Telomeres and Telomerase During Human Papillomavirus-Induced Carcinogenesis

Anna Pańczyszyn, Ewa Boniewska-Bernacka, Grzegorz Głąb, Anna Pańczyszyn, Ewa Boniewska-Bernacka, Grzegorz Głąb

Abstract

Human papillomaviruses (HPVs) belong to a small spherical virus family and are transmitted through direct contact, most often through sexual behavior. More than 200 types of HPV are known, a dozen or so of which are classified as high-risk viruses (HR HPV) and may contribute to the development of cervical cancer. HPV is a small virus with a capsid composed of L1 and L2 proteins, which are crucial for entry to the cell. The infection begins at the basal cell layer and progresses to involve cells from higher layers of the cervical epithelium. E6 and E7 viral proteins are involved in the process of carcinogenesis. They interact with suppressors of oncogenesis, including p53 and Rb proteins. This leads to DNA replication and intensive cell divisions. The persistent HR HPV infection leads to the development of dysplasia and these changes may progress to invasive cancer. During the initial stage of carcinogenesis, telomeres shorten until telomerase activates. The activation of telomerase, the enzyme necessary to extend chromosome ends (telomeres) is the key step in cell immortalization. Analyzing the expression level of hTERT and hTERC genes encoding telomerase and telomere length measurement may constitute new markers of the early carcinogenesis.

Conflict of interest statement

Conflict of interest

Anna Pańczyszyn, Ewa Boniewska-Bernacka, and Grzegorz Głąb declare no conflicts of interest.

Funding

The article was funded from the internal grant of Department of Biotechnology and Molecular Biology, University of Opole, Opole, Poland.

Figures

Fig. 1
Fig. 1
Structure of human papillomavirus ( modified from Fernandes et al. [15])
Fig. 2
Fig. 2
Normal and infected epithelium. Human papillomavirus penetrates the mucosal epithelium via microinjuries. The infection begins with the basal cell layer and successively progresses to involve cells from higher layers. Expression of the human papillomavirus genes (E6 and E7) promotes uncontrolled cell proliferation. If the immune system does not eliminate viruses, a long period of infection may cause cancer development ( modified from Tomaić [24]). HPV human papillomavirus
Fig. 3
Fig. 3
Human papillomaviruses block apoptosis ( modified from Jayshree et al. [39]). Cdk4/6 and Cdk2 cyclin-dependent kinases, CycD cyclin D, E2F transcription factor, E6 and E7 human papillomavirus proteins, E6AP ubiquitin ligase, pRB retinoblastoma protein
Fig. 4
Fig. 4
Telomerase activation by human papillomavirus protein E6. E6/E6AP affects hTERT promoter repressors—USF1/2—which bind to cis elements of promotor (X1 boxes, E boxes, and GC-rich sequences) and NFX1-91, and recruits histone deacetylase (HDAC) through mSin3A. cMYC/Max heterodimer, Sp1, and histone acetyltransferases (HAT) bind to the hTERT promoter and activate hTERT expression. hTERT activation is also increased by NFX1-123 with cytoplasmic poly(A) binding proteins (PABPCs) which cooperate with E6/E6AP (modified from Howie et al. [31]). E6AP ubiquitin ligase

References

    1. Merkhofer C, Maslow J. Human papilloma virus (HPV) infection and non-cervical oncogenic disease states. Virol Mycol. 2015;4:144. doi: 10.4172/2161-0517.1000144.
    1. Boshart M, Gissmann L, Ikenberg H, Kleinheinzl A, Scheurlen W, Zur Hausen H. A new type of papillomavirus DNA, its presence in genital cancer biopsies and in cell lines derived from cervical cancer. EMBO J. 1984;3:1151–1157.
    1. Gissmann L, Boshart M, Durst M, Ikenberg H, Wagner D, Zur Hausen H. Presence of human papillomavirus in genital tumors. J Invest Dermatol. 1984;83:265–285. doi: 10.1038/jid.1984.16.
    1. Muñoz N, Bosch FX, de Sanjosé S, Herrero R, Castellsagué X, Shah KV, et al. International Agency for Research on Cancer Multicenter Cervical Cancer Study Group. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003;348:518–527. doi: 10.1056/NEJMoa021641.
    1. Myers ER, McCrory DC, Nanda K, Bastian L, Matchar DB. Mathematical model for the natural history of human papillomavirus infection and cervical carcinogenesis. Am J Epidemiol. 2000;151:1158–1171. doi: 10.1093/oxfordjournals.aje.a010166.
    1. Bosch FX, Lorincz A, Muñoz N, Meijer CJ, Shah KV. The causal relation between human papillomavirus and cervical cancer. J Clin Pathol. 2002;55:244–265. doi: 10.1136/jcp.55.4.244.
    1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:359–386. doi: 10.1002/ijc.29210.
    1. Tulay P, Serakinci N. The role of human papillomaviruses in cancer progression. J Cancer Metastasis Treat. 2016;2:201–213. doi: 10.20517/2394-4722.2015.67.
    1. Abramowitz L, Jacquard AC, Jaroud F, Haesebaert J, Siproudhis L, Pradat P, et al. Human papillomavirus genotype distribution in anal cancer in France: the EDiTH V study. Int J Cancer. 2011;129:433–439. doi: 10.1002/ijc.25671.
    1. De Vuyst H, Clifford GM, Nascimento MC, Madeleine MM, Franceschi S. Prevalence and type distribution of human papillomavirus in carcinoma and intraepithelial neoplasia of the vulva, vagina and anus: a meta-analysis. Int J Cancer. 2009;124:1626–1636. doi: 10.1002/ijc.24116.
    1. Miralles-Guri C, Bruni L, Cubilla AL, Castellsagué X, Bosch FX, de Sanjosé S. Human papilloma virus prevalence and type distribution in penile carcinoma. J Clin Pathol. 2009;62:870–878. doi: 10.1136/jcp.2008.063149.
    1. St Guily JL, Jacquard AC, Prétet JL, Haesebaert J, Beby-Defaux A, Clavel C, et al. Human papillomavirus genotype distribution in oropharynx and oral cavity cancer in France–the EDiTH VI study. J Clin Virol. 2011;51:100–104. doi: 10.1016/j.jcv.2011.03.003.
    1. Scarbrough Lefebvre CD, Van Kriekinge G, Gonçalves MA, de Sanjose S. Appraisal of the burden of genital warts from a healthcare and individual patient perspective. Public Health. 2011;125:464–475. doi: 10.1016/j.puhe.2011.01.016.
    1. Ibeanu OA. Molecular pathogenesis of cervical cancer. Cancer Biol Ther. 2011;11:295–306. doi: 10.4161/cbt.11.3.14686.
    1. Fernandes JV, de Medeiros Fernandes TAA. Human papillomavirus: biology and pathogenesis. In: Vanden Broeck D (Ed). Human papillomavirus and related diseases: from bench to bedside—a clinical perspective. InTechOpen. 2012. 10.5772/27154. . Accessed 11 May 2018.
    1. Morshed K, Polz-Gruszka D, Szymański M, Polz-Dacewicz M. Human papillomavirus (HPV)—structure, epidemiology and pathogenesis. Otolaryngol Pol. 2014;68:213–219. doi: 10.1016/j.otpol.2014.06.001.
    1. Giroglou T, Florin L, Schäfer F, Streeck RE, Sapp M. Human papillomavirus infection requires cell surface heparan sulfate. J Virol. 2001;75:1565–1570. doi: 10.1128/JVI.75.3.1565-1570.2001.
    1. Culp TD, Budgeon LR, Marinkovich MP, Meneguzzi G, Christensen ND. Keratinocyte-secreted laminin 5 can function as a transient receptor for human papillomaviruses by binding virions and transferring them to adjacent cells. J Virol. 2006;80:8940–8950. doi: 10.1128/JVI.00724-06.
    1. Schelhaas M, Shah B, Holzer M, Blattmann P, Kühling L, Day PM, et al. Entry of human papillomavirus type 16 by actin-dependent, clathrin- and lipid raft-independent endocytosis. PLoS Pathog. 2012;8:e1002657. doi: 10.1371/journal.ppat.1002657.
    1. Spoden G, Kühling L, Cordes N, Frenzel B, Sapp M, Boller K, et al. Human papillomavirus types 16, 18, and 31 share similar endocytic requirements for entry. J Virol. 2013;87:7765–7773. doi: 10.1128/JVI.00370-13.
    1. Spoden G, Freitag K, Husmann M, Boller K, Sapp M, Lambert C, et al. Clathrin- and caveolin-independent entry of human papillomavirus type 16–involvement of tetraspanin-enriched microdomains (TEMs) PLoS One. 2008;3:e3313. doi: 10.1371/journal.pone.0003313.
    1. Doorbar J, Quint W, Banks L, Bravo IG, Stoler M, Broker TR, et al. The biology and life-cycle of human papillomaviruses. Vaccine. 2012;30(suppl 5):F55–F70. doi: 10.1016/j.vaccine.2012.06.083.
    1. Pinidis P, Tsikouras P, Iatrakis G, Zervoudis S, Koukouli Z, Bothou A, et al. Human papilloma virus’ life cycle and carcinogenesis. Maedica (Buchar) 2016;11:48–54.
    1. Tomaić V. Functional roles of E6 and E7 oncoproteins in HPV-induced malignancies at diverse anatomical sites. Cancers (Basel) 2016;8:95. doi: 10.3390/cancers8100095.
    1. Wright TC, Kurman RJ, Ferenczy A. Precancerous lesions of the cervix. In: Kurman RJ, editor. Blaustein’s pathology of the female genital tract. 5. New York: Springer; 2002. pp. 253–324.
    1. Von Knebel Doeberitz M. New markers for cervical dysplasia to visualise the genomic chaos created by aberrant oncogenic papillomavirus infections. Eur J Cancer. 2002;38:2229–2242. doi: 10.1016/S0959-8049(02)00462-8.
    1. Ghittoni R, Accardi R, Chiocca S, Tommasino M. Role of human papillomaviruses in carcinogenesis. Ecancermedicalscience. 2015;29(9):526.
    1. Tommasino M. The human papillomavirus family and its role in carcinogenesis. Semin Cancer Biol. 2014;26:13–21. doi: 10.1016/j.semcancer.2013.11.002.
    1. McLaughlin-Drubin ME, Münger K. Oncogenic activities of human papillomaviruses. Virus Res. 2009;143:195–208. doi: 10.1016/j.virusres.2009.06.008.
    1. Fu Z, Tian H, Wang F, Zhao J. Carcinogenic mechanisms of oncoproteins in high-risk human papillomavirus. Int J Clin Exp Med. 2016;9:20439–20447.
    1. Howie HL, Katzenellenbogen RA, Galloway DA. Papillomavirus E6 proteins. Virology. 2009;384:324–334. doi: 10.1016/j.virol.2008.11.017.
    1. Shai A, Pitot HC, Lambert PF. E6-associated protein is required for human papillomavirus type 16 E6 to cause cervical cancer in mice. Cancer Res. 2010;70:5064–5073. doi: 10.1158/0008-5472.CAN-09-3307.
    1. Faridi R, Zahra A, Khan K, Idrees M. Oncogenic potential of Human Papillomavirus (HPV) and its relation with cervical cancer. Virol J. 2011;8:269. doi: 10.1186/1743-422X-8-269.
    1. Finzer P, Aguilar-Lemarroy A, Rosl F. The role of human papillomavirus oncoproteins E6 and E7 in apoptosis. Cancer Lett. 2002;188:15–24. doi: 10.1016/S0304-3835(02)00431-7.
    1. Moody CA, Laimins LA. Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer. 2010;10:550–560. doi: 10.1038/nrc2886.
    1. Cai Q, Lv L, Shao Q, Li X, Dian A. Human papillomavirus early proteins and apoptosis. Arch Gynecol Obstet. 2013;287:541–548. doi: 10.1007/s00404-012-2665-z.
    1. McCloskey R, Menges C, Friedman A, Patel D, McCance DJ. Human papillomavirus type 16 E6/E7 upregulation of nucleophosmin is important for proliferation and inhibition of differentiation. J Virol. 2010;84:5131–5139. doi: 10.1128/JVI.01965-09.
    1. Adams PD. Regulation of the retinoblastoma tumor suppressor protein by cyclin/cdks. Biochim Biothys Acta. 2001;1471:M123–M133.
    1. Jayshree RS, Sreenivas A, Tessy M, Krishna S. Cell intrinsic & extrinsic factors in cervical carcinogenesis. Indian J Med Res. 2009;130:286–295.
    1. Tzenov YR, Andrews PG, Voisey K, Popadiuk P, Xiong J, Popadiuk C, et al. Human papillomavirus (HPV) E7-mediated attenuation of retinoblastoma (Rb) induces hPygopus2 expression via Elf-1 in cervical cancer. Mol Cancer Res. 2013;11:19–30. doi: 10.1158/1541-7786.MCR-12-0510.
    1. Schmidt JC, Cech TC. Human telomerase: biogenesis, trafficking, recruitment, and activation. Genes Dev. 2015;29:1095–1105. doi: 10.1101/gad.263863.115.
    1. Wysoczańska B. Maintaining telomere length. Adv Hyg Med Exp. 2013;67:1319–1330.
    1. Miller J, Dakic A, Chen R, Palechor-Ceron N, Dai Y, Kallakury B, et al. HPV16 E7 protein and hTERT proteins defective for telomere maintenance cooperate to immortalize human keratinocytes. PLoS Pathog. 2013;9:e1003284. doi: 10.1371/journal.ppat.1003284.
    1. Liu X, Dakic A, Zhang Y, Dai Y, Chen R, Schlegel R. HPV E6 protein interacts physically and functionally with the cellular telomerase complex. Proc Natl Acad Sci USA. 2009;106:18780–18785. doi: 10.1073/pnas.0906357106.
    1. Katzenellenbogen R. Telomerase Induction in HPV infection and oncogenesis. Viruses. 2017;9:pii: E180.
    1. Klingelhutz AJ, Foster SA, McDougall JK. Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature. 1996;380:79–82. doi: 10.1038/380079a0.
    1. Veldman T, Liu X, Yuan H, Schlegel R. Human papillomavirus E6 and Myc proteins associate in vivo and bind to and cooperatively activate the telomerase reverse transcriptase promoter. Proc Natl Acad Sci USA. 2003;100:8211–8216. doi: 10.1073/pnas.1435900100.
    1. McMurray HR, McCance DJ. Human papillomavirus type 16, E6 activates TERT gene transcription through induction of c-Myc and release of USF mediated repression. J Virol. 2003;77:9852–9861. doi: 10.1128/JVI.77.18.9852-9861.2003.
    1. Gewin L, Myers H, Kiyono T, Galloway DA. Identification of a novel telomerase repressor that interacts with the human papillomavirus type-16, E6/E6-AP complex. Genes Dev. 2004;18:2269–2282. doi: 10.1101/gad.1214704.
    1. Xu M, Luo W, Elzi DJ, Grandori C, Galloway DA. NFX1 interacts with mSin3a/histone deacetylase to repress hTERT transcription in keratinocytes. Mol Cell Biol. 2008;28:4819–4828. doi: 10.1128/MCB.01969-07.
    1. Katzenellenbogen RA, Vliet-Gregg P, Xu M, Galloway DA. Nfx1-123 increases hTERT expression and telomerase activity posttranscriptionally in human papillomavirus type 16 E6 keratinocytes. J Virol. 2009;83:6446–6456. doi: 10.1128/JVI.02556-08.
    1. Schutze DM, Kooter JM, Wilting SM, Meijer CJ, Quint W, Snijders PJ, et al. Longitudinal assessment of DNA methylation changes during HPVE6E7-induced immortalization of primary keratinocytes. Epigenetics. 2015;10:73–81. doi: 10.4161/15592294.2014.990787.
    1. DeWild J, Kooter JM, Overmeer RM, Claassen-Kramer D, Meijer CJ, Snijders PJ, et al. hTERT promoter activity and CpG methylation in HPV-induced carcinogenesis. BMC Cancer. 2010;10:271. doi: 10.1186/1471-2407-10-271.
    1. Jiang J, Zhao LJ, Zhao C, Zhang G, Zhao Y, Li JR, et al. Hypomethylated CpG around the transcription start site enables TERT expression and HPV16 E6 regulates TERT methylation in cervical cancer cells. Gynecol Oncol. 2012;124:534–541. doi: 10.1016/j.ygyno.2011.11.023.
    1. Zinn RL, Pruitt K, Eguchi S, Baylin SB, Herman JG. hTERT is expressed in cancer cell lines despite promoter DNA methylation by preservation of unmethylated DNA and active chromatin around the transcription start site. Cancer Res. 2007;67:194–201. doi: 10.1158/0008-5472.CAN-06-3396.
    1. Katzenellenbogen RA, Egelkrout EM, Vliet-Gregg P, Gewin LC, Gafken PR, Galloway DA. Nfx1-123 and poly(A) binding proteins synergistically augment activation of telomerase in human papillomavirus type 16E6 expressing cells. J Virol. 2007;81:3786–3796. doi: 10.1128/JVI.02007-06.
    1. Chen X, Loo JX, Shi X, Xiong W, Guo Y, Ke H, et al. E6 protein expressed by high-risk HPV activates super-enhancers of the EGFR and c-MET oncogenes by destabilizing the histone demethylase KDM5C. Cancer Res. 2018;78:1418–1430. doi: 10.1158/0008-5472.CAN-17-2118.
    1. Zhang W, Tian Y, Chen JJ, Zhao W, Yu X. A postulated role of p130 in telomere maintenance by human papillomavirus oncoprotein E7. Med Hypotheses. 2012;79:178–180. doi: 10.1016/j.mehy.2012.04.028.
    1. Gertler R, Rosenberg R, Stricker D, Friederichs J, Hoos A, Werner M, et al. Telomere length and human telomerase reverse transcriptase expression as markers for progression and prognosis of colorectal carcinoma. J Clin Oncol. 2004;22:1807–1814. doi: 10.1200/JCO.2004.09.160.
    1. Zhang A, Wang J, Zheng B, Fang X, Angström T, Liu C, et al. Telomere attrition predominantly occurs in precursor lesions during in vivo carcinogenic process of the uterine cervix. Oncogene. 2004;23:7441–7447. doi: 10.1038/sj.onc.1207527.
    1. Barczak W, Suchorska WM, Sobecka A, Bednarowicz K, Machczynski P, Golusinski P, et al. hTERT C250T promoter mutation and telomere length as a molecular markers of cancer progression in patients with head and neck cancer. Mol Med Rep. 2017;16:441–446. doi: 10.3892/mmr.2017.6590.
    1. Reddy VG, Khanna N, Jain SK, Das BC, Singh N. Telomerase—a molecular marker for cervical cancer screening. Int J Gynecol Cancer. 2001;11:100–106. doi: 10.1046/j.1525-1438.2001.011001100.x.
    1. Sen S, Reddy VG, Guleria R, Jain SK, Kapila K, Singh N. Telomerase—a potential molecular marker of lung and cervical cancer. Clin Chem Lab Med. 2002;40:994–1001. doi: 10.1515/CCLM.2002.173.
    1. Sharma A, Rajappa M, Saxena A, Sharma M. Telomerase activity as a tumor marker in Indian women with cervical intraepithelial neoplasia and cervical cancer. Mol Diagn Ther. 2007;11:193–201. doi: 10.1007/BF03256241.
    1. Barbosa LC, da Silva ID, Corrêa JC, Ribalta JC. Survivin and telomerase expression in the uterine cervix of women with human papillomavirus-induced lesions. Int J Gynecol Cancer. 2011;21:15–21. doi: 10.1097/IGC.0b013e318203d42b.
    1. Castro-Duque AF, Loango-Chamorro N, Ruiz-Hoyos BM, Landázuri P. Telomerase activity associated with progression of cervical lesions in a group of Colombian patients. Rev Bras Ginecol Obstet. 2015;37:559–564. doi: 10.1590/SO100-720320150005462.
    1. Molano M, Martín DC, Moreno-Acosta P, Hernández G, Cornall A, Buitrago O, et al. Telomerase activity in cervical scrapes of women with high-grade cervical disease: a nested case-control study. Oncol Lett. 2018;15:354–360.
    1. Branca M, Giorgi C, Ciotti M, Santini D, Di Bonito L, Costa S, et al. Upregulation of telomerase (hTERT) is related to the grade of cervical intraepithelial neoplasia, but is not an independent predictor of high-risk human papillomavirus, virus persistence, or disease outcome in cervical cancer. Diagn Cytopathol. 2006;34:739–748. doi: 10.1002/dc.20554.
    1. Yang H, Zhang H, Zhong Y, Wang Q, Yang L, Kang H, et al. Concomitant underexpression of TGFBR2 and overexpression of hTERT are associated with poor prognosis in cervical cancer. Sci Rep. 2017;7:41670. doi: 10.1038/srep41670.
    1. Zappacosta R. Ianieri MM,·Buca D,·Repetti E,·Ricciardulli A,·Liberati M. Clinical role of the detection of human telomerase RNA component gene amplification by fluorescence in situ hybridization on liquid-based cervical samples: comparison with human papillomavirus-DNA testing and histopathology. Acta Cytol. 2015;59:345–354. doi: 10.1159/000438719.
    1. Zheng X, Liang P, Zheng Y, Yi P, Liu Q, Han J, et al. Clinical significance of hTERC gene detection in exfoliated cervical epithelial cells for cervical lesions. Int J Gynecol Cancer. 2013;23:785–790. doi: 10.1097/IGC.0b013e31828f39a0.
    1. Li Y, Zeng WJ, Ye F, Wang XY, Lü WG, Ma D, et al. Application of hTERC in thin prep samples with mild cytologic abnormality and HR-HPV positive. Gynecol Oncol. 2011;120:73–83. doi: 10.1016/j.ygyno.2010.10.007.
    1. Liu H, Liu S, Wang H, Xie X, Chen X, Zhang X, Zhang Y. Genomic amplification of the human telomerase gene (hTERC) associated with human papillomavirus is related to the progression of uterine cervical dysplasia to invasive cancer. Diagn Pathol. 2012;7:147. doi: 10.1186/1746-1596-7-147.
    1. Zhao XY, Cui Y, Jiang SF, Liu KJ, Han HQ, Liu XS, et al. Human telomerase gene and high-risk human papillomavirus infection are related to cervical intraepithelial neoplasia. Asian Pac J Cancer Prev. 2015;16:693–697. doi: 10.7314/APJCP.2015.16.2.693.
    1. Ravaioli S, Tumedei MM, Amadori A, Puccetti M, Chiadini E, Bravaccini S. Role of telomerase in cervical lesions as prognostic marker: a comparison between immunohistochemistry and fluorescence in situ hybridization. J Low Genit Tract Dis. 2017;21:42–46. doi: 10.1097/LGT.0000000000000261.
    1. Yaku H, Yoshida Y, Okazawa H, Kiyono Y, Fujita Y, Miyoshi D. Highly sensitive telomerase assay insusceptible to telomerase and polymerase chain reaction inhibitors for cervical cancer screening using scraped cells. Anal Chem. 2017;89:6948–6953. doi: 10.1021/acs.analchem.6b04777.
    1. Porika M, Tippani R, Mohammad A, Bollam SR, Panuganti SD, Abbagani S. Evaluation of serum human telomerase reverse transcriptase as a novel marker for cervical cancer. Int J Biol Markers. 2011;26:22–26. doi: 10.5301/JBM.2011.6352.
    1. Gertler R, Doll D, Maak M, Feith M, Rosenberg R. Telomere length and telomerase subunits as diagnostic and prognostic biomarkers in Barrett carcinoma. Cancer. 2008;112:2173–2180. doi: 10.1002/cncr.23419.
    1. Boscolo-Rizzo P, Da Mosto MC, Rampazzo E, Giunco S, Del Mistro A, Menegaldo A, et al. Telomeres and telomerase in head and neck squamous cell carcinoma: from pathogenesis to clinical implications. Cancer Metastasis Rev. 2016;35:457–474. doi: 10.1007/s10555-016-9633-1.
    1. Boscolo-Rizzo P, Rampazzo E, Perissinotto E, Piano MA, Giunco S, Baboci L, et al. Telomere shortening in mucosa surrounding the tumor: biosensor of field cancerization and prognostic marker of mucosal failure in head and neck squamous cell carcinoma. Oral Oncol. 2015;51:500–507. doi: 10.1016/j.oraloncology.2015.02.100.
    1. Zhang DH, Chen JY, Hong CQ, Yi DQ, Wang F, Cui W. High-risk human papillomavirus infection associated with telomere elongation in patients with esophageal squamous cell carcinoma with poor prognosis. Cancer. 2014;120:2673–2683. doi: 10.1002/cncr.28797.
    1. Zhang Y, Sturgis EM, Dahlstrom KR, Wen J, Liu H, Wei Q, et al. Telomere length in peripheral blood lymphocytes contributes to the development of HPV-associated oropharyngeal carcinoma. Cancer Res. 2013;73:5996–6003. doi: 10.1158/0008-5472.CAN-13-0881.
    1. Yu Q, Yang J, Liu B, Li W, Hu G, Qiu H, et al. Combined effects of leukocyte telomere length, p53 polymorphism and human papillomavirus infection on esophageal squamous cell carcinoma in a Han Chinese population. Cancer Epidemiol. 2014;38:569–575. doi: 10.1016/j.canep.2014.07.010.
    1. Maida Y, Kyo S, Forsyth NR, Takakura M, Sakaguchi J, Mizumoto Y, et al. Distinct telomere length regulation in premalignant cervical and endometrial lesions: implications for the roles of telomeres in uterine carcinogenesis. J Pathol. 2006;210:214–223. doi: 10.1002/path.2038.
    1. Meeker AK, Hicks JL, Iacobuzio-Donahue CA, Montgomery EA, Westra WH, Chan TY, et al. Telomere length abnormalities occur early in the initiation of epithelial carcinogenesis. Clin Cancer Res. 2004;10:3317–3326. doi: 10.1158/1078-0432.CCR-0984-03.
    1. Montpetit AJ, Alhareeri AA, Montpetit M, Starkweather AR, Elmore LW, Filler K, et al. Telomere length: a review of methods for measurement. Nurs Res. 2014;63:289–299. doi: 10.1097/NNR.0000000000000037.
    1. Dlouha D, Maluskova J, Kralova Lesna I, Lanska V, Hubacek JA. Comparison of the relative telomere length measured in leukocytes and eleven different human tissues. Physiol Res. 2014;63:S343–S350.
    1. Hou L, Savage SA, Blaser MJ, Perez-Perez G, Hoxha M, Dioni L, et al. Telomere length in peripheral leukocyte DNA and gastrin cancer risk. Cancer Epidemiol Biomarkers Prev. 2009;18:3103–3109. doi: 10.1158/1055-9965.EPI-09-0347.
    1. Prescott J, Wentzensen I, Savage S, De Vivo I. Epidemiologic evidence for a role of dysfunction in cancer etiology. Mutat Res. 2012;730:75–84. doi: 10.1016/j.mrfmmm.2011.06.009.

Source: PubMed

3
Se inscrever