of Alzheimer’s disease? J. Am. Geriatr. Soc. 66 487–495. 10.1111/jgs.15241
    1. Parnetti L., Chipi E., Salvadori N., D’Andrea K., Eusebi P. (2019). Prevalence and risk of progression of preclinical Alzheimer’s disease stages: a systematic review and meta-analysis. Alzheimers Res. Ther. 11:7. 10.1186/s13195-018-0459-7
    1. Petersen R. C. (2011). Mild cognitive impairment. N. Engl. J. Med. 364 2227–2234. 10.1056/NEJMcp0910237
    1. Petersen R. C., Caracciolo B., Brayne C., Gauthier S., Jelic V., Fratiglioni L. (2014). Mild cognitive impairment: a concept in evolution. J. Intern. Med. 275 214–228. 10.1111/joim.12190
    1. Petersen R. C., Lopez O., Armstrong M. J., Getchius T. S. D., Ganguli M., Gloss D., et al. (2018). Practice guideline update summary: mild cognitive impairment: report of the Guideline development, dissemination, and implementation subcommittee of the american academy of neurology. Neurology 90 126–135. 10.1212/wnl.0000000000004826
    1. Petersen R. C., Roberts R. O., Knopman D. S., Boeve B. F., Geda Y. E., Ivnik R. J., et al. (2009). Mild cognitive impairment: ten years later. Arch. Neurol. 66 1447–1455. 10.1001/archneurol.2009.266
    1. Petersen R. C., Roberts R. O., Knopman D. S., Geda Y. E., Cha R. H., Pankratz V. S., et al. (2010). Prevalence of mild cognitive impairment is higher in men. The Mayo Clinic Study of Aging. Neurology 75 889–897. 10.1212/WNL.0b013e3181f11d85
    1. Petersen R. C., Smith G. E., Waring S. C., Ivnik R. J., Kokmen E., Tangelos E. G. (1997). Aging, memory, and mild cognitive impairment. Int. Psychogeriatr. 9 65–69.
    1. Picorelli A. M., Pereira L. S., Pereira D. S., Felício D., Sherrington C. (2014). Adherence to exercise programs for older people is influenced by program characteristics and personal factors: a systematic review. J. Physiother. 60 151–156. 10.1016/j.jphys.2014.06.012
    1. Pope A., Stephens C., Gilleade K. (2014). “Biocybernetic adaptation as biofeedback training method,” in Advances in Physiological Computing. Human–Computer Interaction Series, eds Fairclough S., Gilleade K. (London: Springer; ), 91–115.
    1. Pope A. T., Bogart E. H., Bartolome D. S. (1995). Biocybernetic system evaluates indices of operator engagement in automated task. Biol. Psychol. 40 187–195.
    1. Raffin J., Barthélémy J. C., Dupré C., Pichot V., Berger M., Féasson L., et al. (2019). Exercise frequency determines heart rate variability gains in older people: a meta-analysis and meta-regression. Sports Med. 49 719–729. 10.1007/s40279-019-01097-7
    1. Rego P., Moreira P. M., Reis L. P. (2010). “Serious games for rehabilitation: a survey and a classification towards a taxonomy,” in Proceedings of the 5th Iberian Conference on Information Systems and Technologies, (Santiago de Compostela: IEEE; ).
    1. Rhodes R. E., Martin A. D., Taunton J. E., Rhodes E. C., Donnelly M., Elliot J. (1999). Factors associated with exercise adherence among older adults. Sports Med. 28 397–411. 10.2165/00007256-199928060-00003
    1. Roberts R., Knopman D. S. (2013). Classification and epidemiology of MCI. Clin. Geriatr. Med. 29 753–772. 10.1016/j.cger.2013.07.003
    1. Roberts R. O., Geda Y. E., Knopman D. S., Cha R. H., Pankratz V. S., Boeve B. F., et al. (2012). The incidence of MCI differs by subtype and is higher in men: the Mayo Clinic Study of Aging. Neurology 78 342–351. 10.1212/WNL.0b013e3182452862
    1. Roberts R. O., Knopman D. S., Geda Y. E., Cha R. H., Pankratz V. S., Baertlein L., et al. (2014). Association of diabetes with amnestic and nonamnestic mild cognitive impairment. Alzheimers Dement. 10 18–26. 10.1016/j.jalz.2013.01.001
    1. Robison J., Rogers M. A. (1994). Adherence to exercise programmes. Sports Med. 17 39–52. 10.2165/00007256-199417010-00004
    1. Rosenbaum D., Mama Y., Algom D. (2017). Stand by your stroop: standing up enhances selective attention and cognitive control. Psychol. Sci. 28 1864–1867. 10.1177/0956797617721270
    1. Russell K. L., Bray S. R. (2009). Self-determined motivation predicts independent, home-based exercise following cardiac rehabilitation. Rehabil. Psychol. 54 150–156. 10.1037/a0015595
    1. Ryan R. M., Deci E. L. (2000). Intrinsic and extrinsic motivations: classic definitions and new directions. Contemp. Educ. Psychol. 25 54–67. 10.1006/ceps.1999.1020
    1. Sachdev P., Blacker D., Blazer D., Ganguli M., Jeste D., Paulsen J., et al. (2014). Classifying neurocognitive disorders: the DSM-5 approach. Nat. Rev. Neurol. 10 634–642. 10.1038/nrneurol.2014.181
    1. Sala G., Gobet F. (2018). Cognitive training does not enhance general cognition. Trends Cogn. Sci. 23 9–20. 10.1016/j.tics.2018.10.004
    1. Sala G., Tatlidil K. S., Gobet F. (2018). Video game training does not enhance cognitive ability: a comprehensive meta-analytic investigation. Psychol. Bull. 144:111. 10.1037/bul0000139
    1. Sanders L. M. J., Hortobagyi T., la Bastide-van Gemert S., van der Zee E. A., van Heuvelen M. J. G. (2019). Dose-response relationship between exercise and cognitive function in older adults with and without cognitive impairment: a systematic review and meta-analysis. PLoS One 14:e0210036. 10.1371/journal.pone.0210036
    1. Sanford A. M. (2017). Mild cognitive impairment. Clin. Geriatr. Med. 33 325–337. 10.1016/j.cger.2017.02.005
    1. Schuff N., Zhu X. P. (2007). Imaging of mild cognitive impairment and early dementia. Br. J. Radiol. 80 S109–S114. 10.1259/bjr/63830887
    1. Schwerdtfeger A. R., Schwarz G., Pfurtscheller K., Thayer J. F., Jarczok M. N., Pfurtscheller G. (2020). Heart rate variability (HRV): from brain death to resonance breathing at 6 breaths per minute. Clin. Neurophysiol. 131 676–693. 10.1016/j.clinph.2019.11.013
    1. Shaffer F., McCraty R., Zerr C. L. (2014). A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability. Front. Psychol. 5:1040. 10.3389/fpsyg.2014.01040
    1. Sherman D. S., Mauser J., Nuno M., Sherzai D. (2017). The efficacy of cognitive intervention in mild cognitive impairment (MCI): a meta-analysis of outcomes on neuropsychological measures. Neuropsychol. Rev. 27 440–484. 10.1007/s11065-017-9363-3
    1. Sherrington C., Michaleff Z. A., Fairhall N., Paul S. S., Tiedemann A., Whitney J., et al. (2017). Exercise to prevent falls in older adults: an updated systematic review and meta-analysis. Br. J. Sports Med. 51 1750–1758. 10.1136/bjsports-2016-096547
    1. Slade S. C., Dionne C. E., Underwood M., Buchbinder R. (2016). Consensus on exercise reporting template (CERT): explanation and elaboration statement. Br. J. Sports Med. 50 1428–1437. 10.1136/bjsports-2016-096651
    1. Smith G. E., Chandler M., Fields J. A., Aakre J., Locke D. E. C. (2018). A survey of patient and partner outcome and treatment preferences in mild cognitive impairment. J. Alzheimers Dis. 63 1459–1468. 10.3233/JAD-171161
    1. Smith P. (2019). Pathways of prevention: a scoping review of dietary and exercise interventions for neurocognition. Brain Plast. 5 1–36. 10.3233/BPL-190083
    1. Sofi F., Valecchi D., Bacci D., Abbate R., Gensini G. F., Casini A., et al. (2011). Physical activity and risk of cognitive decline: a meta-analysis of prospective studies. J. Intern. Med. 269 107–117. 10.1111/j.1365-2796.2010.02281.x
    1. Sokolov A. A., Collignon A., Bieler-Aeschlimann M. (2020). Serious video games and virtual reality for prevention and neurorehabilitation of cognitive decline because of aging and neurodegeneration. Curr. Opin. Neurol. 33 239–248. 10.1097/wco.0000000000000791
    1. Stanmore E., Stubbs B., Vancampfort D., de Bruin E. D., Firth J. (2017). The effect of active video games on cognitive functioning in clinical and non-clinical populations: a meta-analysis of randomized controlled trials. Neurosci. Biobehav. Rev. 78 34–43. 10.1016/j.neubiorev.2017.04.011
    1. Stillman C. M., Esteban-Cornejo I., Brown B., Bender C. M., Erickson K. I. (2020). Effects of exercise on brain and cognition across age groups and health states. Trends Neurosci. 43 533–543. 10.1016/j.tins.2020.04.010
    1. Stojan R., Voelcker-Rehage C. (2019). A systematic review on the cognitive benefits and neurophysiological correlates of exergaming in healthy older adults. J. Clin. Med. 8:734. 10.3390/jcm8050734
    1. Stokin G. B., Krell-Roesch J., Petersen R. C., Geda Y. E. (2015). Mild neurocognitive disorder: an old wine in a new bottle. Harv. Rev. Psychiatry 23 368–376. 10.1097/HRP.0000000000000084
    1. Ströhle A., Schmidt D. K., Schultz F., Fricke N., Staden T., Hellweg R., et al. (2015). Drug and exercise treatment of alzheimer disease and mild cognitive impairment: a systematic review and meta-analysis of effects on cognition in randomized controlled trials. Am. J. Geriatr. Psychiatry 23 1234–1249. 10.1016/j.jagp.2015.07.007
    1. Subramanian S., Dahl Y., Skjaeret Maroni N., Vereijken B., Svanaes D. (2019). Assessing motivational differences between young and older adults when playing an exergame. Games Health J. 9 24–30. 10.1089/g4h.2019.0082
    1. Swanson L. R., Whittinghill D. M. (2015). Intrinsic or extrinsic? Using videogames to motivate stroke survivors: a systematic review. Games Health J. 4 253–258. 10.1089/g4h.2014.0074
    1. Swinnen N., Vandenbulcke M., de Bruin E. D., Akkerman R., Stubbs B., Firth J., et al. (2021). The efficacy of exergaming in people with major neurocognitive disorder residing in long-term care facilities: a pilot randomized controlled trial. Alzheimers Res. Ther. 13:70. 10.1186/s13195-021-00806-7
    1. Swinnen N., Vandenbulcke M., de Bruin E. D., Akkerman R., Stubbs B., Vancampfort D. (2020a). Exergaming for people with major neurocognitive disorder: a qualitative study. Disabil. Rehabil. [Epub ahead of print]. 10.1080/09638288.2020.1822934
    1. Swinnen N., Vandenbulcke M., Vancampfort D. (2020b). Exergames in people with major neurocognitive disorder: a systematic review. Disabil. Rehabil. Assist. Technol. [Epub ahead of print]. 10.1080/17483107.2020.1785566
    1. Tahmosybayat R., Baker K., Godfrey A., Caplan N., Barry G. (2018). Movements of older adults during exergaming interventions that are associated with the systems framework for postural control: a systematic review. Maturitas 111 90–99. 10.1016/j.maturitas.2018.03.005
    1. Tait J. L., Duckham R. L., Milte C. M., Main L. C., Daly R. M. (2017). Influence of Sequential vs. simultaneous dual-task exercise training on cognitive function in older adults. Front. Aging Neurosci. 9:368. 10.3389/fnagi.2017.00368
    1. Teixeira P. J., Carraça E. V., Markland D., Silva M. N., Ryan R. M. (2012). Exercise, physical activity, and self-determination theory: a systematic review. Int. J. Behav. Nutr. Phys Act. 9:78.
    1. Toril P., Reales J. M., Ballesteros S. (2014). Video game training enhances cognition of older adults: a meta-analytic study. Psychol. Aging 29 706–716. 10.1037/a0037507
    1. Valenzuela T., Okubo Y., Woodbury A., Lord S., Delbaere K. (2016). Adherence to technology-based exercise programs in older adults: a systematic review. J. Geriatr. Phys. Ther. 41 49–61. 10.1519/JPT.0000000000000095
    1. van der Wardt V., Hancox J., Gondek D., Logan P., Nair R. D., Pollock K., et al. (2017). Adherence support strategies for exercise interventions in people with mild cognitive impairment and dementia: a systematic review. Prev. Med. Rep. 7 38–45. 10.1016/j.pmedr.2017.05.007
    1. van Santen J., Dröes R.-M., Holstege M., Henkemans O. B., van Rijn A., de Vries R., et al. (2018). Effects of exergaming in people with dementia: results of a systematic literature review. J. Alzheimers Dis. 63 741–760. 10.3233/JAD-170667
    1. Vaportzis E., Niechcial M. A., Gow A. J. (2019). A systematic literature review and meta-analysis of real-world interventions for cognitive ageing in healthy older adults. Ageing Res. Rev. 50 110–130. 10.1016/j.arr.2019.01.006
    1. Vassilaki M., Aakre J. A., Cha R. H., Kremers W. K., St. Sauver J. L., Mielke M. M., et al. (2015). Multimorbidity and risk of mild cognitive impairment. J. Am. Geriatr. Soc. 63 1783–1790. 10.1111/jgs.13612
    1. Verghese J., LeValley A., Derby C., Kuslansky G., Katz M., Hall C., et al. (2006). Leisure activities and the risk of amnestic mild cognitive impairment in the elderly. Neurology 66 821–827. 10.1212/01.wnl.0000202520.68987.48
    1. Wang S., Yin H., Wang X., Jia Y., Wang C., Wang L., et al. (2019). Efficacy of different types of exercises on global cognition in adults with mild cognitive impairment: a network meta-analysis. Aging Clin. Exp. Res. 31 1391–1400. 10.1007/s40520-019-01142-5
    1. Wilson P. M., Mack D. E., Grattan K. P. (2008). Understanding motivation for exercise: a self-determination theory perspective. Can. Psychol. 49 250–256.
    1. Wilson P. M., Sabiston C. M., Mack D. E., Blanchard C. M. (2012). On the nature and function of scoring protocols used in exercise motivation research: an empirical study of the behavioral regulation in exercise questionnaire. Psychol. Sport Exerc. 13 614–622. 10.1016/j.psychsport.2012.03.009
    1. World Health Organization [WHO] (2018). ICD-11 International Classification of Diseases 11th Revision The Global Standard for Diagnostic Health Information. Geneva: World Health Organization.
    1. World Health Organization [WHO] (2019). Risk Reduction of Cognitive Decline and Dementia: WHO Guidelines. Geneva: World Health Organization.
    1. Wu C., Yi Q., Zheng X., Cui S., Chen B., Lu L., et al. (2019). Effects of mind-body exercises on cognitive function in older adults: a meta-analysis. J. Am. Geriatr. Soc. 67 749–758. 10.1111/jgs.15714
    1. Wulf G., Lewthwaite R. (2016). Optimizing performance through intrinsic motivation and attention for learning: the OPTIMAL theory of motor learning. Psychon. Bull. Rev. 23 1382–1414. 10.3758/s13423-015-0999-9
    1. Yang C., Moore A., Mpofu E., Dorstyn D., Li Q., Yin C. (2019). Effectiveness of combined cognitive and physical interventions to enhance functioning in older adults with mild cognitive impairment: a systematic review of randomized controlled trials. Gerontologist 60 633–642. 10.1093/geront/gnz149
    1. Zaccaro A., Piarulli A., Laurino M., Garbella E., Menicucci D., Neri B., et al. (2018). How breath-control can change your life: a systematic review on psycho-physiological correlates of slow breathing. Front. Hum. Neurosci. 12:353. 10.3389/fnhum.2018.00353
    1. Zhang H., Huntley J., Bhome R., Holmes B., Cahill J., Gould R. L., et al. (2019). Effect of computerised cognitive training on cognitive outcomes in mild cognitive impairment: a systematic review and meta-analysis. BMJ Open 9:e027062. 10.1136/bmjopen-2018-027062
    1. Zhao Y., Feng H., Wu X., Du Y., Yang X., Hu M., et al. (2020). Effectiveness of exergaming in improving cognitive and physical function in people with mild cognitive impairment or dementia: systematic review. JMIR Serious Games 8:e16841. 10.2196/16841
    1. Zhou X. L., Wang L. N., Wang J., Zhou L., Shen X. H. (2020). Effects of exercise interventions for specific cognitive domains in old adults with mild cognitive impairment: a meta-analysis and subgroup analysis of randomized controlled trials. Medicine 99:e20105. 10.1097/md.0000000000020105
    1. Zhu Y., Zhong Q., Ji J., Ma J., Wu H., Gao Y., et al. (2020). Effects of aerobic dance on cognition in older adults with mild cognitive impairment: a systematic review and meta-analysis. J. Alzheimers Dis. 74 679–690. 10.3233/jad-190681

Source: PubMed

3
Se inscrever