Vasoinhibins regulate the inner and outer blood-retinal barrier and limit retinal oxidative stress

David Arredondo Zamarripa, Nundehui Díaz-Lezama, Rodrigo Meléndez García, Jesús Chávez Balderas, Norma Adán, Maria G Ledesma-Colunga, Edith Arnold, Carmen Clapp, Stéphanie Thebault, David Arredondo Zamarripa, Nundehui Díaz-Lezama, Rodrigo Meléndez García, Jesús Chávez Balderas, Norma Adán, Maria G Ledesma-Colunga, Edith Arnold, Carmen Clapp, Stéphanie Thebault

Abstract

Vasoinhibins are prolactin fragments present in the retina, where they have been shown to prevent the hypervasopermeability associated with diabetes. Enhanced bradykinin (BK) production contributes to the increased transport through the blood-retina barrier (BRB) in diabetes. Here, we studied if vasoinhibins regulate BRB permeability by targeting the vascular endothelium and retinal pigment epithelium (RPE) components of this barrier. Intravitreal injection of BK in male rats increased BRB permeability. Vasoinhibins prevented this effect, as did the B2 receptor antagonist Hoe-140. BK induced a transient decrease in mouse retinal and brain capillary endothelial monolayer resistance that was blocked by vasoinhibins. Both vasoinhibins and the nitric oxide (NO) synthase inhibitor L-NAME, but not the antioxidant N-acetyl cysteine (NAC), blocked the transient decrease in bovine umbilical vein endothelial cell (BUVEC) monolayer resistance induced by BK; this block was reversed by the NO donor DETANONOate. Vasoinhibins also prevented the BK-induced actin cytoskeleton redistribution, as did L-NAME. BK transiently decreased human RPE (ARPE-19) cell monolayer resistance, and this effect was blocked by vasoinhibins, L-NAME, and NAC. DETANONOate reverted the blocking effect of vasoinhibins. Similar to BK, the radical initiator Luperox induced a reduction in ARPE-19 cell monolayer resistance, which was prevented by vasoinhibins. These effects on RPE resistance coincided with actin cytoskeleton redistribution. Intravitreal injection of vasoinhibins reduced the levels of reactive oxygen species (ROS) in retinas of streptozotocin-induced diabetic rats, particularly in the RPE and capillary-containing layers. Thus, vasoinhibins reduce BRB permeability by targeting both its main inner and outer components through NO- and ROS-dependent pathways, offering potential treatment strategies against diabetic retinopathies.

Keywords: 16K prolactin; blood-retina barrier; diabetes; nitric oxide; oxidative stress; reactive oxygen species; retinal pigment epithelium; vasoinhibins.

Figures

Figure 1
Figure 1
Vasoinhibins prevent BK-induced increase in BRB permeability similarly to a kinin B2 receptor antagonist. (A) Evaluation of the Evans blue dye content in retinas of rats intravitreously injected 4 h earlier with PBS (Ctl), BK (1 nM), BK combined with either vasoinhibins (Vi, 1 μM) or Hoe-140 (Hoe, 3 μM), Vi alone, or Hoe alone. Values are mean ± s.e.m. normalized to the control (n = 8–16 per group; *P < 0.05). (B–D) Retinas of rats that were intravitreously injected 4 h earlier with PBS, BK, Vi, or BK combined with Vi were analyzed for kinin B2 receptor mRNA (B, mean ± s.e.m. from 5 independent experiments) and protein (C). Total β-tubulin served as loading control. (D) Quantification of kinin B2 receptor by densitometry normalized to total β-tubulin. Values correspond to the mean ± s.e.m. from 3 independent experiments. (E) Retinas of rats that were intravitreously injected 4 h earlier with PBS, BK, Vi, or BK combined with Vi were analyzed for kinin B1 receptor protein. Total knee extract from rats with Freund's adjuvant-induced arthritis (AT, arthritic tissue) was used as a positive control for B1 receptor expression. NS, not significant.
Figure 2
Figure 2
Vasoinhibins block BK-induced reduction of transendothelial resistance and morphological changes in actin cytoskeleton. Time course of trans-electrical resistance (TER) in MRCEC (A) and MBCEC (B) monolayers cultured in complete medium (Ctl) with or without 10 μM BK and 10 nM vasoinhibins (Vi). (C) TER in BUVEC monolayers cultured in complete medium (Ctl) with or without 10 μM BK and 10 nM Vi. (D) Expanded early time values of experiment (C). In (A–D), values are mean ± s.e.m. from 3 independent experiments normalized to the control; *P < 0.05 vs. Ctl. MBCEC and MRCEC were cultured on inserts with pore sizes of 0.4 μm while BUVEC cells were cultured on inserts with pore sizes of 8.0 μm. (E) BUVEC were cultured in complete medium (Ctl) with or without 10 μM BK and 10 nM Vi for 15 min and then actin cytoskeleton (F-actin) distribution was determined using rhodamine-phalloidin. Representative fields are shown. Scale bar, 10 μm.
Figure 3
Figure 3
The inhibitory effect of vasoinhibins on BK-induced reduction of transendothelial resistance and actin cytoskeleton rearrangement depends on NO. (A) Time course of TER in BUVEC monolayers cultured in complete medium (Ctl) with or without 10 μM BK and the NO synthase inhibitor L-NAME (10 mM). Values are mean ± s.e.m. from 3 independent experiments normalized to the control. *P < 0.05 vs. Ctl. (B) Rats were treated with L-NAME (1.8 mM) administered in the drinking water for 15 days, then their retinas were intravitreously injected with PBS (Ctl) or BK (1 nM), and evaluated 2 h later by the Evans blue dye assay. Values are mean ± s.e.m. normalized to control. *P < 0.05 from 8 to 16 independent observations. (C) Quantification of peak TER values (15 min after treatment start) in BUVEC monolayers cultured in complete medium (Ctl) with or without 10 μM BK and 10 nM Vi in the absence (white bars) or presence (black bars) of the NO donor DETANONOate (10 μM). *P < 0.05 from 3 independent experiments. NS, not significant. BUVEC were cultured on inserts with pore sizes of 8.0 μm. (D) BUVEC were cultured in complete medium (Ctl) with or without 10 μM BK and 10 mM L-NAME, and with the NO donor DETANONOate (10 μM) in the presence and in the absence of BK and Vi (10 nM) for 15 min, and then actin cytoskeleton (F-actin) distribution was determined using rhodamine-phalloidin. Representative fields are shown. Scale bar, 10 μm.
Figure 4
Figure 4
ROS do not participate in the vasoinhibin-mediated inhibition of transendothelial resistance reduction and actin cytoskeleton rearrangement induced by BK. (A,C) Time course of trans-electrical resistance (TER) in BUVEC monolayers cultured in complete medium (Ctl) with or without 10 μM BK and the antioxidant N-acetyl cysteine (NAC, 10 mM) or with or without 500 μM Luperox and vasoinhibins (Vi, 10 nM). BUVEC were cultured on inserts with pore sizes of 8.0 μm. (B) Corresponding quantification of TER values, 10 min after treatment initiation. Values correspond to the mean ± s.e.m. from 3 independent experiments. *P < 0.05. NS, not significant. (D) BUVEC were cultured in complete medium (Ctl) with or without 10 μM BK and 10 mM NAC or with or without 500 μM Luperox and Vi (10 nM) for 15 min, and then actin cytoskeleton (F-actin) distribution was determined using rhodamine-phalloidin. Representative fields are shown. Scale bar, 10 μm. (E) Mitochondrial membrane potential changes using JC-1 dye in BUVEC monolayers cultured in complete medium (Ctl) with or without 10 μM BK or 500 μM Luperox and 10 nM Vi. Values correspond to the mean ± s.e.m. from 3 independent experiments. *P < 0.05. NS, not significant. (F) Cytosolic levels of superoxide in BUVEC monolayers cultured in complete medium (Ctl) with or without 10 μM BK. Values correspond to the mean ± s.e.m. of 8 repeats per condition from 3 independent experiments.
Figure 5
Figure 5
BK transiently reduces ARPE-19 cell monolayer resistance and induces actin cytoskeleton rearrangement through NO, and vasoinhibins prevent these effects. (A,B) Time course of trans-electrical resistance (TER) in ARPE-19 monolayers cultured in complete medium (Ctl) with or without 10 μM BK and vasoinhibins (Vi, 10 nM) or L-NAME (10 mM). Values correspond to the mean ± s.e.m. from 3 independent experiments. *P < 0.05 vs. Ctl. (C) Quantification of peak TER values (15 min after treatment start) in ARPE-19 monolayers cultured in complete medium (Ctl) with or without 10 μM BK and 10 nM Vi in the absence (white bars) or presence (black bars) of the NO donor DETANONOate (10 μM). *P < 0.05 from 3 independent experiments. NS, not significant. ARPE-19 cells were cultured on inserts with pore sizes of 0.4 μm. (D) ARPE-19 cells were cultured in complete medium (Ctl) with or without 10 μM BK and vasoinhibins (Vi, 10 nM) or L-NAME (10 mM) or the NO donor DETANONOate (10 μM) for 15 min, and then actin cytoskeleton (F-actin) distribution was determined using rhodamine-phalloidin. Representative fields are shown. Scale bar, 10 μm.
Figure 6
Figure 6
ROS contribute to the inhibition of BK-induced decrease of ARPE-19 resistance and actin cytoskeleton rearrangement by vasoinhibins. (A,B) Time course of trans-electrical resistance (TER) in ARPE-19 monolayers cultured in complete medium (Ctl) with or without 10 μM BK and N-acetyl cysteine (NAC, 10 mM) or with or without 500 μM Luperox and vasoinhibins (Vi, 10 nM). Values correspond to the mean ± s.e.m. from 3 independent experiments. *P < 0.05 vs. Ctl. ARPE-19 cells were cultured on inserts with pore sizes of 0.4 μm. (C) ARPE-19 cells were cultured in complete medium (Ctl) with or without 10 μM BK and NAC (10 mM) or with or without 500 μM Luperox and Vi (10 nM) for 15 min, and then actin cytoskeleton (F-actin) distribution was determined using rhodamine-phalloidin. Representative fields are shown. Scale bar, 10 μm. (D) Mitochondrial membrane potential changes using JC-1 dye in ARPE-19 monolayers cultured in complete medium (Ctl) with or without 10 μM BK or 500 μM Luperox and Vi (10 nM). Values correspond to the mean ± s.e.m. from 3 independent experiments. (E) Cytosolic levels of superoxide in ARPE-19 monolayers cultured in complete medium (Ctl) with or without 10 μM BK and NAC (10 mM) or with or without 10 μM BK and Vi (10 nM). Values correspond to the mean ± s.e.m. of 4–15 repeats per condition from 3 independent experiments. *P < 0.05 vs. Ctl. NS, not significant.
Figure 7
Figure 7
Vasoinhibins reduce the retinal levels of ROS in streptozotocin-induced diabetic rats. (A) Representative images of superoxide anion production stained with dihydroethidium (DHE) on retina sections from control (Ctl) rats intravitreously injected with PBS or vasoinhibins (Vi, 1 μM) for 24 h and from streptozotocin (STZ)-induced diabetic rats intravitreously injected with PBS or Vi 24 h before the end of the 4 weeks of diabetes. Scale bar is 100 μm. (B) Fluorescence intensity of superoxide anion quantified as mean number of pixels positive for DHE staining normalized to the mean number of pixels positive for DAPI staining in the retinal pigment epithelium (RPE), outer nuclear (ONL), inner nuclear (INL), inner plexiform (IPL), and ganglion cell (GCL) layers. Data are mean ± s.e.m. of values obtained from 3 rats in each group. *P < 0.05. NS, not significant.

References

    1. Abdouh M., Khanjari A., Abdelazziz N., Ongali B., Couture R., Hassessian H. M. (2003). Early upregulation of kinin B1 receptors in retinal microvessels of the streptozotocin-diabetic rat. Br. J. Pharmacol. 140, 33–40. 10.1038/sj.bjp.0705210
    1. Abdouh M., Talbot S., Couture R., Hassessian H. M. (2008). Retinal plasma extravasation in streptozotocin-diabetic rats mediated by kinin B(1) and B(2) receptors. Br. J. Pharmacol. 154, 136–143. 10.1038/bjp.2008.48
    1. Adan N., Guzman-Morales J., Ledesma-Colunga M. G., Perales-Canales S. I., Quintanar-Stephano A., Lopez-Barrera F., et al. . (2013). Prolactin promotes cartilage survival and attenuates inflammation in inflammatory arthritis. J. Clin. Invest. 123, 3902–3913. 10.1172/JCI69485
    1. Aranda J., Rivera J. C., Jeziorski M. C., Riesgo-Escovar J., Nava G., Lopez-Barrera F., et al. . (2005). Prolactins are natural inhibitors of angiogenesis in the retina. Invest. Ophthalmol. Vis. Sci. 46, 2947–2953. 10.1167/iovs.05-0173
    1. Arnold E., Thebault S., Baeza-Cruz G., Arredondo Zamarripa D., Adan N., Quintanar-Stephano A., et al. . (2014). The hormone prolactin is a novel, endogenous trophic factor able to regulate reactive glia and to limit retinal degeneration. J. Neurosci. 34, 1868–1878. 10.1523/JNEUROSCI.2452-13.2014
    1. Bae S. W., Kim H. S., Cha Y. N., Park Y. S., Jo S. A., Jo I. (2003). Rapid increase in endothelial nitric oxide production by bradykinin is mediated by protein kinase A signaling pathway. Biochem. Biophys. Res. Commun. 306, 981–987. 10.1016/S0006-291X(03)01086-6
    1. Banumathi E., Sheikpranbabu S., Haribalaganesh R., Gurunathan S. (2010). PEDF prevents reactive oxygen species generation and retinal endothelial cell damage at high glucose levels. Exp. Eye Res. 90, 89–96. 10.1016/j.exer.2009.09.014
    1. Cai H., Liu D., Garcia J. G. (2008). CaM Kinase II-dependent pathophysiological signalling in endothelial cells. Cardiovasc. Res. 77, 30–34. 10.1093/cvr/cvm010
    1. Cajero-Juarez M., Avila B., Ochoa A., Garrido-Guerrero E., Varela-Echavarria A., Martinez De La Escalera G., et al. . (2002). Immortalization of bovine umbilical vein endothelial cells: a model for the study of vascular endothelium. Eur. J. Cell Biol. 81, 1–8. 10.1078/0171-9335-00213
    1. Charest-Morin X., Roy C., Fortin E. J., Bouthillier J., Marceau F. (2014). Pharmacological evidence of bradykinin regeneration from extended sequences that behave as peptidase-activated B2 receptor agonists. Front. Pharmacol. 5:32. 10.3389/fphar.2014.00032
    1. Clapp C., Aranda J., Gonzalez C., Jeziorski M. C., Martinez De La Escalera G. (2006). Vasoinhibins: endogenous regulators of angiogenesis and vascular function. Trends Endocrinol. Metab. 17, 301–307. 10.1016/j.tem.2006.08.002
    1. Clapp C., Martial J. A., Guzman R. C., Rentier-Delure F., Weiner R. I. (1993). The 16-kilodalton N-terminal fragment of human prolactin is a potent inhibitor of angiogenesis. Endocrinology 133, 1292–1299.
    1. Clermont A., Chilcote T. J., Kita T., Liu J., Riva P., Sinha S., et al. . (2011). Plasma kallikrein mediates retinal vascular dysfunction and induces retinal thickening in diabetic rats. Diabetes 60, 1590–1598. 10.2337/db10-1260
    1. Cossarizza A., Baccarani-Contri M., Kalashnikova G., Franceschi C. (1993). A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Biochem. Biophys. Res. Commun. 197, 40–45. 10.1006/bbrc.1993.2438
    1. De Bock M., Wang N., Decrock E., Bol M., Gadicherla A. K., Culot M., et al. . (2013). Endothelial calcium dynamics, connexin channels and blood-brain barrier function. Prog. Neurobiol. 108, 1–20. 10.1016/j.pneurobio.2013.06.001
    1. Doctrow S. R., Abelleira S. M., Curry L. A., Heller-Harrison R., Kozarich J. W., Malfroy B., et al. . (1994). The bradykinin analog RMP-7 increases intracellular free calcium levels in rat brain microvascular endothelial cells. J. Pharmacol. Exp. Ther. 271, 229–237.
    1. Dou G., Sreekumar P. G., Spee C., He S., Ryan S. J., Kannan R., et al. . (2012). Deficiency of alphaB crystallin augments ER stress-induced apoptosis by enhancing mitochondrial dysfunction. Free Radic. Biol. Med. 53, 1111–1122. 10.1016/j.freeradbiomed.2012.06.042
    1. Dudek S. M., Garcia J. G. (2001). Cytoskeletal regulation of pulmonary vascular permeability. J. Appl. Physiol. (1985) 91, 1487–1500.
    1. Dunn K., Aotaki-Keen A. E., Putkey F. R., Hjelmeland L. M. (1996). ARPE-19, a human retinal pigment epithelial cell line with differentiated properties. Exp. Eye Res. 62, 155–169. 10.1006/exer.1996.0020
    1. Easton A. S., Abbott N. J. (2002). Bradykinin increases permeability by calcium and 5-lipoxygenase in the ECV304/C6 cell culture model of the blood-brain barrier. Brain Res. 953, 157–169. 10.1016/S0006-8993(02)03281-X
    1. Fischer A. J., Stell W. K. (1999). Nitric oxide synthase-containing cells in the retina, pigmented epithelium, choroid, and sclera of the chick eye. J. Comp. Neurol. 405, 1–14.
    1. Fischer S., Wiesnet M., Renz D., Schaper W. (2005). H2O2 induces paracellular permeability of porcine brain-derived microvascular endothelial cells by activation of the p44/42 MAP kinase pathway. Eur. J. Cell Biol. 84, 687–697. 10.1016/j.ejcb.2005.03.002
    1. Fong P., Stafforini D. M., Brown N. J., Pretorius M. (2010). Increased blood flow induces oxidative stress through an endothelium- and nitric oxide-independent mechanism. Free Radic. Biol. Med. 49, 301–305. 10.1016/j.freeradbiomed.2010.04.023
    1. Frey T., Antonetti D. A. (2011). Alterations to the blood-retinal barrier in diabetes: cytokines and reactive oxygen species. Antioxid. Redox Signal. 15, 1271–1284. 10.1089/ars.2011.3906
    1. Galfione M., Luo W., Kim J., Hawke D., Kobayashi R., Clapp C., et al. . (2003). Expression and purification of the angiogenesis inhibitor 16-kDa prolactin fragment from insect cells. Protein Expr. Purif. 28, 252–258. 10.1016/S1046-5928(02)00639-3
    1. Gao B. B., Clermont A., Rook S., Fonda S. J., Srinivasan V. J., Wojtkowski M., et al. . (2007). Extracellular carbonic anhydrase mediates hemorrhagic retinal and cerebral vascular permeability through prekallikrein activation. Nat. Med. 13, 181–188. 10.1038/nm1534
    1. Garcia C., Aranda J., Arnold E., Thebault S., Macotela Y., Lopez-Casillas F., et al. . (2008). Vasoinhibins prevent retinal vasopermeability associated with diabetic retinopathy in rats via protein phosphatase 2A-dependent eNOS inactivation. J. Clin. Invest. 118, 2291–2300. 10.1172/JCI34508
    1. Gardner T. W., Antonetti D. A., Barber A. J., Lanoue K. F., Levison S. W. (2002). Diabetic retinopathy: more than meets the eye. Surv. Ophthalmol. 47 Suppl. 2, S253–S262. 10.1016/S0039-6257(02)00387-9
    1. Gera L., Bawolak M. T., Roy C., Lodge R., Marceau F. (2011). Design of fluorescent bradykinin analogs: application to imaging of B2 receptor-mediated agonist endocytosis and trafficking and angiotensin-converting enzyme. J. Pharmacol. Exp. Ther. 337, 33–41. 10.1124/jpet.110.177147
    1. Goldstein I. M., Ostwald P., Roth S. (1996). Nitric oxide: a review of its role in retinal function and disease. Vision Res. 36, 2979–2994. 10.1016/0042-6989(96)00017-X
    1. Gonzalez C., Corbacho A. M., Eiserich J. P., Garcia C., Lopez-Barrera F., Morales-Tlalpan V., et al. . (2004). 16K-prolactin inhibits activation of endothelial nitric oxide synthase, intracellular calcium mobilization, and endothelium-dependent vasorelaxation. Endocrinology 145, 5714–5722. 10.1210/en.2004-0647
    1. Guo L., Salt T. E., Luong V., Wood N., Cheung W., Maass A., et al. . (2007). Targeting amyloid-beta in glaucoma treatment. Proc. Natl. Acad. Sci. U.S.A. 104, 13444–13449. 10.1073/pnas.0703707104
    1. Han E. D., Macfarlane R. C., Mulligan A. N., Scafidi J., Davis A. E., 3rd. (2002). Increased vascular permeability in C1 inhibitor-deficient mice mediated by the bradykinin type 2 receptor. J. Clin. Invest. 109, 1057–1063. 10.1172/JCI200214211
    1. Harford-Wright E., Lewis K. M., Vink R. (2011). Towards drug discovery for brain tumours: interaction of kinins and tumours at the blood brain barrier interface. Recent Pat. CNS Drug Discov. 6, 31–40. 10.2174/157488911794079118
    1. Ho T. C., Yang Y. C., Cheng H. C., Wu A. C., Chen S. L., Tsao Y. P. (2006). Pigment epithelium-derived factor protects retinal pigment epithelium from oxidant-mediated barrier dysfunction. Biochem. Biophys. Res. Commun. 342, 372–378. 10.1016/j.bbrc.2006.01.164
    1. Kayashima Y., Smithies O., Kakoki M. (2012). The kallikrein-kinin system and oxidative stress. Curr. Opin. Nephrol. Hypertens. 21, 92–96. 10.1097/MNH.0b013e32834d54b1
    1. Kim J. H., Lee S. J., Kim K. W., Yu Y. S. (2012). Oxidized low density lipoprotein-induced senescence of retinal pigment epithelial cells is followed by outer blood-retinal barrier dysfunction. Int. J. Biochem. Cell Biol. 44, 808–814. 10.1016/j.biocel.2012.02.005
    1. Klaassen I., Van Noorden C. J., Schlingemann R. O. (2013). Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions. Prog. Retin. Eye Res. 34, 19–48. 10.1016/j.preteyeres.2013.02.001
    1. Leeb-Lundberg L. M., Marceau F., Muller-Esterl W., Pettibone D. J., Zuraw B. L. (2005). International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol. Rev. 57, 27–77. 10.1124/pr.57.1.2
    1. Lim S. K., Han H. J., Kim K. Y., Park S. H. (2009). Both B1R and B2R act as intermediate signaling molecules in high glucose-induced stimulation of glutamate uptake in ARPE cells. J. Cell. Physiol. 221, 677–687. 10.1002/jcp.21906
    1. Lim S. K., Park M. J., Jung H. K., Park A. Y., Kim D. I., Kim J. C., et al. . (2008). Bradykinin stimulates glutamate uptake via both B1R and B2R activation in a human retinal pigment epithelial cells. Life Sci. 83, 761–770. 10.1016/j.lfs.2008.09.014
    1. Ling-Ling Zhao J.-L. Q., Dan-Ni C., Han-Ben N. (2009). Layered-resolved autofluorescence imaging of photoreceptors using two-photon excitation. J. Biomed. Sci. Eng. 2, 3. 10.4236/jbise.2009.25052
    1. Liu J., Feener E. P. (2013). Plasma kallikrein-kinin system and diabetic retinopathy. Biol. Chem. 394, 319–328. 10.1515/hsz-2012-0316
    1. Ma J. X., Song Q., Hatcher H. C., Crouch R. K., Chao L., Chao J. (1996). Expression and cellular localization of the kallikrein-kinin system in human ocular tissues. Exp. Eye Res. 63, 19–26. 10.1006/exer.1996.0087
    1. Marceau F., Regoli D. (2004). Bradykinin receptor ligands: therapeutic perspectives. Nat. Rev. Drug Discov. 3, 845–852. 10.1038/nrd1522
    1. Mathis S. A., Criscimagna N. L., Leeb-Lundberg L. M. (1996). B1 and B2 kinin receptors mediate distinct patterns of intracellular Ca2+ signaling in single cultured vascular smooth muscle cells. Mol. Pharmacol. 50, 128–139.
    1. Miranda S., Gonzalez-Rodriguez A., Garcia-Ramirez M., Revuelta-Cervantes J., Hernandez C., Simo R., et al. . (2012). Beneficial effects of fenofibrate in retinal pigment epithelium by the modulation of stress and survival signaling under diabetic conditions. J. Cell. Physiol. 227, 2352–2362. 10.1002/jcp.22970
    1. Miura Y., Roider J. (2009). Triamcinolone acetonide prevents oxidative stress-induced tight junction disruption of retinal pigment epithelial cells. Graefes Arch. Clin. Exp. Ophthalmol. 247, 641–649. 10.1007/s00417-009-1041-6
    1. Munoz C. M., Cotecchia S., Leeb-Lundberg L. M. (1993). B2 kinin receptor-mediated internalization of bradykinin in DDT1 MF-2 smooth muscle cells is paralleled by sequestration of the occupied receptors. Arch. Biochem. Biophys. 301, 336–344. 10.1006/abbi.1993.1153
    1. Munoz C. M., Leeb-Lundberg L. M. (1992). Receptor-mediated internalization of bradykinin. DDT1 MF-2 smooth muscle cells process internalized bradykinin via multiple degradative pathways. J. Biol. Chem. 267, 303–309.
    1. Nostramo R., Tillinger A., Serova L., Kvetnansky R., Sabban E. L. (2013). Bradykinin B2 receptor in the adrenal medulla of male rats and mice: glucocorticoid-dependent increase with immobilization stress. Endocrinology 154, 3729–3738. 10.1210/en.2013-1406
    1. Oldenburg O., Qin Q., Krieg T., Yang X. M., Philipp S., Critz S. D., et al. . (2004). Bradykinin induces mitochondrial ROS generation via NO, cGMP, PKG, and mitoKATP channel opening and leads to cardioprotection. Am. J. Physiol. Heart Circ. Physiol. 286, H468–H476. 10.1152/ajpheart.00360.2003
    1. Phagoo S. B., Poole S., Leeb-Lundberg L. M. (1999). Autoregulation of bradykinin receptors: agonists in the presence of interleukin-1beta shift the repertoire of receptor subtypes from B2 to B1 in human lung fibroblasts. Mol. Pharmacol. 56, 325–333.
    1. Phipps J. A., Clermont A. C., Sinha S., Chilcote T. J., Bursell S. E., Feener E. P. (2009). Plasma kallikrein mediates angiotensin II type 1 receptor-stimulated retinal vascular permeability. Hypertension 53, 175–181. 10.1161/HYPERTENSIONAHA.108.117663
    1. Pouliot M., Hetu S., Lahjouji K., Couture R., Vaucher E. (2011). Modulation of retinal blood flow by kinin B(1) receptor in Streptozotocin-diabetic rats. Exp. Eye Res. 92, 482–489. 10.1016/j.exer.2011.03.007
    1. Pouliot M., Talbot S., Senecal J., Dotigny F., Vaucher E., Couture R. (2012). Ocular application of the kinin B1 receptor antagonist LF22-0542 inhibits retinal inflammation and oxidative stress in streptozotocin-diabetic rats. PLoS ONE 7:e33864. 10.1371/journal.pone.0033864
    1. Pricci F., Leto G., Amadio L., Iacobini C., Cordone S., Catalano S., et al. . (2003). Oxidative stress in diabetes-induced endothelial dysfunction involvement of nitric oxide and protein kinase C. Free Radic. Biol. Med. 35, 683–694. 10.1016/S0891-5849(03)00401-5
    1. Qin S., Rodrigues G. A. (2010). Differential roles of AMPKalpha1 and AMPKalpha2 in regulating 4-HNE-induced RPE cell death and permeability. Exp. Eye Res. 91, 818–824. 10.1016/j.exer.2010.10.007
    1. Ramirez M., Wu Z., Moreno-Carranza B., Jeziorski M. C., Arnold E., Diaz-Lezama N., et al. . (2011). Vasoinhibin gene transfer by adenoassociated virus type 2 protects against VEGF- and diabetes-induced retinal vasopermeability. Invest. Ophthalmol. Vis. Sci. 52, 8944–8950. 10.1167/iovs.11-8190
    1. Raslan F., Schwarz T., Meuth S. G., Austinat M., Bader M., Renne T., et al. . (2010). Inhibition of bradykinin receptor B1 protects mice from focal brain injury by reducing blood-brain barrier leakage and inflammation. J. Cereb. Blood Flow Metab. 30, 1477–1486. 10.1038/jcbfm.2010.28
    1. Rees D. D., Palmer R. M., Hodson H. F., Moncada S. (1989). A specific inhibitor of nitric oxide formation from L-arginine attenuates endothelium-dependent relaxation. Br. J. Pharmacol. 96, 418–424. 10.1111/j.1476-5381.1989.tb11833.x
    1. Revest P. A., Abbott N. J., Gillespie J. I. (1991). Receptor-mediated changes in intracellular [Ca2+] in cultured rat brain capillary endothelial cells. Brain Res. 549, 159–161. 10.1016/0006-8993(91)90614-2
    1. Rosas-Hernandez H., Cuevas E., Lantz-Mcpeak S. M., Ali S. F., Gonzalez C. (2013). Prolactin protects against the methamphetamine-induced cerebral vascular toxicity. Curr. Neurovasc. Res. 10, 346–355. 10.2174/15672026113109990031
    1. Sainz I. M., Pixley R. A., Colman R. W. (2007). Fifty years of research on the plasma kallikrein-kinin system: from protein structure and function to cell biology and in-vivo pathophysiology. Thromb. Haemost. 98, 77–83. 10.1160/TH07-04-0250
    1. Sheikpranbabu S., Haribalaganesh R., Lee K. J., Gurunathan S. (2010). Pigment epithelium-derived factor inhibits advanced glycation end products-induced retinal vascular permeability. Biochimie 92, 1040–1051. 10.1016/j.biochi.2010.05.004
    1. Smith A. J., Lewis F. C., Aquila I., Waring C. D., Nocera A., Agosti V., et al. . (2014). Isolation and characterization of resident endogenous c-Kit+ cardiac stem cells from the adult mouse and rat heart. Nat. Protoc. 9, 1662–1681. 10.1038/nprot.2014.113
    1. Takeda H., Kimura Y., Higashida H., Yokoyama S. (1999). Localization of B2 bradykinin receptor mRNA in the rat retina and sclerocornea. Immunopharmacology 45, 51–55. 10.1016/S0162-3109(99)00057-0
    1. Teshima Y., Takahashi N., Nishio S., Saito S., Kondo H., Fukui A., et al. . (2014). Production of reactive oxygen species in the diabetic heart. Roles of mitochondria and NADPH oxidase. Circ. J. 78, 300–306. 10.1253/circj.CJ-13-1187
    1. Thebault S. (2011). Vasoinhibins prevent Bradykinin-stimulated endothelial cell proliferation by Inactivating eNOS via reduction of both intracellular Ca2+ levels and eNOS phosphorylation at Ser1179. Pharmaceuticals (Basel). 4, 1052–1069. 10.3390/ph4071052
    1. Wilkinson-Berka J. L. (2004). Vasoactive factors and diabetic retinopathy: vascular endothelial growth factor, cycoloxygenase-2 and nitric oxide. Curr. Pharm. Des. 10, 3331–3348. 10.2174/1381612043383142
    1. Wohlfart P., Dedio J., Wirth K., Scholkens B. A., Wiemer G. (1997). Different B1 kinin receptor expression and pharmacology in endothelial cells of different origins and species. J. Pharmacol. Exp. Ther. 280, 1109–1116.
    1. Xu Q., Qaum T., Adamis A. P. (2001). Sensitive blood-retinal barrier breakdown quantitation using Evans blue. Invest. Ophthalmol. Vis. Sci. 42, 789–794.
    1. Yamagishi S., Nakamura K., Matsui T., Inagaki Y., Takenaka K., Jinnouchi Y., et al. . (2006). Pigment epithelium-derived factor inhibits advanced glycation end product-induced retinal vascular hyperpermeability by blocking reactive oxygen species-mediated vascular endothelial growth factor expression. J. Biol. Chem. 281, 20213–20220. 10.1074/jbc.M602110200
    1. Yasuyoshi H., Kashii S., Zhang S., Nishida A., Yamauchi T., Honda Y., et al. . (2000). Protective effect of bradykinin against glutamate neurotoxicity in cultured rat retinal neurons. Invest. Ophthalmol. Vis. Sci. 41, 2273–2278.
    1. Zavodnik I. B., Dremza I. K., Cheshchevik V. T., Lapshina E. A., Zamaraewa M. (2013). Oxidative damage of rat liver mitochondria during exposure to t-butyl hydroperoxide. Role of Ca(2)(+) ions in oxidative processes. Life Sci. 92, 1110–1117. 10.1016/j.lfs.2013.04.009
    1. Zech J. C., Pouvreau I., Cotinet A., Goureau O., Le Varlet B., De Kozak Y. (1998). Effect of cytokines and nitric oxide on tight junctions in cultured rat retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. 39, 1600–1608.
    1. Zheng L., Kern T. S. (2009). Role of nitric oxide, superoxide, peroxynitrite and PARP in diabetic retinopathy. Front. Biosci. (Landmark Ed.) 14, 3974–3987. 10.2741/3505

Source: PubMed

3
Se inscrever