Novel antisense therapy targeting microRNA-132 in patients with heart failure: results of a first-in-human Phase 1b randomized, double-blind, placebo-controlled study

Jörg Täubel, Wilfried Hauke, Steffen Rump, Janika Viereck, Sandor Batkai, Jenny Poetzsch, Laura Rode, Henning Weigt, Celina Genschel, Ulrike Lorch, Carmen Theek, Arthur A Levin, Johann Bauersachs, Scott D Solomon, Thomas Thum, Jörg Täubel, Wilfried Hauke, Steffen Rump, Janika Viereck, Sandor Batkai, Jenny Poetzsch, Laura Rode, Henning Weigt, Celina Genschel, Ulrike Lorch, Carmen Theek, Arthur A Levin, Johann Bauersachs, Scott D Solomon, Thomas Thum

Abstract

Aims: Cardiac microRNA-132-3p (miR-132) levels are increased in patients with heart failure (HF) and mechanistically drive cardiac remodelling processes. CDR132L, a specific antisense oligonucleotide, is a first-in-class miR-132 inhibitor that attenuates and even reverses HF in preclinical models. The aim of the current clinical Phase 1b study was to assess safety, pharmacokinetics, target engagement, and exploratory pharmacodynamic effects of CDR132L in patients on standard-of-care therapy for chronic ischaemic HF in a randomized, placebo-controlled, double-blind, dose-escalation study (NCT04045405).

Methods and results: Patients had left ventricular ejection fraction between ≥30% and <50% or amino terminal fragment of pro-brain natriuretic peptide (NT-proBNP) >125 ng/L at screening. Twenty-eight patients were randomized to receive CDR132L (0.32, 1, 3, and 10 mg/kg body weight) or placebo (0.9% saline) in two intravenous infusions, 4 weeks apart in four cohorts of seven (five verum and two placebo) patients each. CDR132L was safe and well tolerated, without apparent dose-limiting toxicity. A pharmacokinetic/pharmacodynamic dose modelling approach suggested an effective dose level at ≥1 mg/kg CDR132L. CDR132L treatment resulted in a dose-dependent, sustained miR-132 reduction in plasma. Patients given CDR132L ≥1 mg/kg displayed a median 23.3% NT-proBNP reduction, vs. a 0.9% median increase in the control group. CDR132L treatment induced significant QRS narrowing and encouraging positive trends for relevant cardiac fibrosis biomarkers.

Conclusion: This study is the first clinical trial of an antisense drug in HF patients. CDR132L was safe and well tolerated, confirmed linear plasma pharmacokinetics with no signs of accumulation, and suggests cardiac functional improvements. Although this study is limited by the small patient numbers, the indicative efficacy of this drug is very encouraging justifying additional clinical studies to confirm the beneficial CDR132L pharmacodynamic effects for the treatment of HF.

Keywords: Cardiac remodelling; Clinical trial Phase 1b study; Heart failure; microRNAs.

© The Author(s) 2020. Published by Oxford University Press on behalf of the European Society of Cardiology.

Figures

Graphical abstract
Graphical abstract
Figure 1
Figure 1
Study profile.
Figure 2
Figure 2
Study participant flow chart.
Figure 3
Figure 3
Selected safety variables over time. Data are mean (95% confidence interval). KIM-1, kidney injury molecule-1; QTc, corrected QT interval; bpm, beats per minute.
Figure 4
Figure 4
Plasma CDR132L concentrations through 48 h after CDR132L administrations. Data are mean (95% confidence interval). Measurements were taken 9 min and 1, 3, 9, 24, and 48 h after CDR132L administration. *CDR132L concentration fell below the lower limit of quantification at subsequent time points.
Figure 5
Figure 5
Plasma miR-132 levels in patients after CDR132L treatment. (A) Median with 25%/75% interquartile ranges of plasma miR-132 levels in patients over the study course (pre = immediately before, post = 1h after administration). (B) Individual median miR-132 levels in healthy subjects (n = 30; blood bank samples) and in patients (n = 25) at study end (Day 112). P-value: Mann–Whitney U test comparing to the placebo group.
Figure 6
Figure 6
Changes in exploratory pharmacodynamic variables, before first study treatment vs. end of study (Day 112). ‘Non-PD active’: patients receiving placebo or the 0.32 mg/kg CDR132L, ‘PD active’: patients receiving 1, 3, or 10 mg/kg CDR132L. (A) Median (circles) and 25%/75% interquartile ranges (bars) for relative changes in NT-proBNP from baseline to Day 112. (B) Percentages of patients with a >2% absolute increase in left ventricular ejection fraction and a >10% reduction in NT-proBNP, or both. (C) Corresponding mean ± SEM end-of-study plasma miR-132 levels. (D) Mean ± SEM changes in galectin-3, suppression of tumourgenicity-2, lipocalin-2, and matrix metallopeptidase-1. (E) Mean ± SEM changes in QRS narrowing normalized to pre-dosing measurements. P-values: Fisher's exact test (A, B, D, and E) or Mann–Whitney U test (C) comparing to ‘non-PD active’. Gal-3, galectin-3; MMP-1, matrix metallopeptidase-1; NGAL, lipocalin-2; ST-2, suppression of tumourgenicity-2.
Take home figure
Take home figure
This first-in-human study confirmed that the novel treatment concept with an antisense oligonucleotide directed against miR-132 is safe and well-tolerated and provided indicative beneficial pharmacodynamic effects for the treatment of heart failure.
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/7954267/bin/ehaa898f7.jpg

References

    1. Braunwald E. The war against heart failure: the Lancet lecture. Lancet 2015;385:812–824.
    1. Rossignol P, Hernandez AF, Solomon SD, Zannad F.. Heart failure drug treatment. Lancet 2019;393:1034–1044.
    1. Ucar A, Gupta SK, Fiedler J, Erikci E, Kardasinski M, Batkai S, Dangwal S, Kumarswamy R, Bang C, Holzmann A, Remke J, Caprio M, Jentzsch C, Engelhardt S, Geisendorf S, Glas C, Hofmann TG, Nessling M, Richter K, Schiffer M, Carrier L, Napp LC, Bauersachs J, Chowdhury K, Thum T.. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun 2012;3:1078.
    1. Eskildsen TV, Jeppesen PL, Schneider M, Nossent AY, Sandberg MB, Hansen PBL, Jensen CH, Hansen ML, Marcussen N, Rasmussen LM, Bie P, Andersen DC, Sheikh SP.. Angiotensin II regulates microRNA-132/-212 in hypertensive rats and humans. Int J Mol Sci 2013;14:11190–11207.
    1. Foinquinos A, Batkai S, Genschel C, Viereck J, Rump S, Gyöngyösi M, Traxler D, Riesenhuber M, Spannbauer A, Lukovic D, Weber N, Zlabinger K, Hašimbegović E, Winkler J, Fiedler J, Dangwal S, Fischer M, Roche J. D L, Wojciechowski D, Kraft T, Garamvölgyi R, Neitzel S, Chatterjee S, Yin X, Bär C, Mayr M, Xiao K, Thum T.. Preclinical development of a miR-132 inhibitor for heart failure treatment. Nat Commun 2020;11:633.
    1. Batkai S, Genschel C, Viereck J, Rump S, Bär C, Borchert T, Traxler D, Riesenhuber M, Spannbauer A, Lukovic D, Zlabinger K, Hašimbegović E, Winkler J, Garamvölgyi R, Neitzel S, Gyöngyösi M, Thum T.. CDR132L improves systolic and diastolic function in a large animal model of chronic heart failure. Eur J Heart 2021;42:192–201.
    1. Lu D, Thum T.. RNA-based diagnostic and therapeutic strategies for cardiovascular disease. Nat Rev Cardiol 2019;16:661–674.
    1. Lavenniah A, Luu TDA, Li YP, Lim TB, Jiang J, Ackers-Johnson M, Foo RS-Y.. Engineered circular RNA sponges act as miRNA inhibitors to attenuate pressure overload-induced cardiac hypertrophy. Mol Ther 2020;28:1506–1517.
    1. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, González-Juanatey JR, Harjola V-P, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P; Authors/Task Force Members. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution. Eur J Heart Fail England 2016;18:891–975.
    1. NICE chronic heart failure guideline. NICE guideline. Guidelines. .
    1. ICH E6 (R2) Good clinical practice. European Medicines Agency. .
    1. Revised guideline on first-in-human clinical trials. European Medicines Agency. .
    1. FDA. Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers; 2005. .
    1. Smith BP, Vandenhende FR, DeSante KA, Farid NA, Welch PA, Callaghan JT, Forgue ST.. Confidence interval criteria for assessment of dose proportionality. Pharm Res 2000;17:1278–1283.
    1. Chi X, Gatti P, Papoian T.. Safety of antisense oligonucleotide and siRNA-based therapeutics. Drug Discov Today 2017;22:823–833.
    1. Sewing S, Roth AB, Winter M, Dieckmann A, Bertinetti-Lapatki C, Tessier Y, McGinnis C, Huber S, Koller E, Ploix C, Reed JC, Singer T, Rothfuss A.. Assessing single-stranded oligonucleotide drug-induced effects in vitro reveals key risk factors for thrombocytopenia. PLoS One 2017;12:e0187574.
    1. Frazier KS. Antisense oligonucleotide therapies: the promise and the challenges from a toxicologic pathologist’s perspective. Toxicol Pathol 2015;43:78–89.
    1. Stein CA, Castanotto D.. FDA-approved oligonucleotide therapies in 2017. Mol Ther 2017;25:1069–1075.
    1. ICH E14 Clinical Evaluation of QT/QTc Interval Prolongation and Proarrhythmic Potential for Non-Antiarrhythmic Drugs. European Medicines Agency. .
    1. Thum T, Galuppo P, Wolf C, Fiedler J, Kneitz S, Laake L. V, Doevendans PA, Mummery CL, Borlak J, Haverich A, Gross C, Engelhardt S, Ertl G, Bauersachs J.. MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 2007;116:258–267.
    1. Masson S, Batkai S, Beermann J, Bär C, Pfanne A, Thum S, Magnoli M, Balconi G, Nicolosi GL, Tavazzi L, Latini R, Thum T.. Circulating microRNA-132 levels improve risk prediction for heart failure hospitalization in patients with chronic heart failure. Eur J Heart Fail 2018;20:78–85.
    1. McMurray JJV. Clinical practice. Systolic heart failure. N Engl J Med 2010;362:228–238.
    1. Levin AA, Yu RZ, Geary RS, Basic principles of the pharmacokinetics of antisense oligonucleotide drugs. In Crooke ST, ed. Antisense Drug Technology. 2nd ed.; Taylor & Francis Inc, 2008.
    1. Raal FJ, Santos RD, Blom DJ, Marais AD, Charng M-J, Cromwell WC, Lachmann RH, Gaudet D, Tan JL, Chasan-Taber S, Tribble DL, Flaim JD, Crooke ST.. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet 2010;375:998–1006.
    1. Janssen HLA, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, Meer A. V D, Patick AK, Chen A, Zhou Y, Persson R, King BD, Kauppinen S, Levin AA, Hodges MR.. Treatment of HCV infection by targeting microRNA. N Engl J Med 2013;368:1685–1694.
    1. Salta E, Strooper BD.. microRNA-132: a key noncoding RNA operating in the cellular phase of Alzheimer’s disease. FASEB J 2017;31:424–433.
    1. Hanin G, Yayon N, Tzur Y, Haviv R, Bennett ER, Udi S, Krishnamoorthy YR, Kotsiliti E, Zangen R, Efron B, Tam J, Pappo O, Shteyer E, Pikarsky E, Heikenwalder M, Greenberg DS, Soreq H.. miRNA-132 induces hepatic steatosis and hyperlipidaemia by synergistic multitarget suppression. Gut 2018;67:1124–1134.
    1. Bijkerk R, Bruin R. D, Solingen C. V, Gils J. V, Duijs JMGJ, Veer E. V D, Rabelink TJ, Humphreys BD, Zonneveld A. V.. Silencing of microRNA-132 reduces renal fibrosis by selectively inhibiting myofibroblast proliferation. Kidney Int 2016;89:1268–1280.

Source: PubMed

3
Se inscrever