A preliminary randomized double blind placebo-controlled trial of intravenous immunoglobulin for Japanese encephalitis in Nepal

Ajit Rayamajhi, Sam Nightingale, Nisha Keshary Bhatta, Rupa Singh, Rachel Kneen, Elizabeth Ledger, Krishna Prasad Bista, Penny Lewthwaite, Chandeshwar Mahaseth, Lance Turtle, Jaimie Sue Robinson, Sareen Elizabeth Galbraith, Malgorzata Wnek, Barbara Wilmot Johnson, Brian Faragher, Michael John Griffiths, Tom Solomon, Ajit Rayamajhi, Sam Nightingale, Nisha Keshary Bhatta, Rupa Singh, Rachel Kneen, Elizabeth Ledger, Krishna Prasad Bista, Penny Lewthwaite, Chandeshwar Mahaseth, Lance Turtle, Jaimie Sue Robinson, Sareen Elizabeth Galbraith, Malgorzata Wnek, Barbara Wilmot Johnson, Brian Faragher, Michael John Griffiths, Tom Solomon

Abstract

Background: Japanese encephalitis (JE) virus (JEV) is a mosquito-borne flavivirus found across Asia that is closely related to West Nile virus. There is no known antiviral treatment for any flavivirus. Results from in vitro studies and animal models suggest intravenous immunoglobulin (IVIG) containing virus-specific neutralizing antibody may be effective in improving outcome in viral encephalitis. IVIG's anti-inflammatory properties may also be beneficial.

Methodology/principal findings: We performed a pilot feasibility randomized double-blind placebo-controlled trial of IVIG containing anti-JEV neutralizing antibody (ImmunoRel, 400mg/kg/day for 5 days) in children with suspected JE at two sites in Nepal; we also examined the effect on serum neutralizing antibody titre and cytokine profiles. 22 children were recruited, 13 of whom had confirmed JE; 11 received IVIG and 11 placebo, with no protocol violations. One child (IVIG group) died during treatment and two (placebo) subsequently following hospital discharge. Overall, there was no difference in outcome between treatment groups at discharge or follow up. Passive transfer of anti-JEV antibody was seen in JEV negative children. JEV positive children treated with IVIG had JEV-specific neutralizing antibody titres approximately 16 times higher than those treated with placebo (p=0.2), which was more than could be explained by passive transfer alone. IL-4 and IL-6 were higher in the IVIG group.

Conclusions/significance: A trial of IVIG for JE in Nepal is feasible. IVIG may augment the development of neutralizing antibodies in JEV positive patients. IVIG appears an appealing option for JE treatment that warrants further study.

Trial registration: ClinicalTrials.gov NCT01856205.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1. Flow diagram of study participants’…
Fig 1. Flow diagram of study participants’ recruitment and follow-up.
All children enrolled, fitting the trial criteria, who were alive at discharge were attempted to be followed-up (n = 21). Twenty-one families were successfully contacted. Among these families, two children had died.
Fig 2. Anti-JEV neutralizing antibody in commercially…
Fig 2. Anti-JEV neutralizing antibody in commercially available IVIG.
Mean and standard deviation of reciprocal 50% plaque reduction neutralization titres (PRNT50) in vero cells using P3 wild type strain of JEV are shown for a: Serum control from JEV vaccinated individual, b: Vigam (USA), c: Bharat (India) batch 1, d: Hualan (China) batch 1, e: Bharat (India) batch 2, f: Hualan (China) batch 2, g: Sichuan (China), h: Reliance (India).
Fig 3. Difference in neutralizing antibody titres…
Fig 3. Difference in neutralizing antibody titres to JEV in children with acute encephalitis syndrome treated with IVIG or placebo.
Median and inter-quartile range of the difference in JEV PRNT50 titres pre and post treatment is presented. Patients are grouped according to treatment. Difference in tires was assessed via Wilcoxon-Mann-Whitney test. Note: Two patients who received IVIG were not included in this analysis because of insufficient sample to undertake PRNT measurements.
Fig 4. Interleukin (IL)-4 and IL-6 abundance…
Fig 4. Interleukin (IL)-4 and IL-6 abundance in children with acute encephalitis syndrome receiving intravenous immunoglobulin (IVIG) and placebo.
Median and inter-quartile range of change in cytokine abundance (pg/ml) pre and post treatment is presented for IL-4 and IL-6 separately. Cytokine abundance increased for both IL-4 and IL-6. This increase was significant for IL-4 (p = 0.043 and p = 0.068 for IL-4 and IL-6 respectively). Difference in abundance was assessed via Wilcoxon-Mann-Whitney test. Note: Four patients (three who received IVIG and one who received saline) were not included in this analysis because of insufficient sample to undertake the ELISA.

References

    1. Solomon T, Cardosa MJ. Emerging arboviral encephalitis. Newsworthy in the West but much more common in the East. BMJ. 2000;321(7275):1484–5. Epub 2000/12/16. PubMed
    1. Solomon T, Dung NM, Kneen R, Gainsborough M, Vaughn DW, Khanh VT. Japanese encephalitis. J Neurol Neurosurg Psychiatry. 2000;68(4):405–15. Epub 2000/03/23. PubMed
    1. Solomon T, Dung NM, Kneen R, Thao le TT, Gainsborough M, Nisalak A, et al. Seizures and raised intracranial pressure in Vietnamese patients with Japanese encephalitis. Brain: a journal of neurology. 2002;125(Pt 5):1084–93. Epub 2002/04/19. PubMed .
    1. Solomon T. Control of Japanese encephalitis—within our grasp? The New England journal of medicine. 2006;355(9):869–71. Epub 2006/09/01. 10.1056/NEJMp058263 PubMed .
    1. Griffin DE. Immune responses to RNA-virus infections of the CNS. Nature reviews Immunology. 2003;3(6):493–502. Epub 2003/05/31. 10.1038/nri1105 PubMed .
    1. Irani DN. Central nervous system inflammation: can't live with it, can't live without it. Current opinion in neurology. 2001;14(3):347–8. Epub 2001/05/24. PubMed .
    1. Kimura T, Griffin DE. Extensive immune-mediated hippocampal damage in mice surviving infection with neuroadapted Sindbis virus. Virology. 2003;311(1):28–39. Epub 2003/07/02. PubMed .
    1. German AC, Myint KS, Mai NT, Pomeroy I, Phu NH, Tzartos J, et al. A preliminary neuropathological study of Japanese encephalitis in humans and a mouse model. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2006;100(12):1135–45. Epub 2006/07/04. 10.1016/j.trstmh.2006.02.008 PubMed .
    1. Johnson RT, Burke DS, Elwell M, Leake CJ, Nisalak A, Hoke CH, et al. Japanese encephalitis: immunocytochemical studies of viral antigen and inflammatory cells in fatal cases. Ann Neurol. 1985;18(5):567–73. Epub 1985/11/01. 10.1002/ana.410180510 PubMed .
    1. Li ZS, Hong SF, Gong NL. Immunohistochemical study on Japanese B encephalitis. Chin Med J (Engl). 1988;101(10):768–71. Epub 1988/10/01. PubMed .
    1. Miyake M. The pathology of Japanese encephalitis. Bulletin of the World Health Organization. 1964;30:153–60.
    1. Solomon T. Flavivirus encephalitis. The New England journal of medicine. 2004;351(4):370–8. Epub 2004/07/23. 10.1056/NEJMra030476 PubMed .
    1. Solomon T, Kneen R, Dung NM, Khanh VC, Thuy TT, Ha DQ, et al. Poliomyelitis-like illness due to Japanese encephalitis virus. Lancet. 1998;351(9109):1094–7. Epub 1998/07/11. S0140-6736(97)07509-0 [pii] 10.1016/S0140-6736(97)07509-0 PubMed .
    1. Atrasheuskaya A, Petzelbauer P, Fredeking TM, Ignatyev G. Anti-TNF antibody treatment reduces mortality in experimental dengue virus infection. FEMS Immunol Med Microbiol. 2003;35(1):33–42. Epub 2003/02/19. S0928824402004248 [pii]. PubMed .
    1. Liu T, Chambers TJ. Yellow fever virus encephalitis: properties of the brain-associated T-cell response during virus clearance in normal and gamma interferon-deficient mice and requirement for CD4+ lymphocytes. J Virol. 2001;75(5):2107–18. Epub 2001/02/13. 10.1128/JVI.75.5.2107-2118.2001 PubMed
    1. Wang Y, Lobigs M, Lee E, Mullbacher A. CD8+ T cells mediate recovery and immunopathology in West Nile virus encephalitis. J Virol. 2003;77(24):13323–34. Epub 2003/12/04. PubMed
    1. Caramello P, Canta F, Balbiano R, Lipani F, Ariaudo S, De Agostini M, et al. Role of intravenous immunoglobulin administration in Japanese encephalitis. Clin Infect Dis. 2006;43(12):1620–1. Epub 2006/11/17. CID40837 [pii] 10.1086/509644 PubMed .
    1. Burkes EJ Jr., Hoke J, Gomes E, Wolbarsht M. Wet versus dry enamel ablation by Er:YAG laser. J Prosthet Dent. 1992;67(6):847–51. Epub 1992/06/11. PubMed .
    1. Solomon T, Dung NM, Wills B, Kneen R, Gainsborough M, Diet TV, et al. Interferon alfa-2a in Japanese encephalitis: a randomised double-blind placebo-controlled trial. Lancet. 2003;361(9360):821–6. PubMed ISI:000181466600011.
    1. Kumar R, Tripathi P, Baranwal M, Singh S, Tripathi S, Banerjee G. Randomized, controlled trial of oral ribavirin for Japanese encephalitis in children in Uttar Pradesh, India. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2009;48(4):400–6. Epub 2009/01/16. 10.1086/596309 PubMed .
    1. Agrawal AG, Petersen LR. Human immunoglobulin as a treatment for West Nile virus infection. The Journal of infectious diseases. 2003;188(1):1–4. Epub 2003/06/26. 10.1086/376871 PubMed .
    1. Gajanana A, Thenmozhi V, Samuel PP, Reuben R. A community-based study of subclinical flavivirus infections in children in an area of Tamil Nadu, India, where Japanese encephalitis is endemic. Bull World Health Organ. 1995;73(2):237–44. Epub 1995/01/01. PubMed
    1. Solomon T, Dung NM, Wills B, Kneen R, Gainsborough M, Diet TV, et al. Interferon alfa-2a in Japanese encephalitis: a randomised double-blind placebo-controlled trial. Lancet. 2003;361(9360):821–6. Epub 2003/03/19. PubMed .
    1. Ben-Nathan D, Lustig S, Tam G, Robinzon S, Segal S, Rager-Zisman B. Prophylactic and therapeutic efficacy of human intravenous immunoglobulin in treating West Nile virus infection in mice. The Journal of infectious diseases. 2003;188(1):5–12. Epub 2003/06/26. 10.1086/376870 PubMed .
    1. Martin DA, Biggerstaff BJ, Allen B, Johnson AJ, Lanciotti RS, Roehrig JT. Use of immunoglobulin M cross-reactions in differential diagnosis of human flaviviral encephalitis infections in the United States. Clin Diagn Lab Immun. 2002;9(3):544–9. 10.1128/Cdli.9.3.544-549.2002 PubMed ISI:000175713100006.
    1. Martin DA, Muth DA, Brown T, Johnson AJ, Karabatsos N, Roehrig JT. Standardization of immunoglobulin M capture enzyme-linked immunosorbent assays for routine diagnosis of arboviral infections. J Clin Microbiol. 2000;38(5):1823–6. PubMed ISI:000086902400023.
    1. Johnson AJ, Martin DA, Karabatsos N, Roehrig JT. Detection of anti-arboviral immunoglobulin G by using a monoclonal antibody-based capture enzyme-linked immunosorbent assay. J Clin Microbiol. 2000;38(5):1827–31. PubMed ISI:000086902400024.
    1. Johnson BW, Kosoy O, Hunsperger E, Beltran M, Delorey M, Guirakhoo F, et al. Evaluation of Chimeric Japanese Encephalitis and Dengue Viruses for Use in Diagnostic Plaque Reduction Neutralization Tests. Clin Vaccine Immunol. 2009;16(7):1052–9. 10.1128/Cvi.00095-09 PubMed ISI:000267747700014.
    1. Rayamajhi A, Ansari I, Ledger E, Bista KP, Impoinvil DE, Nightingale S, et al. Clinical and prognostic features among children with acute encephalitis syndrome in Nepal; a retrospective study. Bmc Infect Dis. 2011;11 Artn 294 10.1186/1471-2334-11-294. PubMed ISI:000297115800001.
    1. Rayamajhi A, Singh R, Prasad R, Khanal B, Singhi S. Clinico-laboratory profile and outcome of Japanese encephalitis in Nepali children. Annals of Tropical Paediatrics. 2006;26(4):293–301. 10.1179/146532806x152818 PubMed ISI:000242714600004.
    1. Lewthwaite P, Begum A, Ooi MH, Faragher B, Lai BF, Sandaradura I, et al. Disability after encephalitis: development and validation of a new outcome score. B World Health Organ. 2010;88(8):584–92. 10.2471/Blt.09.071357 PubMed ISI:000280867900008.
    1. Kneen R, Solomon T, Appleton R. The role of lumbar puncture in suspected CNS infection—a disappearing skill? Arch Dis Child. 2002;87(3):181–3. PubMed ISI:000177770700004.
    1. Parida M, Dash PK, Tripathi NK, Sannarangaiah AS, Saxena P, Agarwal S, et al. Japanese encephalitis outbreak, India, 2005. Emerging Infectious Diseases. 2006;12(9):1427–30. PubMed ISI:000240081400019.
    1. Campbell GL, Hills SL, Fischer M, Jacobson JA, Hoke CH, Hombach JM, et al. Estimated global incidence of Japanese encephalitis: a systematic review. B World Health Organ. 2011;89(10):766–74. 10.2471/Blt.10.085233 PubMed ISI:000295707700015.
    1. Bista MB, Shrestha JM. Epidemiological situation of Japanese encephalitis in Nepal. JNMAJ NepalMed Assoc. 2005;44:51–6.
    1. Bista MB, Banerjee MK, Shin SH, Tandan JB, Kim MH, Sohn YM, et al. Efficacy of single-dose SA 14-14-2 vaccine against Japanese encephalitis: a case control study. Lancet. 2001;358(9284):791–5. PubMed .
    1. Tandan JB, Ohrr H, et al. Single dose of SA 14-14-2 vaccine provides long-term protection against Japanese encephalitis: A case-control study in Nepalese children 5 years after immunization. Vaccine. 2007;ePUB.
    1. Pant GR. A serological survey of pigs, horses, and ducks in Nepal for evidence of infection with Japanese encephalitis virus. Ann N Y Acad Sci. 2006;1081:124–9. Epub 2006/12/01. 1081/1/124 [pii] 10.1196/annals.1373.013 PubMed .
    1. Lang TA, White NJ, Tran HT, Farrar JJ, Day NP, Fitzpatrick R, et al. Clinical research in resource-limited settings: enhancing research capacity and working together to make trials less complicated. PLoS neglected tropical diseases. 2010;4(6):e619 Epub 2010/07/09. 10.1371/journal.pntd.0000619 PubMed
    1. Kimura-Kuroda J, Yasui K. Protection of mice against Japanese encephalitis virus by passive administration with monoclonal antibodies. J Immunol. 1988;141(10):3606–10. Epub 1988/11/15. PubMed .
    1. Zhang MJ, Wang MJ, Jiang SZ, Ma WY. Passive protection of mice, goats, and monkeys against Japanese encephalitis with monoclonal antibodies. Journal of medical virology. 1989;29(2):133–8. Epub 1989/10/01. PubMed .
    1. Gupta AK, Lad VJ, Koshy AA. Protection of mice against experimental Japanese encephalitis virus infections by neutralizing anti-glycoprotein E monoclonal antibodies. Acta virologica. 2003;47(3):141–5. Epub 2003/12/09. PubMed .
    1. Konishi E, Ajiro N, Nukuzuma C, Mason PW, Kurane I. Comparison of protective efficacies of plasmid DNAs encoding Japanese encephalitis virus proteins that induce neutralizing antibody or cytotoxic T lymphocytes in mice. Vaccine. 2003;21(25–26):3675–83. Epub 2003/08/19. PubMed .
    1. Diamond MS, Shrestha B, Marri A, Mahan D, Engle M. B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus. Journal of virology. 2003;77(4):2578–86. Epub 2003/01/29. PubMed
    1. Ben-Nathan D, Gershoni-Yahalom O, Samina I, Khinich Y, Nur I, Laub O, et al. Using high titer West Nile intravenous immunoglobulin from selected Israeli donors for treatment of West Nile virus infection. Bmc Infect Dis. 2009;9:18 Epub 2009/02/19. 10.1186/1471-2334-9-18 PubMed
    1. Engle MJ, Diamond MS. Antibody prophylaxis and therapy against West Nile virus infection in wild-type and immunodeficient mice. Journal of virology. 2003;77(24):12941–9. Epub 2003/12/04. PubMed
    1. Morrey JD, Siddharthan V, Olsen AL, Roper GY, Wang H, Baldwin TJ, et al. Humanized monoclonal antibody against West Nile virus envelope protein administered after neuronal infection protects against lethal encephalitis in hamsters. J Infect Dis. 2006;194(9):1300–8. Epub 2006/10/17. JID36675 [pii] 10.1086/508293 PubMed .
    1. Morrey JD, Siddharthan V, Olsen AL, Wang H, Julander JG, Hall JO, et al. Defining limits of treatment with humanized neutralizing monoclonal antibody for West Nile virus neurological infection in a hamster model. Antimicrobial agents and chemotherapy. 2007;51(7):2396–402. Epub 2007/04/25. 10.1128/AAC.00147-07 PubMed
    1. Ng CT, Jaworski JP, Jayaraman P, Sutton WF, Delio P, Kuller L, et al. Passive neutralizing antibody controls SHIV viremia and enhances B cell responses in infant macaques. Nature medicine. 2010;16(10):1117–9. Epub 2010/10/05. 10.1038/nm.2233 PubMed
    1. Dejnirattisai W, Jumnainsong A, Onsirisakul N, Fitton P, Vasanawathana S, Limpitikul W, et al. Cross-reacting antibodies enhance dengue virus infection in humans. Science. 2010;328(5979):745–8. Epub 2010/05/08. 10.1126/science.1185181 PubMed .
    1. Kluger G, Schottler A, Waldvogel K, Nadal D, Hinrichs W, Wundisch GF, et al. Tickborne encephalitis despite specific immunoglobulin prophylaxis. Lancet. 1995;346(8988):1502 Epub 1995/12/02. PubMed .
    1. Ghoshal A, Das S, Ghosh S, Mishra MK, Sharma V, Koli P, et al. Proinflammatory mediators released by activated microglia induces neuronal death in Japanese encephalitis. Glia. 2007;55(5):483–96. Epub 2007/01/05. 10.1002/glia.20474 PubMed .
    1. Chen CJ, Chen JH, Chen SY, Liao SL, Raung SL. Upregulation of RANTES gene expression in neuroglia by Japanese encephalitis virus infection. J Virol. 2004;78(22):12107–19. Epub 2004/10/28. 78/22/12107 [pii] 10.1128/JVI.78.22.12107-12119.2004 PubMed
    1. Van Wagoner NJ, Benveniste EN. Interleukin-6 expression and regulation in astrocytes. J Neuroimmunol. 1999;100(1–2):124–39. Epub 2000/03/01. S0165572899001873 [pii]. PubMed .
    1. Frei K, Malipiero UV, Leist TP, Zinkernagel RM, Schwab ME, Fontana A. On the cellular source and function of interleukin 6 produced in the central nervous system in viral diseases. Eur J Immunol. 1989;19(4):689–94. Epub 1989/04/01. 10.1002/eji.1830190418 PubMed .
    1. Morris MM, Dyson H, Baker D, Harbige LS, Fazakerley JK, Amor S. Characterization of the cellular and cytokine response in the central nervous system following Semliki Forest virus infection. J Neuroimmunol. 1997;74(1–2):185–97. Epub 1997/04/01. S0165-5728(96)00786-2 [pii]. PubMed .
    1. Brett FM, Mizisin AP, Powell HC, Campbell IL. Evolution of neuropathologic abnormalities associated with blood-brain barrier breakdown in transgenic mice expressing interleukin-6 in astrocytes. J Neuropathol Exp Neurol. 1995;54(6):766–75. PubMed .
    1. Paul R, Koedel U, Winkler F, Kieseier BC, Fontana A, Kopf M, et al. Lack of IL-6 augments inflammatory response but decreases vascular permeability in bacterial meningitis. Brain. 2003;126(Pt 8):1873–82. PubMed .
    1. Abraham CS, Deli MA, Joo F, Megyeri P, Torpier G. Intracarotid tumor necrosis factor-alpha administration increases the blood-brain barrier permeability in cerebral cortex of the newborn pig: quantitative aspects of double-labelling studies and confocal laser scanning analysis. Neurosci Lett. 1996;208(2):85–8. PubMed .
    1. Munoz-Fernandez MA, Fresno M. The role of tumour necrosis factor, interleukin 6, interferon-gamma and inducible nitric oxide synthase in the development and pathology of the nervous system. Prog Neurobiol. 1998;56(3):307–40. Epub 1998/10/14. S0301008298000458 [pii]. PubMed .
    1. Winter PM, Dung NM, Loan HT, Kneen R, Wills B, Thu le T, et al. Proinflammatory cytokines and chemokines in humans with Japanese encephalitis. J Infect Dis. 2004;190(9):1618–26. Epub 2004/10/13. JID32574 [pii] 10.1086/423328 PubMed .
    1. Wang SM, Lei HY, Huang MC, Su LY, Lin HC, Yu CK, et al. Modulation of cytokine production by intravenous immunoglobulin in patients with enterovirus 71-associated brainstem encephalitis. Journal of clinical virology: the official publication of the Pan American Society for Clinical Virology. 2006;37(1):47–52. Epub 2006/07/25. 10.1016/j.jcv.2006.05.009 PubMed .
    1. Reske D, Thomas AV, Petereit HF, Fink GR, Schroeter M. Impact of immunomodulatory treatment on leukocyte cytokine production in multiple sclerosis patients and healthy donors. Neuroimmunomodulation. 2009;16(6):385–91. Epub 2009/07/18. 10.1159/000228913 PubMed .
    1. Pigard N, Elovaara I, Kuusisto H, Paalavuo R, Dastidar P, Zimmermann K, et al. Therapeutic activities of intravenous immunoglobulins in multiple sclerosis involve modulation of chemokine expression. Journal of neuroimmunology. 2009;209(1–2):114–20. Epub 2009/02/17. 10.1016/j.jneuroim.2009.01.014 PubMed .
    1. Wu KH, Wu WM, Lu MY, Chiang BL. Inhibitory effect of pooled human immunoglobulin on cytokine production in peripheral blood mononuclear cells. Pediatric allergy and immunology: official publication of the European Society of Pediatric Allergy and Immunology. 2006;17(1):60–8. Epub 2006/01/24. 10.1111/j.1399-3038.2005.00344.x PubMed .
    1. Tawfik DS, Cowan KR, Walsh AM, Hamilton WS, Goldman FD. Exogenous immunoglobulin downregulates T-cell receptor signaling and cytokine production. Pediatric allergy and immunology: official publication of the European Society of Pediatric Allergy and Immunology. 2012;23(1):88–95. Epub 2011/01/27. 10.1111/j.1399-3038.2010.01129.x PubMed .
    1. Ibanez C, Sune P, Fierro A, Rodriguez S, Lopez M, Alvarez A, et al. Modulating effects of intravenous immunoglobulins on serum cytokine levels in patients with primary hypogammaglobulinemia. BioDrugs: clinical immunotherapeutics, biopharmaceuticals and gene therapy. 2005;19(1):59–65. Epub 2005/02/05. PubMed .
    1. Aukrust P, Froland SS, Liabakk NB, Muller F, Nordoy I, Haug C, et al. Release of cytokines, soluble cytokine receptors, and interleukin-1 receptor antagonist after intravenous immunoglobulin administration in vivo. Blood. 1994;84(7):2136–43. Epub 1994/10/01. PubMed .
    1. Mouzaki A, Theodoropoulou M, Gianakopoulos I, Vlaha V, Kyrtsonis MC, Maniatis A. Expression patterns of Th1 and Th2 cytokine genes in childhood idiopathic thrombocytopenic purpura (ITP) at presentation and their modulation by intravenous immunoglobulin G (IVIg) treatment: their role in prognosis. Blood. 2002;100(5):1774–9. Epub 2002/08/15. PubMed .
    1. Jolles S, Hughes J, Rustin M. Intracellular interleukin-4 profiles during high-dose intravenous immunoglobulin treatment of therapy-resistant atopic dermatitis. Journal of the American Academy of Dermatology. 1999;40(1):121–3. Epub 1999/01/28. PubMed .
    1. Paul WE, Ohara J. B-cell stimulatory factor-1/interleukin 4. Annu Rev Immunol. 1987;5:429–59. Epub 1987/01/01. 10.1146/annurev.iy.05.040187.002241 PubMed .
    1. Van Snick J. Interleukin-6: an overview. Annu Rev Immunol. 1990;8:253–78. Epub 1990/01/01. 10.1146/annurev.iy.08.040190.001345 PubMed .
    1. Ling ZD, Ziltener HJ, Webb BT, Matheson DS. Aggregated immunoglobulin and Fc fragment of IgG induce IL-6 release from human monocytes. Cellular immunology. 1990;129(1):95–103. Epub 1990/08/01. PubMed .
    1. Svenson M, Hansen MB, Bendtzen K. Binding of cytokines to pharmaceutically prepared human immunoglobulin. The Journal of clinical investigation. 1993;92(5):2533–9. Epub 1993/11/01. 10.1172/JCI116862 PubMed
    1. Blasczyk R, Westhoff U, Grosse-Wilde H. Soluble CD4, CD8, and HLA molecules in commercial immunoglobulin preparations. Lancet. 1993;341(8848):789–90. Epub 1993/03/27. PubMed .
    1. Llaurado G, Ceperuelo-Mallafre V, Vilardell C, Simo R, Freixenet N, Vendrell J, et al. Arterial stiffness is increased in patients with type 1 diabetes without cardiovascular disease: a potential role of low-grade inflammation. Diabetes care. 2012;35(5):1083–9. Epub 2012/02/24. 10.2337/dc11-1475 PubMed
    1. Kneen R, Michael BD, Menson E, Mehta B, Easton A, Hemingway C, et al. Management of suspected viral encephalitis in children—Association of British Neurologists and British Paediatric Allergy, Immunology and Infection Group national guidelines. J Infect. 2012;64(5):449–77. Epub 2011/11/29. S0163-4453(11)00562-7 [pii]10.1016/j.jinf.2011.11.013 PubMed .
    1. Granerod J, Ambrose HE, Davies NW, Clewley JP, Walsh AL, Morgan D, et al. Causes of encephalitis and differences in their clinical presentations in England: a multicentre, population-based prospective study. The Lancet infectious diseases. 2010;10(12):835–44. Epub 2010/10/19. 10.1016/S1473-3099(10)70222-X PubMed .
    1. Ramakrishna C, Newo AN, Shen YW, Cantin E. Passively administered pooled human immunoglobulins exert IL-10 dependent anti-inflammatory effects that protect against fatal HSV encephalitis. PLoS pathogens. 2011;7(6):e1002071 Epub 2011/06/10. 10.1371/journal.ppat.1002071 PubMed
    1. Le VT, Phan TQ, Do QH, Nguyen BH, Lam QB, Bach VC, et al. Viral etiology of encephalitis in children in southern Vietnam: results of a one-year prospective descriptive study. PLoS neglected tropical diseases. 2010;4(10):e854 Epub 2010/11/05. 10.1371/journal.pntd.0000854 PubMed

Source: PubMed

3
Se inscrever