Baseline functional connectivity may predict placebo responses to accelerated rTMS treatment in major depression

Guo-Rong Wu, Xiaowan Wang, Chris Baeken, Guo-Rong Wu, Xiaowan Wang, Chris Baeken

Abstract

Although in theory sham repetitive transcranial magnetic stimulation (rTMS) has no inherent therapeutic value, nonetheless, such placebo stimulations may have relevant therapeutic effects in clinically depressed patients. On the other hand, antidepressant responses to sham rTMS are quite heterogeneous across individuals and its neural underpinnings have not been explored yet. The current brain imaging study aims to detect baseline neural fingerprints resulting in clinically beneficial placebo rTMS treatment responses. We collected resting-state functional magnetic resonance imaging data prior to a registered randomized clinical trial of accelerated placebo stimulation protocol in patients documented with treatment-resistant depression (https://ichgcp.net/clinical-trials-registry/NCT01832805). In addition to global brain connectivity and rostral anterior cingulate cortex (rACC) seed-based functional connectivity (FC), elastic-net regression and cross-validation procedures were used to identify baseline intrinsic brain connectivity biomarkers for sham-rTMS responses. Placebo responses to accelerated sham rTMS were correlated with baseline global brain connectivity in the rACC/ventral medial prefrontal cortex (vmPFC). Concerning the rACC seed-based FC analysis, the placebo response was associated positively with the precuneus/posterior cingulate (PCun/PCC) cortex and negatively with the middle frontal gyrus. Our findings provide first brain imaging evidence for placebo responses to sham stimulation being predictable from rACC rsFC profiles, especially in brain areas implicated in (re)appraisal and self-focus processes.

Keywords: depression; functional connectivity; placebo responses; rostral ACC; sham iTBS; sham rTMS.

Conflict of interest statement

The authors declare that they have no conflict of interest.

© 2019 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.

Figures

Figure 1
Figure 1
One‐sample t‐tests results of the baseline rACC seed‐based FC (p < .05, FWE correction at the cluster level with a voxel‐level threshold of p < .001 uncorrected). Two confound regression strategies were used: (a) aCompcor and (b) global signal regression
Figure 2
Figure 2
Pretreatment brain connectivity (aCompCor noise removal approach) prediction of the placebo response to sham aiTBS treatment. (a/b) Voxel weight values of multivariate elastic‐net regression, with cluster size >100 voxels; a: GBC, b: rACC seed‐based FC. (c) The predicted HDRS%change scores were significantly correlated with the actual scores (GBC: r = .486, p = .023; rACC seed‐based FC: r = .498, p = .018), with age, gender, and mean FD as the nuisance covariates

References

    1. Ashar, Y. K. , Chang, L. J. , & Wager, T. D. (2017). Brain mechanisms of the placebo effect: An affective appraisal account. Annual Review of Clinical Psychology, 13, 73–98.
    1. Baeken, C. (2018). Accelerated rTMS: A potential treatment to alleviate refractory depression. Frontiers in Psychology, 9, 2017 10.3389/fpsyg.2018.02017
    1. Baeken, C. , Duprat, R. , Wu, G. R. , De Raedt, R. , & van Heeringen, K. (2017). Subgenual anterior cingulate‐medial orbitofrontal functional connectivity in medication‐resistant major depression: A neurobiological marker for accelerated intermittent theta burst stimulation treatment? Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2(7), 556–565. 10.1016/j.bpsc.2017.01.001
    1. Baeken, C. , Vanderhasselt, M. A. , Remue, J. , Herremans, S. , Vanderbruggen, N. , Zeeuws, D. , … De Raedt, R. (2013). Intensive HF‐rTMS treatment in refractory medication‐resistant unipolar depressed patients. Journal of Affective Disorders, 151(2), 625–631. 10.1016/j.jad.2013.07.008
    1. Baeken, C. , Wu, G. R. , & van Heeringen, K. (2019). Placebo aiTBS attenuates suicidal ideation and frontopolar cortical perfusion in major depression. Translational Psychiatry, 9(1), 38–10. 10.1038/s41398-019-0377-x
    1. Beauregard, M. (2007). Mind does really matter: Evidence from neuroimaging studies of emotional self‐regulation, psychotherapy, and placebo effect. Progress in Neurobiology, 81(4), 218–236.
    1. Beauregard, M. (2009). Effect of mind on brain activity: Evidence from neuroimaging studies of psychotherapy and placebo effect. Nordic Journal of Psychiatry, 63(1), 5–16. 10.1080/08039480802421182
    1. Behzadi, Y. , Restom, K. , Liau, J. , & Liu, T. T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage, 37(1), 90–101. 10.1016/j.neuroimage.2007.04.042
    1. Benedetti, F. (2010). No prefrontal control, no placebo response. Pain, 148(3), 357–358.
    1. Benedetti, F. , Carlino, E. , & Pollo, A. (2011). How placebos change the patient's brain. Neuropsychopharmacology, 36(1), 339–354.
    1. Broyd, S. J. , Demanuele, C. , Debener, S. , Helps, S. K. , James, C. J. , & Sonuga‐Barke, E. J. (2009). Default‐mode brain dysfunction in mental disorders: A systematic review. Neuroscience & Biobehavioral Reviews, 33(3), 279–296.
    1. Brunoni, A. R. , Lopes, M. , Kaptchuk, T. J. , & Fregni, F. (2009). Placebo response of non‐pharmacological and pharmacological trials in major depression: A systematic review and meta‐analysis. PLoS One, 4(3), e4824.
    1. Chung, S. W. , Hoy, K. E. , & Fitzgerald, P. B. (2015). Theta‐burst stimulation: A new form of TMS treatment for depression? Depression and Anxiety, 32(3), 182–192. 10.1002/da.22335
    1. Colagiuri, B. , Schenk, L. A. , Kessler, M. D. , Dorsey, S. G. , & Colloca, L. (2015). The placebo effect: From concepts to genes. Neuroscience, 307, 171–190.
    1. Cuijpers, P. , Driessen, E. , Hollon, S. D. , van Oppen, P. , Barth, J. , & Andersson, G. (2012). The efficacy of non‐directive supportive therapy for adult depression: A meta‐analysis. Clinical Psychology Review, 32(4), 280–291.
    1. Drysdale, A. T. , Grosenick, L. , Downar, J. , Dunlop, K. , Mansouri, F. , Meng, Y. , … Etkin, A. (2017). Resting‐state connectivity biomarkers define neurophysiological subtypes of depression. Nature Medicine, 23(1), 28–38.
    1. Duprat, R. , Desmyter, S. , van Heeringen, K. , Van den Abbeele, D. , Tandt, H. , Bakic, J. , … Van Autreve, S. (2016). Accelerated intermittent theta burst stimulation treatment in medication‐resistant major depression: A fast road to remission? Journal of Affective Disorders, 200, 6–14.
    1. Geuter, S. , Koban, L. , & Wager, T. D. (2017). The cognitive neuroscience of placebo effects: Concepts, predictions, and physiology. Annual Review of Neuroscience, 40, 167–188.
    1. Grimm, S. , Ernst, J. , Boesiger, P. , Schuepbach, D. , Boeker, H. , & Northoff, G. (2011). Reduced negative BOLD responses in the default‐mode network and increased self‐focus in depression. The World Journal of Biological Psychiatry, 12(8), 627–637. 10.3109/15622975.2010.545145
    1. Grimm, S. , Ernst, J. , Boesiger, P. , Schuepbach, D. , Hell, D. , Boeker, H. , & Northoff, G. (2009). Increased self‐focus in major depressive disorder is related to neural abnormalities in subcortical‐cortical midline structures. Human Brain Mapping, 30(8), 2617–2627. 10.1002/hbm.20693
    1. Hamilton, J. P. , Furman, D. J. , Chang, C. , Thomason, M. E. , Dennis, E. , & Gotlib, I. H. (2011). Default‐mode and task‐positive network activity in major depressive disorder: Implications for adaptive and maladaptive rumination. Biological Psychiatry, 70(4), 327–333.
    1. Hamilton, M. (1967). Development of a rating scale for primary depressive illness. British Journal of Clinical Psychology, 6(4), 278–296.
    1. Holtzheimer, P. E. , & Mayberg, H. S. (2011). Stuck in a rut: Rethinking depression and its treatment. Trends in Neurosciences, 34(1), 1–9.
    1. Kaiser, R. H. , Andrews‐Hanna, J. R. , Wager, T. D. , & Pizzagalli, D. A. (2015). Large‐scale network dysfunction in major depressive disorder: A meta‐analysis of resting‐state functional connectivity. JAMA Psychiatry, 72(6), 603–611.
    1. Khan, A. , Faucett, J. , Lichtenberg, P. , Kirsch, I. , & Brown, W. A. (2012). A systematic review of comparative efficacy of treatments and controls for depression. PLoS One, 7(7), e41778.
    1. Kirsch, I. , Deacon, B. J. , Huedo‐Medina, T. B. , Scoboria, A. , Moore, T. J. , & Johnson, B. T. (2008). Initial severity and antidepressant benefits: A meta‐analysis of data submitted to the Food and Drug Administration. PLoS Medicine, 5(2), e45.
    1. Kragel, P. A. , Kano, M. , Van Oudenhove, L. , Ly, H. G. , Dupont, P. , Rubio, A. , … Gianaros, P. J. (2018). Generalizable representations of pain, cognitive control, and negative emotion in medial frontal cortex. Nature Neuroscience, 21, 283–289.
    1. Krummenacher, P. , Candia, V. , Folkers, G. , Schedlowski, M. , & Schönbächler, G. (2010). Prefrontal cortex modulates placebo analgesia. Pain, 148(3), 368–374.
    1. Leuchter, A. F. , Cook, I. A. , Witte, E. A. , Morgan, M. , & Abrams, M. (2002). Changes in brain function of depressed subjects during treatment with placebo. The American Journal of Psychiatry, 159(1), 122–129. 10.1176/appi.ajp.159.1.122
    1. Liston, C. , Chen, A. C. , Zebley, B. D. , Drysdale, A. T. , Gordon, R. , Leuchter, B. , … Dubin, M. J. (2014). Default mode network mechanisms of transcranial magnetic stimulation in depression. Biological Psychiatry, 76(7), 517–526.
    1. Martuzzi, R. , Ramani, R. , Qiu, M. , Shen, X. , Papademetris, X. , & Constable, R. T. (2011). A whole‐brain voxel based measure of intrinsic connectivity contrast reveals local changes in tissue connectivity with anesthetic without a priori assumptions on thresholds or regions of interest. NeuroImage, 58(4), 1044–1050.
    1. Mayberg, H. S. , Silva, J. A. , Brannan, S. K. , Tekell, J. L. , Mahurin, R. K. , McGinnis, S. , & Jerabek, P. A. (2002). The functional neuroanatomy of the placebo effect. American Journal of Psychiatry, 159(5), 728–737.
    1. Meyer, B. , Yuen, K. S. , Saase, V. , & Kalisch, R. (2019). The functional role of large‐scale brain network coordination in placebo‐induced Anxiolysis. Cerebral Cortex, 29(8), 3201–3210. 10.1093/cercor/bhy188
    1. Northoff, G. (2007). Psychopathology and pathophysiology of the self in depression—neuropsychiatric hypothesis. Journal of Affective Disorders, 104(1–3), 1–14. 10.1016/j.jad.2007.02.012
    1. Northoff, G. (2016). Spatiotemporal psychopathology I: No rest for the brain's resting state activity in depression? Spatiotemporal psychopathology of depressive symptoms. Journal of Affective Disorders, 190, 854–866. 10.1016/j.jad.2015.05.007
    1. Northoff, G. , Wiebking, C. , Feinberg, T. , & Panksepp, J. (2011). The 'resting‐state hypothesis’ of major depressive disorder‐a translational subcortical‐cortical framework for a system disorder. Neuroscience and Biobehavioral Reviews, 35(9), 1929–1945. 10.1016/j.neubiorev.2010.12.007
    1. Pecina, M. , & Zubieta, J. K. (2015). Molecular mechanisms of placebo responses in humans. Molecular Psychiatry, 20(4), 416–423. 10.1038/mp.2014.164
    1. Pedregosa, F. , Varoquaux, G. , Gramfort, A. , Michel, V. , Thirion, B. , Grisel, O. , … Dubourg, V. (2011). Scikit‐learn: Machine learning in python. Journal of Machine Learning Research, 12(Oct), 2825–2830.
    1. Philip, N. S. , Barredo, J. , van't Wout‐Frank, M. , Tyrka, A. R. , Price, L. H. , & Carpenter, L. L. (2018). Network mechanisms of clinical response to transcranial magnetic stimulation in posttraumatic stress disorder and major depressive disorder. Biological Psychiatry, 83(3), 263–272.
    1. Pizzagalli, D. A. (2011). Frontocingulate dysfunction in depression: Toward biomarkers of treatment response. Neuropsychopharmacology, 36(1), 183–206. 10.1038/npp.2010.166
    1. Pizzagalli, D. A. , Webb, C. A. , Dillon, D. G. , Tenke, C. E. , Kayser, J. , Goer, F. , … Trivedi, M. H. (2018). Pretreatment rostral anterior cingulate cortex theta activity in relation to symptom improvement in depression: A randomized clinical trial. JAMA Psychiatry, 75(6), 547–554. 10.1001/jamapsychiatry.2018.0252
    1. Posner, J. , Hellerstein, D. J. , Gat, I. , Mechling, A. , Klahr, K. , Wang, Z. , … Peterson, B. S. (2013). Antidepressants normalize the default mode network in patients with dysthymia. JAMA Psychiatry, 70(4), 373–382.
    1. Power, J. D. , Barnes, K. A. , Snyder, A. Z. , Schlaggar, B. L. , & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59(3), 2142–2154. 10.1016/j.neuroimage.2011.10.018
    1. Razza, L. B. , Moffa, A. H. , Moreno, M. L. , Carvalho, A. F. , Padberg, F. , Fregni, F. , & Brunoni, A. R. (2018). A systematic review and meta‐analysis on placebo response to repetitive transcranial magnetic stimulation for depression trials. Progress in Neuro‐Psychopharmacology and Biological Psychiatry, 81, 105–113.
    1. Rush, A. J. , Thase, M. E. , & Dubé, S. (2003). Research issues in the study of difficult‐to‐treat depression. Biological Psychiatry, 53(8), 743–753.
    1. Saad, Z. S. , Gotts, S. J. , Murphy, K. , Chen, G. , Jo, H. J. , Martin, A. , & Cox, R. W. (2012). Trouble at rest: How correlation patterns and group differences become distorted after global signal regression. Brain Connectivity, 2(1), 25–32. 10.1089/brain.2012.0080
    1. Sheehan, D. V. , Lecrubier, Y. , Sheehan, K. H. , Amorim, P. , Janavs, J. , Weiller, E. , … Dunbar, G. C. (1998). The mini‐international neuropsychiatric interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM‐IV and ICD‐10. The Journal of Clinical Psychiatry, 59(Suppl 20), 22–33 quiz 34–57.
    1. Sikora, M. , Heffernan, J. , Avery, E. T. , Mickey, B. J. , Zubieta, J.‐K. , & Peciña, M. (2016). Salience network functional connectivity predicts placebo effects in major depression. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 1(1), 68–76.
    1. Spies, M. , Kraus, C. , Geissberger, N. , Auer, B. , Klöbl, M. , Tik, M. , … Pfabigan, D. (2017). Default mode network deactivation during emotion processing predicts early antidepressant response. Translational Psychiatry, 7(1), e1008.
    1. Tétreault, P. , Mansour, A. , Vachon‐Presseau, E. , Schnitzer, T. J. , Apkarian, A. V. , & Baliki, M. N. (2016). Brain connectivity predicts placebo response across chronic pain clinical trials. PLoS Biology, 14(10), e1002570.
    1. Tik, M. , Hoffmann, A. , Sladky, R. , Tomova, L. , Hummer, A. , Navarro de Lara, L. , … Windischberger, C. (2017). Towards understanding rTMS mechanism of action: Stimulation of the DLPFC causes network‐specific increase in functional connectivity. NeuroImage, 162, 289–296. 10.1016/j.neuroimage.2017.09.022
    1. Weimer, K. , Colloca, L. , & Enck, P. (2015). Placebo effects in psychiatry: Mediators and moderators. The Lancet Psychiatry, 2(3), 246–257.
    1. Whitfield‐Gabrieli, S. , & Nieto‐Castanon, A. (2012). Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity, 2(3), 125–141.
    1. Whitton, A. E. , Deccy, S. , Ironside, M. L. , Kumar, P. , Beltzer, M. , & Pizzagalli, D. A. (2018). Electroencephalography source functional connectivity reveals abnormal high‐frequency communication among large‐scale functional networks in depression. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(1), 50–58. 10.1016/j.bpsc.2017.07.001
    1. Whitton, A. E. , Webb, C. A. , Dillon, D. G. , Kayser, J. , Rutherford, A. , Goer, F. , … Pizzagalli, D. A. (2019). Pretreatment rostral anterior cingulate cortex connectivity with salience network predicts depression recovery: Findings from the EMBARC randomized clinical trial. Biological Psychiatry, 85(10), 872–880. 10.1016/j.biopsych.2018.12.007

Source: PubMed

3
Se inscrever