Moving to business - changes in physical activity and sedentary behavior after multilevel intervention in small and medium-size workplaces

Minna Aittasalo, Matleena Livson, Sirpa Lusa, Ahti Romo, Henri Vähä-Ypyä, Kari Tokola, Harri Sievänen, Ari Mänttäri, Tommi Vasankari, Minna Aittasalo, Matleena Livson, Sirpa Lusa, Ahti Romo, Henri Vähä-Ypyä, Kari Tokola, Harri Sievänen, Ari Mänttäri, Tommi Vasankari

Abstract

Background: Regular physical activity (PA) promotes and excessive sedentary behavior (SB) deteriorates health. Yet the Finnish working-aged population spends most of the day sitting. A 1-year Moving To Business (MTB) -intervention supported small and medium-size workplaces to combat sedentariness. This paper reports the changes in employees' PA and SB from before MTB (baseline) to 1 year after baseline (follow-up).

Methods: Twelve workplaces with a total of 396 employees participated. Each workplace nominated a team to promote PA and reduce SB at organizational, working unit and employee level. The teams were mentored regionally through meetings, workshop and tools. Changes in PA and SB were assessed with a questionnaire and an accelerometer. Wald Confidence Interval (Cl) for a difference of proportions with matched pairs was used in the questionnaire data (%-points with 95% CI) and linear mixed model in the accelerometer data (minutes and % of wear-time with 95% CI).

Results: The mean age of the respondents to the questionnaire (N = 296; 75%) was 42.6 (SD 10.9), 64% were women, 95% had some education after high school, 74% worked in the day shift, 71% did sedentary work and 51% were overweight. The mean number of actions implemented in the workplaces was 6.8 and the multilevel approach was fully applied in 6 workplaces. Based on the questionnaire the time spent in SB decreased from baseline to follow-up 16% (95% CI -29 to -3) in total and 22% (-41 to -3) at work. The accelerometer showed daily increases of 33.7 min (15.3 to 52.1) and 6.8% (3.1 to 10.4) in total PA, 30.9 min (15.3 to 46.5) and 6.1% (2.9 to 9.2) in light PA and 673 (209 to 1139) more steps at work. Daily SB at work decreased 44.9 min (-68.0 to -21.8) and 7.6% (-11.9 to -3.2). Daily leisure PA declined 11.0 min (-24.9 to 2.9) and 3.2% (-6.2 to -0.2). Number of levels or actions had no effect on changes.

Conclusions: Employees' PA increased and SB reduced at work during the intervention. At the same time leisure PA decreased slightly. Workplaces can achieve meaningful changes in employees' PA and SB if assisted systematically. Controlled studies are needed to confirm the present findings.

Trial registration: NCT01999205 , registration date 11/01/2013.

Keywords: Accelerometer; Intervention; Multilevel; Physical activity; Promotion; Sedentary behavior; Workplace.

References

    1. Physical Activity Guidelines Advisory Committee . Physical Activity guidelines advisory committee report, 2008. Washington DC: U.S. Department of Health and Human Services; 2008.
    1. Husu P, Suni J, Vähä-Ypyä H, Sievänen H, Tokola K, Valkeinen H, Mäki-Opas T, Vasankari T. Objectively measured sedentary behavior and physical activity in a sample of Finnish adults: A cross-sectional study. BMC Public Health 2016; doi:10.1186/s12889-016-3591-y.
    1. Lim SS, Vos T, Flaxman AD et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; doi:10.1016/S0140-6736(12)61766-8.
    1. Sedentary Behaviour Research Network. Letter to the Editor: Standardized use of the terms “Sedentary” and “sedentary behaviours.” Appl Physiol Nutr Metab 2012; doi:10.1139/H2012-024.
    1. Biswas A, Oh PI, Faulkner GE, Bajaj RR, Silver MA, Mitchell MS, Alter DA. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: a systematic review and meta-analysis. Annals Intern Med 2015; doi:10.7326/M14-1651.
    1. Gibbs BB, Hergenroeder AL, Katzmarzyk PT, Lee IM, Jakicic JM. Definition, measurement, and health risks associated with sedentary behavior. Med Sci Sports Exerc 2015; doi:10.1249/MSS.0000000000000517.
    1. Lee I-M, Shiroma EJ, Lobelo F et al. for the Lancet Physical Activity Series Working Group. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet 2012; doi:10.1016/S0140-6736(12)61031-9.
    1. Matthews CE, George SM, Moore SC, Bowles HR, Blair A, Park Y, Troiano RP, Hollenbeck A, Schatzkin A. Amount of time spent in sedentary behaviors and cause-specific mortality in US adults. Am J Clin Nutr 2012; doi:10.3945/ajcn.111.019620.
    1. Milton K, Gale J, Stamatakis E, Bauman A. Trends in prolonged sitting time among European adults: 27 country analysis. Prev Med 2015; doi:10.1016/j.ypmed.2015.04.016.
    1. Loyen A, van der Ploeg HP, Bauman A, Brug J, Lakerveld J. European sitting championship: prevalence and correlates of self-reported sitting time in the 28 European Union member states. PLoS ONE 2016; doi:10.1371/journal.pone.0149320.
    1. Dishman RK, Oldenburg B, O'Neal H, Shephard RJ. Worksite physical activity interventions. Am J Prev Med. 1998;15:344–361. doi: 10.1016/S0749-3797(98)00077-4.
    1. Rongen A, Robroek SJW, van Lenthe FJ, Burdorf A. Workplace health promotion. A meta-analysis of effectiveness. Am J Prev Med 2013; doi:10.1016/j.amepre.2012.12.007.
    1. Conn VS, Hafdahl AR, Cooper PS, Brown LM, Lusk SL. Meta-analysis of workplace physical activity interventions. Am J Prev Med 2009; doi:10.1016/j.amepre.2009.06.008.
    1. Hutchinson AD, Wilson C. Improving nutrition and physical activity in the workplace: a meta-analysis of intervention studies. Health Prom Int 2011; doi:10.1093/heapro/dar035.
    1. Van Dongen JM, Proper KI, van Wier MF, van der Beek AJ, Bongers PM, van Mechelen W, van Tulder MW. A systematic review of the cost-effectiveness of worksite physical activity and/or nutrition programs. Scand J Work Environ Health 2012; doi: 10.5271/sjweh.3275.
    1. Commissaris DACM, Huysmans MA, Mathiassen SE, Srinivasan D, Koppes LLJ, Hendriksen IJM. Interventions to reduce sedentary behavior and increase physical activity during productive work: a systematic review. Scand J Work Environ Health 2016; doi:10.5271/sjweh.3544.
    1. Neuhaus M, Eakin EG, Straker L, Owen N, Dunstan DW, Reid N, Healy GN. Reducing occupational sedentary time: a systematic review and meta-analysis of evidence on activity-permissive workstations. Obes Rev 2014; doi:10.1111/obr.12201.
    1. Chau JY, der Ploeg HP, van Uffelen JG, Wong J, Riphagen I, Healy GN, Gilson ND, Dunstan DW, Bauman AE, Owen N, Brown WJ. Are workplace interventions to reduce sitting effective? A systematic review. Prev Med 2010; doi:10.1016/j.ypmed.2010.08.012.
    1. Gardner B, Smith L, Lorencatto F, Hamer M, Biddle SJ. How to reduce sitting time? A review of behaviour change strategies used in sedentary behaviour reduction interventions among adults. Health Psychol Rev 2015; doi:10.1080/17437199.2015.
    1. Shrestha N, Kukkonen-Harjula KT, Verbeek JH, Ijaz S, Hermans V, Bhaumik S. Workplace interventions for reducing sitting at work. Cochrane Database of Systematic Reviews 2016, Issue 3. Art. No.: CD010912. doi:10.1002/14651858.CD010912.pub3.
    1. Carnethon M, Whitsel LP, Franklin BA, Kris-Etherton P, Milani R, Pratt CA, Wagner GR. Worksite wellness programs for cardiovascular disease prevention: a policy statement from the American Heart Association. Circulation 2009; doi:10.1161/CIRCULATIONAHA.109.192653.
    1. WHO . Healthy workplaces: a model for action for employers, workers, policymakers and practitioners. Geneva: WHO; 2010.
    1. Pronk N. Physical activity promotion in business and industry. Evidence, context, and recommendations for a national plan. J Phys Act Health 2009; 6 Suppl 2:220–235.
    1. Glasgow R, Vogt T, Boles S. Evaluating the public health impact of health promotion interventions: the RE-AIM framework. Am J Public Health. 1999;89:1322–1327. doi: 10.2105/AJPH.89.9.1322.
    1. Green LW, Kreuter MW. Health promotion planning: an educational and ecological approach. New York: McGraw-Hill; 1999.
    1. Sallis JF, Owen N, Fisher EB. Ecological models of health behavior. In: Glanz K, Rimer BK, Viswanath K, editors. Health behavior and health education: theory, research, and practice. San Francisco: Jossey-Bass; 2008. pp. 465–486.
    1. Healy GN, Eakin EG, LaMontagne AD, Owen N, Winkler EAH, Wiesner G, Gunning L, Neuhaus M, Lawler S, Fjeldsoe BS, Dunstan DW. Reducing sitting time in office workers: Short-term efficacy of a multicomponent intervention. Prev Med 2013; doi:10.1016/j.ypmed.2013.04.004.
    1. McLeroy KR, Bibeau D, Steckler A, Glanz K. An ecological perspective on health promotion programs. Health Educ Behav. 1988;15:351–377. doi: 10.1177/109019818801500401.
    1. Stokols D, Allen J, Bellingham RL. The social ecology of health promotion: implications for research and practice. Am J Health Promot. 1996;10:247–251. doi: 10.4278/0890-1171-10.4.247.
    1. Sallis JF, Bauman A, Pratt M. Environmental and policy interventions to promote physical activity. Am J Prev Med. 1998;15:379–397. doi: 10.1016/S0749-3797(98)00076-2.
    1. Ball K, Timperio A, Salmon J, Giles-Corti B, Roberts R, Crawford D. Personal, social and environmental determinants of educational inequalities in walking: a multilevel study. J Epidemiol Commun Health. 2007;61:108–114. doi: 10.1136/jech.2006.048520.
    1. Bauman AE, Reis RS, Sallis JF, Loos RJ, Martin BW for the Lancet Physical Activity Series Working Group. Correlates of physical activity: why are some people physically active and others not? Lancet 2012; doi:10.1016/S0140-6736(12)60735-1.
    1. Cerin E, Leslie E, Sugiyama T, Owen N. Perceived barriers to leisure-time physical activity in adults: an ecological perspective. J Phys Act Health. 2010;7:451–459. doi: 10.1123/jpah.7.4.451.
    1. Rhodes RE, Pfaeffli LA. Mediators of physical activity behavior change among adult non-clinical populations: a review update. Int J Behav Nutr Phys Act 2010; doi:10.1186/1479-5868-7-37.
    1. Saelens BE, Sallis JF, Frank LD, Cain KL, Conway TL, Chapman JE, Slymen DJ, Kerr J. Neighborhood environment and psychosocial correlates of adults’ physical activity. Med Sci Sports Exerc. 2012; doi:10.1249/MSS.0b013e318237fe18.
    1. Bennie JA, Timperio AF, Crawford DA, Dunstan DW, Salmon JL. Associations between social ecological factors and self-reported short physical activity breaks during work hours among desk-based employees. Prev Med 2011; doi:10.1016/j.ypmed.2011.05.015.
    1. O’Donoghue G, Perchoux C, Mensah K, Lakerveld J, van der Ploeg H, Bernaards C, Chastin SFM, Simon C, O’Gorman D, Nazare J-A on behalf of the DEDIPAC consortium. A systematic review of correlates of sedentary behaviour in adults aged 18–65 years: a socio-ecological approach. BMC Public Health 2016; doi:10.1186/s12889-016-2841-3.
    1. Owen N, Sugiyama T, Eakin EE, Gardiner PA, Tremblay MS, Sallis JF. Adults' sedentary behavior determinants and interventions. Am J Prev Med 2011; doi:10.1016/j.amepre.2011.05.013.
    1. Owen N, Salmon J, Koohsari MJ, Turrell G, Giles-Corti B. Sedentary behavior and health: mapping environmental and social contexts to underpin chronic disease prevention. Br J Sports Med 2014; doi:10.1136/bjsports-2013-093107.
    1. Cochrane T, Davey RC. Increasing uptake of physical activity: a social ecological approach. J R Soc Promot Heal. 2008;128:31–40. doi: 10.1177/1466424007085223.
    1. To QG, Chen TTL, Magnussen CG, To KG. Workplace physical activity interventions: A systematic review. Am J Health Promot 2013; doi:10.4278/ajhp.120425-LIT-222.
    1. Manini TM, Carr LJ, King AC, Marshall S, Robinson TN, Rejeski WJ. Interventions to reduce sedentary behavior. Med Sci Sports Exerc 2015; doi:10.1249/MSS.0000000000000519.
    1. Martin A, Fitzsimons C, Jepson R, Saunders DH, van der Ploeg HP, Teixeira PJ, Gray CM, Mutrie N; Euro FIT consortium. Interventions with potential to reduce sedentary time in adults: systematic review and meta-analysis. Br J Sports Med 2015; doi:10.1136/bjsports-2014-094524.
    1. Schölmerich VLN, Kawachi I. Translating the socio-ecological perspective into multilevel interventions: Gaps between theory and practice. Health Educ Behav 2016; doi:10.1177/1090198115605309.
    1. Richard L, Gauvin L, Raine K. Ecological models revisited: their uses and evolution in health promotion over two decades. Annu Rev Public Health 2011; doi:10.1146/annurev-publhealth-031210-101141.
    1. Golden SD, Earp JAL. Social ecological approaches to individuals and their contexts: Twenty years of Health Education & Behavior health promotion interventions. Health Educ Behav 2012; doi:10.1177/1090198111418634.
    1. Kahn-Marshall JL, Gallant MP. Making healthy behaviors the easy choice for employees: A review of the literature on environmental and policy changes in worksite health promotion. Health Educ Behav 2012; doi:10.1177/1090198111434153.
    1. Official Statistics of Finland (OSF): Finnish enterprises [e-publication]. Helsinki: Statistics Finland [accessed: 15 Sept 2015]. Access method:
    1. Helldan A, Helakorpi S, Virtanen S, Uutela A. Health behaviour and health among the Finnish adult population, spring 2013. National Institute for Health and Welfare, Report 21/2013.
    1. Chau JY, van der Ploeg HP, Dunn S, Kurko J, Bauman AE. A tool for measuring workers’ sitting time by domain: the Workforce Sitting Questionnaire. Br J Sports Med 2011; doi:10.1136/bjsports-2011-090214.
    1. Vähä-Ypyä H, Vasankari T, Husu P, Suni J, Sievänen H. A universal, accurate intensity-based classification of different physical activities using raw data of accelerometer. Clin Physiol Funct Imaging 2015; doi:10.1111/cpf.12127.
    1. Trost SG, McIver KL, Pate RR. Conducting accelerometer-based activity assessments in field-based research. Med Sci Sport sci Exerc 2005; 37(11 Suppl):S531-S543.
    1. Matthews CE, Hagströmer M, Pober DM, Bowles HR. Best practices for using physical activity monitors in population-based research. Med Sci Sports Exerc 2012; doi:10.1249/MSS.0b013e3182399e5b.
    1. Vähä-Ypyä H, Vasankari T, Husu P, Mänttäri A, Vuorimaa T, Suni J, Sievänen H. Validation of cut-points for evaluating the intensity of physical activity with accelerometry-based mean amplitude deviation (MAD). PLoS One 2015; doi:10.1371/journal.pone.0134813.
    1. Schwarz GE. “Estimating the dimension of a model”, Annals of Statistics 1978; doi:10.1214/aos/1176344136.
    1. Chastin SF, Egerton T, Leask C, Stamatakis E. Meta-analysis of the relationship between breaks in sedentary behavior and cardiometabolic health. Obesity (Silver Spring) 2015; doi:10.1002/oby.21180.
    1. Mansoubi M, Pearson N, Biddle SJ, Clemes SA. Using sit-to-stand workstations in offices: is there a compensation effect? Med Sci Sports Exerc 2016; doi:10.1249/MSS.0000000000000802.
    1. Witt LB, Olsen D, Ablah E. Motivating factors for small and midsized businesses to implement worksite health promotion. Health Promot Pract 2013; doi:10.1177/1524839912472504.
    1. Leykum LK, Pugh JA, Lanham HJ, Harmon J, McDaniel RR. Implementation research design: integrating participatory action research into randomized controlled trials. Implement Sci 2009; doi:10.1186/1748-5908-4-69.
    1. Parry S, Straker L, Gilson ND, Smith AJ. Participatory workplace interventions can reduce sedentary time for office workers – a randomized controlled trial. PLoS One 2013; doi:10.1371/journal.pone.0078957.
    1. Linnan LA, Sorensen G, Colditz G, Klar DN, Emmons KM. Using theory to understand the multiple determinants of low participation in worksite health promotion programs. Health Educ Behav. 2001;28:591–607. doi: 10.1177/109019810102800506.
    1. Hall ME, Bergman RJ, Nivens S. Worksite health promotion program participation: A study to examine the determinants of participation. Health Promot Pract 2014; doi:10.1177/1524839913510721.
    1. Glasgow RE, McCaul KD, Fisher KJ. Participation in worksite health promotion: a critique of the literature and recommendations for future practice. Health Educ Q. 1993;20:391–408. doi: 10.1177/109019819302000309.
    1. Wilson MG, Basta TB, Bynum BH, DeJoy DM, Vandenberg RJ, Dishman RK. Do intervention fidelity and dose influence outcomes? Results from the Move to Improve worksite physical activity program. Health Educ Res 2010; doi:10.1093/her/cyn065.
    1. Dishman RK, Vandenberg RJ, Motl RW, Wison MG, DeJoy DM. Dose relations between goal setting theory-based correlates of goal setting and increases in physical activity during a workplace trial. Health Educ Journal 2010; doi: 10.1093/her/cyp042.
    1. Bull SS, Gillette C, Glasgow RE, Estabrooks P. Work site health promotion research: to what extent can we generalize the results and what is needed to translate research to practice? Health Educ Behav. 2003;30:537–549. doi: 10.1177/1090198103254340.
    1. Peters DH, Adam T, Alonge O, Agyepong IA, Tran N. Republished research: Implementation research: what is it and how to do it. Br J Sports Med 2014; doi:10.1136/bmj.f6753.
    1. Robroek SJW, van Lenthe FJ, van Empelen P, Burdorf A. Determinants of participation in worksite health promotion programmes: a systematic review. Int J Behav Nutr Phys Act 2009; doi:10.1186/1479-5868-6-26.
    1. Dishman RK, DeJoy DM, Wilson MG, Vandenberg RJ. Move to Improve. A randomized workplace trial to increase physical activity. Am J Prev Med 2009; doi:10.1016/j.amepre.2008.09.038.
    1. Dunstan DW, Wiesner G, Eakin EG, Neuhaus M, Owen N, LaMontagne AD, Moodie M, Winkler EAH, Fjeldsoe BS, Lawler S, Healy GN. Reducing office workers’ sitting time: rationale and study design for the Stand Up Victoria cluster randomized trial. BMC Public Health 2013; doi:10.1186/1471-2458-13-1057.
    1. Healy GN, Eakin EG, Owen N, Lamontagne AD, Moodie M, Winkler EAH, Fjeldsoe BS, Wiesner G, Willenberg L, Dunstan DW. A cluster randomized controlled trial to reduce office workers’ sitting time: effect on activity outcomes. Med Sci Sports Exerc. 2016;48:1787–1797. doi: 10.1249/MSS.0000000000000972.
    1. Neuhaus M, Healy GN, Dunstan DW, Owen N, Eakin EG. Workplace sitting and height-adjustable workstations. A randomized controlled trial. Am J Prev Med 2014; doi:10.1016/j.amepre.2013.09.009.

Source: PubMed

3
Se inscrever