Clinical application of the Hybrid Assistive Limb (HAL) for gait training-a systematic review

Anneli Wall, Jörgen Borg, Susanne Palmcrantz, Anneli Wall, Jörgen Borg, Susanne Palmcrantz

Abstract

Objective: The aim of this study was to review the literature on clinical applications of the Hybrid Assistive Limb system for gait training.

Methods: A systematic literature search was conducted using Web of Science, PubMed, CINAHL and clinicaltrials.gov and additional search was made using reference lists in identified reports. Abstracts were screened, relevant articles were reviewed and subject to quality assessment.

Results: Out of 37 studies, 7 studies fulfilled inclusion criteria. Six studies were single group studies and 1 was an explorative randomized controlled trial. In total, these studies involved 140 participants of whom 118 completed the interventions and 107 used HAL for gait training. Five studies concerned gait training after stroke, 1 after spinal cord injury (SCI) and 1 study after stroke, SCI or other diseases affecting walking ability. Minor and transient side effects occurred but no serious adverse events were reported in the studies. Beneficial effects on gait function variables and independence in walking were observed.

Conclusions: The accumulated findings demonstrate that the HAL system is feasible when used for gait training of patients with lower extremity paresis in a professional setting. Beneficial effects on gait function and independence in walking were observed but data do not allow conclusions. Further controlled studies are recommended.

Keywords: gait; gait machine; locomotion; paresis; rehabilitation; review; robotics; walking.

Figures

Figure 1
Figure 1
Presentation of the results of the systematic search of the literature.

References

    1. Aach M., Cruciger O., Sczesny-Kaiser M., Hoffken O., Meindl R. C., Tegenthoff M., et al. . (2014). Voluntary driven exoskeleton as a new tool for rehabilitation inchronicspinal cord injury: a pilot study. Spine J. 14, 2847–2853. 10.1016/j.spinee.2014.03.042
    1. Berg K. O., Maki B. E., Williams J. I., Holliday P. J., Wood-Dauphinee S. L. (1992). Clinical and laboratory measures of postural balance in an elderly population. Arch. Phys. Med. Rehabil. 73, 1073–1080.
    1. Bowden M. G., Woodbury M. L., Duncan P. W. (2013). Promoting neuroplasticity and recovery after stroke: future directions for rehabilitation clinical trials. Curr. Opin. Neurol. 26, 37–42. 10.1097/WCO.0b013e32835c5ba0
    1. Cain S. M., Gordon K. E., Ferris D. P. (2007). Locomotor adaptation to a powered ankle-foot orthosis depends on control method. J. Neuroeng. Rehabil. 4:48. 10.1186/1743-0003-4-48
    1. Chen G., Chan C. K., Guo Z., Yu H. (2013). A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy. Crit. Rev. Biomed. Eng. 41, 343–363. 10.1615/CritRevBiomedEng.2014010453
    1. Chollet F., Tardy J., Albucher J. F., Thalamas C., Berard E., Lamy C., et al. . (2011). Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial. Lancet Neurol. 10, 123–130. 10.1016/S1474-4422(10)70314-8
    1. Dobkin B. H. (2009). Motor rehabilitation after stroke, traumatic brain, and spinal cord injury: common denominators within recent clinical trials. Curr. Opin. Neurol. 22, 563–569. 10.1097/WCO.0b013e3283314b11
    1. Dobkin B. H., Nadeau S. E., Behrman A. L., Wu S. S., Rose D. K., Bowden M., et al. . (2014). Prediction of responders for outcome measures of locomotor Experience Applied Post Stroke trial. J. Rehabil. Res. Dev. 51, 39–50. 10.1682/JRRD.2013.04.0080
    1. Farris R. J., Quintero H. A., Murray S. A., Ha K. H., Hartigan C., Goldfarb M. (2014). A preliminary assessment of legged mobility provided by a lower limb exoskeleton for persons with paraplegia. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 482–490. 10.1109/TNSRE.2013.2268320
    1. Geroin C., Mazzoleni S., Smania N., Gandolfi M., Bonaiuti D., Gasperini G., et al. . (2013). Systematic review of outcome measures of walking training using electromechanical and robotic devices in patients with stroke. J. Rehabil. Med. 45, 987–996. 10.2340/16501977-1234
    1. Hesse S., Waldner A., Tomelleri C. (2010). Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. J. Neuroeng. Rehabil. 7:30. 10.1186/1743-0003-7-30
    1. Hidler J., Sainburg R. (2011). Role of Robotics in Neurorehabilitation. Top. Spinal Cord Inj. Rehabil. 17, 42–49. 10.1310/sci1701-42
    1. Holden M. K., Gill K. M., Magliozzi M. R., Nathan J., Piehl-Baker L. (1984). Clinical gait assessment in the neurologically impaired. Reliability and meaningfulness. Phys. Ther. 64, 35–40.
    1. Kawamoto H. (2002). Power assist system HAL-3 for gait disorder person, in Lecture Notes in Computer Science, ICCHP 2002, LNCS 2398, eds Miesenberger K., Klaus J., Zagler W. (Berlin; Heidelberg: Springer-Verlag; ), 196–203.
    1. Kawamoto H., Kamibayashi K., Nakata Y., Yamawaki K., Ariyasu R., Sankai Y., et al. . (2013). Pilot study of locomotion improvement using hybrid assistive limb in chronic stroke patients. BMC Neurol. 13:141. 10.1186/1471-2377-13-141
    1. Kawamoto H., Taal S., Niniss H., Hayashi T., Kamibayashi K., Eguchi K., et al. (2010). Voluntary motion support control of Robot Suit HAL triggered by bioelectrical signal for hemiplegia, in Conference Proceedings:Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference (Buenos Aires: ), 462–466.
    1. Kosak M., Smith T. (2005). Comparison of the 2-, 6-, and 12-minute walk tests in patients with stroke. J. Rehabil. Res. Dev. 42, 103–107. 10.1682/JRRD.2003.11.0171
    1. Krakauer J. W., Carmichael S. T., Corbett D., Wittenberg G. F. (2012). Getting neurorehabilitation right: what can be learned from animal models? Neurorehabil. Neural Repair 26, 923–931. 10.1177/1545968312440745
    1. Kubota S., Nakata Y., Eguchi K., Kawamoto H., Kamibayashi K., Sakane M., et al. . (2013). Feasibility of rehabilitation training with a newly developed wearable robot for patients with limited mobility. Arch. Phys. Med. Rehabil. 94, 1080–1087. 10.1016/j.apmr.2012.12.020
    1. Kwakkel G., van Peppen R., Wagenaar R. C., Wood Dauphinee S., Richards C., Ashburn A., et al. . (2004). Effects of augmented exercise therapy time after stroke: a meta-analysis. Stroke 35, 2529–2539. 10.1161/01.STR.0000143153.76460.7d
    1. Langhorne P., Bernhardt J., Kwakkel G. (2011). Stroke rehabilitation. Lancet 377, 1693–1702. 10.1016/S0140-6736(11)60325-5
    1. Langhorne P., Coupar F., Pollock A. (2009). Motor recovery after stroke: a systematic review. Lancet Neurol. 8, 741–754. 10.1016/S1474-4422(09)70150-4
    1. Liew S. L., Santarnecchi E., Buch E. R., Cohen L. G. (2014). Non-invasive brain stimulation in neurorehabilitation: local and distant effects for motor recovery. Front. Hum. Neurosci. 8:378. 10.3389/fnhum.2014.00378
    1. Maeshima S., Osawa A., Nishio D., Hirano Y., Takeda K., Kigawa H., et al. . (2011). Efficacy of a hybrid assistive limb in post-stroke hemiplegic patients: a preliminary report. BMC Neurol. 11:116. 10.1186/1471-2377-11-116
    1. Mehrholz J., Elsner B., Werner C., Kugler J., Pohl M. (2013). Electromechanical-assisted training for walking after stroke: updated evidence. Stroke 44, e127–e128. 10.1161/STROKEAHA.113.003061
    1. Mehrholz J., Kugler J., Pohl M. (2012). Locomotor training for walking after spinal cord injury. Cochrane Database Syst. Rev. 11:CD006676. 10.1002/14651858.CD006676.pub3
    1. Nilsson A., Vreede K. S., Haglund V., Kawamoto H., Sankai Y., Borg J. (2014). Gait training early after stroke with a new exoskeleton—the hybrid assistive limb: a study of safety and feasibility. J. Neuroeng. Rehabil. 11:92. 10.1186/1743-0003-11-92
    1. Noda T., Sugimoto N., Furukawa J., Sato M., Sang-Ho H., Morimoto J. (2012). Brain-controlled exoskeleton robot for BMI rehabilitation. Humanoid Robots (Humanoids), in 12th IEEE-RAS International Conference (Osaka: ), 21–27 10.1109/HUMANOIDS.2012.6651494
    1. Pennycott A., Wyss D., Vallery H., Klamroth-Marganska V., Riener R. (2012). Towards more effective robotic gait training for stroke rehabilitation: a review. J. Neuroeng. Rehabil. 9:65. 10.1186/1743-0003-9-65
    1. Perry J., Garrett M., Gronley J. K., Mulroy S. J. (1995). Classification of walking handicap in the stroke population. Stroke 26, 982–989. 10.1161/01.STR.26.6.982
    1. Peurala S. H., Karttunen A. H., Sjogren T., Paltamaa J., Heinonen A. (2014). Evidence for the effectiveness of walking training on walking and self-care after stroke: a systematic review and meta-analysis of randomized controlled trials. J. Rehabil. Med. 46, 387–399. 10.2340/16501977-1805
    1. Podsiadlo D., Richardson S. (1991). The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 39, 142–148.
    1. Quintero H. A., Farris R. J., Hartigan C., Clesson I., Goldfarb M. (2011). A powered lower limb orthosis for providing legged mobility in paraplegic individuals. Top Spinal Cord Inj. Rehabil. 17, 25–33. 10.1310/sci1701-25
    1. Sawicki G. S., Ferris D. P. (2009). A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition. J. Neuroeng. Rehabil. 6:23. 10.1186/1743-0003-6-23
    1. Schmid A., Duncan P. W., Studenski S., Lai S. M., Richards L., Perera S., et al. . (2007). Improvements in speed-based gait classifications are meaningful. Stroke 38, 2096–2100. 10.1161/STROKEAHA.106.475921
    1. Schwartz I., Meiner Z. (2013). The influence of locomotor treatment using robotic body-weight-supported treadmill training on rehabilitation outcome of patients suffering from neurological disorders. Harefuah 152, 166–171, 182, 181.
    1. Shindo K., Kawashima K., Ushiba J., Ota N., Ito M., Ota T., et al. . (2011). Effects of neurofeedback training with an electroencephalogram-based brain-computer interface for hand paralysis in patients with chronic stroke: a preliminary case series study. J. Rehabil. Med. 43, 951–957. 10.2340/16501977-0859
    1. Suzuki K., Mito G., Kawamoto H., Hasegawa Y., Sankai Y. (2007). Intention-based walking support for paraplegia patients with Robot Suit HAL. Adv. Robot. 21, 1441–1469 10.1163/156855307781746061
    1. Swinnen E., Duerinck S., Baeyens J. P., Meeusen R., Kerckhofs E. (2010). Effectiveness of robot-assisted gait training in persons with spinal cord injury: a systematic review. J. Rehabil. Med. 42, 520–526. 10.2340/16501977-0538
    1. Ucar D. E., Paker N., Bugdayci D. (2014). Lokomat: a therapeutic chance for patients with chronic hemiplegia. NeuroRehabilitation 34, 447–453. 10.3233/NRE-141054
    1. Ueba T., Hamada O., Ogata T., Inoue T., Shiota E., Sankai Y. (2013). Feasibility and safety of acute phase rehabilitation after stroke using the hybrid assistive limb robot suit. Neurol. Med. Chir. (Tokyo) 53, 287–290. 10.2176/nmc.53.287
    1. van Nunen M. P., Gerrits K. H., Konijnenbelt M., Janssen T. W., De Haan A. (2014). Recovery of walking ability using a robotic device in subacute stroke patients: a randomized controlled study. Disabil. Rehabil. Assist. Technol. 10, 141–148. 10.3109/17483107.2013.873489
    1. Wade D. T., Wood V. A., Heller A., Maggs J., Langton Hewer R. (1987). Walking after stroke. Measurement and recovery over the first 3 months. Scand. J. Rehabil. Med. 19, 25–30.
    1. Watanabe H., Tanaka N., Inuta T., Saitou H., Yanagi H. (2014). Locomotion improvement using a hybrid assistive limb in recovery phase stroke patients: a randomized controlled pilot study. Arch. Phys. Med. Rehabil. 95, 2006–2012. 10.1016/j.apmr.2014.07.002
    1. Zeilig G., Weingarden H., Zwecker M., Dudkiewicz I., Bloch A., Esquenazi A. (2012). Safety and tolerance of the ReWalk™ exoskeleton suit for ambulation by people with complete spinal cord injury: a pilot study. J. Spinal Cord Med. 35, 96–101. 10.1179/2045772312Y.0000000003

Source: PubMed

3
Se inscrever