Fit with good fat? The role of n-3 polyunsaturated fatty acids on exercise performance

Mariasole Da Boit, Angus M Hunter, Stuart R Gray, Mariasole Da Boit, Angus M Hunter, Stuart R Gray

Abstract

N-3 PUFA (n-3) polyunsaturated fatty acids (PUFA) are a family of fatty acids mainly found in oily fish and fish oil supplements. The effects of n-3 PUFA on health are mainly derived from its anti-inflammatory proprieties and its influence on immune function. Lately an increased interest in n-3 PUFA supplementation has reached the world of sport nutrition, where the majority of athletes rely on nutrition strategies to improve their training and performance. A vast amount of attention is paid in increasing metabolic capacity, delaying the onset of fatigue, and improving muscle hypertrophy and neuromuscular function. Nutritional strategies are also frequently considered for enhancing recovery, improving immune function and decreasing oxidative stress. The current review of the literature shows that data regarding the effects of n-3PUFA supplementation are conflicting and we conclude that there is, therefore, not enough evidence supporting a beneficial role on the aforementioned aspects of exercise performance.

Keywords: Athletes; Exercise performance; Fish oil; Nutrition.

Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

References

    1. Simopoulos A.P. Omega-3 fatty acids and athletics. Curr Sports Med Rep. 2007;6(4):230–236.
    1. FAO/WHO Expert Consultation on Fats and Fatty Acids in Human Nutrition . 2008. WHO, November 10–14, 2008. [Geneva, Switzerland]
    1. Calder P.C. Marine n-3 PUFA fatty acids and inflammatory processes: effects mechanisms and clinical relevance. Biochim Biophys Acta. 2015;1851(4):469–484.
    1. Lee T.C., Ivester P., Hester A.G., Sergeant S., Case L.D., Morgan T. The impact of polyunsaturated fatty acid-based dietary supplements on disease biomarkers in a metabolic syndrome/diabetes population. Lipids Health Dis. 2014;13:196.
    1. Wallin A., Di Giuseppe D., Orsini N., Patel P.S., Forouhi N.G., Wolk A. Fish consumption, dietary long-chain n-3 fatty acids, and risk of type 2 diabetes: systematic review and meta-analysis of prospective studies. Diabetes Care. 2012;35(4):918–929.
    1. Löfvenborg J.E., Andersson T., Carlsson P.O., Dorkhan M., Groop L., Martinell M. Fatty fish consumption and risk of latent autoimmune diabetes in adults. Nutr Diabetes. 2014;4:e139.
    1. Clark W.F., Parbtani A., Huff M.W., Spanner E., de Salis H., Chin-Yee I. Flaxseed: a potential treatment for lupus nephritis. Kidney Int. 1995;48(2):475–480.
    1. Mandaşescu S., Mocanu V., Dăscaliţa A.M., Haliga R., Nestian I., Stitt P.A. Flaxseed supplementation in hyperlipidemic patients. Rev Med Chir Soc Med Nat Iasi. 2005;109(3):502–506.
    1. Maki K.C., Yurko-Mauro K., Dicklin M.R., Schild A.L., Geohas J.G. A new, microalgal DHA- and EPA-containing oil lowers triacylglycerols in adults with mild-to-moderate hypertriglyceridemia. Prostaglandins Leukot Essent Fatty Acids. 2014;91(4):141–148.
    1. Phang M., Lincz L.F., Garg M.L. Eicosapentaenoic and docosahexaenoic acid supplementations reduce platelet aggregation and hemostatic markers differentially in men and women. J Nutr. 2013;143(4):457–463.
    1. Gao L.G., Cao J., Mao Q.X., Lu X.C., Zhou X.L., Fan L.A. Influence of n-3 PUFA polyunsaturated fatty acid-supplementation on platelet aggregation in humans: a meta-analysis of randomized controlled trials. Atherosclerosis. 2013;226(2):328–334.
    1. De Lorgeril M., Renaud S., Mamelle N., Salen P., Martin J.L., Monjaud I. Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet. 1994;343(8911):1454–1459.
    1. GISSI-Prevenzione Investigators, Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto miocardico Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Lancet. 1999;354:447–455.
    1. Bosch J., Gerstein H.C., Dagenais G.R., Díaz R., Dyal L., Jung H. The ORIGIN trial investigators. N–3 fatty acids and cardiovascular outcomes in patients with dysglycemia. N Engl J Med. 2012;367(4):309–318.
    1. Skulas-Ray A.C., Kris-Etherton P.M., Harris W.S., Vanden Heuvel J.P., Wagner P.R., West S.G. Dose–response effects of n-3 PUFA fatty acids on triglycerides, inflammation, and endothelial function in healthy persons with moderate hypertriglyceridemia. Am J Clin Nutr. 2011;93(2):243–252.
    1. Rizos E., Ntzani E., Bika E., Kostapanos M., Elisaf M. Association between omega-3 fatty acid supplementation and risk of major cardiovascular disease events: a systematic review and meta-analysis. JAMA. 2012;308(10):1024–1033.
    1. Chowdhury R., Stevens S., Gorman D., Pan A., Warnakula S., Chowdhury S. Association between fish consumption, long chain omega 3 fatty acids, and risk of cerebrovascular disease: systematic review and meta-analysis. BMJ. 2012;345:e6698.
    1. Wu J.H., Micha R., Imamura F., Pan A., Biggs M.L., Ajaz O. Omega-3 fatty acids and incident type 2 diabetes: a systematic review and meta-analysis. Br J Nutr. 2012;107(Suppl. 2):S214–S227.
    1. Smith G.I., Atherton P., Reeds D.N., Mohammed B.S., Rankin D., Rennie M.J. N-3 PUFA polyunsaturated fatty acids augment the muscle protein anabolic response to hyperinsulinaemia-hyperaminoacidaemia in healthy young and middle-aged men and women. Clin Sci (Lond) 2011;121(6):267–278.
    1. You J.S., Park M.N., Song W., Lee Y.S. Dietary fish oil alleviates soleus atrophy during immobilization in association with Akt signaling to p70s6k and E3 ubiquitin ligases in rats. Appl Physiol Nutr Metab. 2010;35(3):310–318.
    1. Smith G.I., Julliand S., Reeds D.N., Sinacore D.R., Klein S., Mittendorfer B. Fish oil-derived n-3 PUFA therapy increases muscle mass and function in healthy older adults. Am J Clin Nutr. 2015;102(1):115–122.
    1. Barber M.D., Ross J.A., Voss A.C., Tisdale M.J., Fearon K.C. The effect of an oral nutritional supplement enriched with fish oil on weight-loss in patients with pancreatic cancer. Br J Cancer. 1999;81(1):80–86.
    1. Wigmore S.J., Barber M.D., Ross J.A., Tisdale M.J., Fearon K.C. Effect of oral eicosapentaenoic acid on weight loss in patients with pancreatic cancer. Nutr Cancer. 2000;36(2):177–184.
    1. Gingras A.A., White P.J., Chouinard P.Y., Julien P., Davis T.A., Dombrowski L. Long-chain n-3 PUFA fatty acids regulate bovine whole-body protein metabolism by promoting muscle insulin signalling to the Akt–mTOR–S6 K1 pathway and insulin sensitivity. J Physiol. 2007;579(Pt 1):269–284.
    1. Smith H.J., Lorite M.J., Tisdale M.J. Effect of a cancer cachectic factor on protein synthesis/degradation in murine C2C12 myoblasts: modulation by eicosapentaenoic acid. Cancer Res. 1999;59(21):5507–5513.
    1. Kamolrat T., Gray S.R. The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes. Biochem Biophys Res Commun. 2013;432(4):593–598.
    1. Rodacki C.L., Rodacki A.L., Pereira G., Naliwaiko K., Coelho I., Pequito D. Fish-oil supplementation enhances the effects of strength training in elderly women. Am J Clin Nutr. 2012;95(2):428–436.
    1. McGlory C., Wardle S.L., Macnaughton L.S., Witard O.C., Scott F., Dick J. Fish oil supplementation suppresses resistance exercise and feeding-induced increases in anabolic signaling without affecting myofibrillar protein synthesis in young men. Physiol Rep. 2016;4(6)
    1. Jouris K.B., McDaniel J.L., Weiss E.P. The effect of n-3 PUFA fatty acid supplementation on the inflammatory response to eccentric strength exercise. J Sports Sci Med. 2011;10(3):432–438.
    1. Lembke P., Capodice J., Hebert K., Swenson T. Influence of N-3 PUFA (N3) index on performance and wellbeing in young adults after heavy eccentric exercise. J Sports Sci Med. 2014;13(1):151–156.
    1. Corder K.E., Newsham K.R., McDaniel J.L., Ezekiel U.R., Weiss E.P. Effects of short-term docosahexaenoic acid supplementation on markers of inflammation after eccentric strength exercise in women. J Sports Sci Med. 2016;15(1):176–183.
    1. Tsuchiya Y., Yanagimoto K., Nakazato K., Hayamizu K., Ochi E. Eicosapentaenoic and docosahexaenoic acids-rich fish oil supplementation attenuates strength loss and limited joint range of motion after eccentric contractions: a randomized, double-blind, placebo-controlled, parallel-group trial. Eur J Appl Physiol. 2016;116:1179–1188.
    1. Tinsley G.M., Gann J.J., Huber S.R., Andre T.L., La Bounty P.M., Bowden R.G. Effects of fish oil supplementation on post-resistance exercise muscle soreness. J Diet Suppl. 2016;21:1–12.
    1. Mickleborough T.D., Sinex J.A., Platt D., Chapman R.F., Hirt M. The effects PCSO-524®, a patented marine oil lipid and omega-3 PUFA blend derived from the New Zealand green lipped mussel (Perna canaliculus), on indirect markers of muscle damage and inflammation after muscle damaging exercise in untrained men: a randomized, placebo controlled trial. J Int Soc Sports Nutr. 2015;12:10.
    1. Lenn J., Uhl T., Mattacola C., Boissonneault G., Yates J., Ibrahim W. The effects of fish oil and isoflavones on delayed onset muscle soreness. Med Sci Sports Exerc. 2002;34(10):1605–1613.
    1. Gray P., Chappell A., Jenkinson A.M., Thies F., Gray S.R. Fish oil supplementation reduces markers of oxidative stress but not muscle soreness after eccentric exercise. Int J Sport Nutr Exerc Metab. 2014;24(2):206–214.
    1. Pinel A., Rigaudière J.P., Laillet B., Pouyet C., Malpuech-Brugère C., Prip-Buus C. N-3PUFA differentially modulate palmitate-induced lipotoxicity through alterations of its metabolism in C2C12 muscle cells. Biochim Biophys Acta. 2016;1861(1):12–20.
    1. Capel F., Acquaviva C., Pitois E., Laillet B., Rigaudière J.P., Jouve C. DHA at nutritional doses restores insulin sensitivity in skeletal muscle by preventing lipotoxicity and inflammation. J Nutr Biochem. 2015;26(9):949–959.
    1. Lam Y.Y., Hatzinikolas G., Weir J.M., Janovská A., McAinch A.J., Game P. Insulin-stimulated glucose uptake and pathways regulating energy metabolism in skeletal muscle cells: the effects of subcutaneous and visceral fat, and long-chain saturated, n-3 and n-6 polyunsaturated fatty acids. Biochim Biophys Acta. 2011;1811(7–8):468–475.
    1. Hessvik N.P., Bakke S.S., Fredriksson K., Boekschoten M.V., Fjørkenstad A., Koster G. Metabolic switching of human myotubes is improved by n-3 fatty acids. J Lipid Res. 2010;51(8):2090–2104.
    1. Philp L.K., Heilbronn L.K., Janovska A., Wittert G.A. Dietary enrichment with fish oil prevents high fat-induced metabolic dysfunction in skeletal muscle in mice. PLoS One. 2015;10(2):e0117494.
    1. Noreen E., Sass M., Crowe M., Pabon V., Brandauer J., Averill L. Effects of supplemental fish oil on resting metabolic rate, body composition, and salivary cortisol in healthy adults. J Int Soc Sports Nutr. 2010;7:31.
    1. Bortolotti M., Tappy L., Schneiter P. Fish oil supplementation does not alter energy efficiency in healthy males. Clin Nutr. 2007;26(2):225–230.
    1. O'Keefe J.H., Jr., Abuissa H., Sastre A., Steinhaus D.M., Harris W.S. Effects of omega-3 fatty acids on resting heart rate, heart rate recovery after exercise, and heart rate variability in men with healed myocardial infarctions and depressed ejection fractions. Am J Cardiol. 2006;97(8):1127–1130.
    1. Walser B., Giordano R.M., Stebbins C.L. Supplementation with omega-3 polyunsaturated fatty acids augments brachial artery dilation and blood flow during forearm contraction. Eur J Appl Physiol. 2006;97:347–354.
    1. Peoples G.E., McLennan P.L., Howe P.R., Groeller H.J. Fish oil reduces heart rate and oxygen consumption during exercise. J Cardiovasc Pharmacol. 2008;52(6):540–547.
    1. Ninio D.M., Hill A.M., Howe P.R., Buckley J.D., Saint D.A. Docosahexaenoic acid-rich fish oil improves heart rate variability and heart rate responses to exercise in overweight adults. Br J Nutr. 2008;100(5):1097–1103.
    1. Buckley J.D., Burgess S., Murphy K.J., Howe P.R. DHA-rich fish oil lowers heart rate during submaximal exercise in elite Australian Rules footballers. J Sci Med Sport. 2009;12(4):503–507.
    1. Rontoyanni V.G., Hall W.L., Pombo-Rodrigues S., Appleton A., Chung R., Sanders T.A.B. A comparison of the changes in cardiac output and systemic vascular resistance during exercise following high-fat meals containing DHA or EPA. Br J Nutr. 2012;108(3):492–499.
    1. Kawabata F., Neya M., Hamazaki K., Watanabe Y., Kobayashi S., Tsuji T. Supplementation with eicosapentaenoic acid-rich fish oil improves exercise economy and reduces perceived exertion during submaximal steady-state exercise in normal healthy untrained men. Biosci Biotechnol Biochem. 2014;78(12):2081–2088.
    1. Macartney M.J., Hingley L., Brown M.A., Peoples G.E., McLennan P.L. Intrinsic heart rate recovery after dynamic exercise is improved with an increased omega-3 index in healthy males. Br J Nutr. 2014;112(12):1984–1992.
    1. Peoples G.E., McLennan P.L. Dietary fish oil reduces skeletal muscle oxygen consumption, provides fatigue resistance and improves contractile recovery in the rat in vivo hindlimb. Br J Nutr. 2010;104(12):1771–1779.
    1. Gray P., Gabriel B., Thies F., Gray S.R. Fish oil supplementation augments post-exercise immune function in young males. Brain Behav Immun. 2012;26(8):1265–1272.
    1. Da Boit M., Mastalurova I., Brazaite G., McGovern N., Thompson K., Gray S.R. The effect of krill oil supplementation on exercise performance and markers of immune function. PLoS One. 2015;10(9):e0139174.
    1. Oostenbrug G.S., Mensink R.P., Hardeman M.R., De Vries T., Brouns F., Hornstra G. Exercise performance, red blood cell deformability, and lipid peroxidation: effects of fish oil and vitamin E. J Appl Physiol. 1997;83(3):746–752.
    1. Żebrowska A., Mizia-Stec K., Mizia M., Gąsior Z., Poprzęcki S. Omega-3 fatty acids supplementation improves endothelial function and maximal oxygen uptake in endurance-trained athletes. Eur J Sport Sci. 2015;15(4):305–314.
    1. Walsh N.P., Gleeson M., Shephard R.J., Gleeson M., Woods J.A., Bishop N.C. Position statement. Part one: immune function and exercise. Exerc Immunol Rev. 2011;17(1077–5552):1077–5552. [pp. 6–63]
    1. Peters E.M., Bateman E.D. Ultramarathon running and upper respiratory tract infections. An epidemiological survey. Suid-Afrikaanse tydskrif vir geneeskundeS Afr Med J. 1983;64(0256–9574):15. [pp. 582–584]
    1. Gleeson M., Bishop N.C. The T cell and NK cell immune response to exercise. Ann Transplant. 2005;10(4):43–48.
    1. Shek P.N., Sabiston B.H., Buguet A., Radomski M.W. Strenuous exercise and immunological changes: a multiple-time-point analysis of leukocyte subsets, CD4/CD8 ratio, immunoglobulin production and NK cell response. Int J Sports Med. 1995;16(7):466–474.
    1. Robson P.J., Blannin A.K., Walsh N.P., Castell L.M., Gleeson M. Effects of exercise intensity, duration and recovery on in vitro neutrophil function in male athletes. Int J Sports Med. 1999;20(2):128–135.
    1. Fry R.W., Morton A.R., Keast D. Acute intensive interval training and T-lymphocyte function. Med Sci Sports Exerc. 1992;24(3):339–345.
    1. Starkie R.L., Rolland J., Febbraio M.A. Effect of adrenergic blockade on lymphocyte cytokine production at rest and during exercise. Am J Physiol Cell Physiol. 2001;281:C1233–C1240.
    1. Ostrowski K., Rohde T., Asp S., Schjerling P., Pedersen B.K. Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans. J Physiol. 1999;515(Pt 1):287–291.
    1. Toft A.D., Thorn M., Ostrowski K., Asp S., Moller K., Iversen S. N-3 polyunsaturated fatty acids do not affect cytokine response to strenuous exercise. J Appl Physiol. 2000;89(6):2401–2406.
    1. Nieman D.C., Henson D.A., McAnulty S.R., Jin F., Maxwell K.R. N-3 polyunsaturated fatty acids do not alter immune and inflammation measures in endurance athletes. Int J Sport Nutr Exerc Metab. 2009;19(5):536–546.
    1. Andrade P.M., Ribeiro B.G., Bozza M.T., Costa Rosa L.F. Tavares do Carmo MG. Effects of the fish-oil supplementation on the immune and inflammatory responses in elite swimmers. Prostaglandins Leukot Essent Fatty Acids. 2007;77(3–4):139–145.
    1. Da Boit M., Gabriel B.M., Gray P., Gray S.R. The effect of fish oil, vitamin D and protein on URTI incidence in young active people. Int J Sports Med. 2015;36(5):426–430.
    1. Mickleborough T.D. Omega-3 polyunsaturated fatty acids in physical performance optimization. Int J Sport Nutr Exerc Metab. 2013;23(1):83–96.
    1. Anderson S.D., Kippelen P. Exercise-induced bronchoconstriction: pathogenesis. Curr Allergy Asthma Rep. 2005;5(2):116–122.
    1. Anderson S.D., Holzer K. Exercise-induced asthma: is it the right diagnosis in elite athletes? J Allergy Clin Immunol. 2000;106(3):419–428.
    1. Mickleborough T.D., Lindley M.R., Ionescu A.A., Fly A.D. Protective effect of fish oil supplementation on exercise-induced bronchoconstriction in asthma. Chest. 2006;129(1):39–49.
    1. Aruoma O. Free radicals, oxidative stress, and antioxidants in human health and disease. J Am Oil Chem Soc. 1998;75:199–212.
    1. Jenner P. Oxidative stress in Parkinson's disease. Ann Neurol. 2003;53(Suppl 3):S26–S36. [discussion S36–8]
    1. Madamanchi N.R., Vendrov A., Runge M.S. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol. 2005;25(1):29–38.
    1. Barbieri E., Sestili P. Reactive oxygen species in skeletal muscle signaling. J Signal Transduct. 2012;2012:982794.
    1. Ristow M., Zarse K., Oberbach A., Klöting N., Birringer M., Kiehntopf M. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci U S A. 2009;106(21):8665–8670.
    1. Higashida K., Kim S.H., Higuchi M., Holloszy J.O., Han D.H. Normal adaptations to exercise despite protection against oxidative stress. Am J Physiol Endocrinol Metab. 2011;301(5):E779–E784.
    1. Higdon J.V., Liu J., Du S., Morrow J.D., Ames B.N., Wander R.C. Supplementation of postmenopausal women with fish oil rich in eicosapentaenoic acid and docosahexaenoic acid is not associated with greater in vivo lipid peroxidation compared with oils rich in oleate and linoleate as assessed by plasma malondialdehyde and F2-isoprostanes. Am J Clin Nutr. 2000;72(3):714–722.
    1. Wander R.C., Du S.H. Oxidation of plasma proteins is not increased after supplementation with eicosapentaenoic and docosahexaenoic acids. Am J Clin Nutr. 2000;72:731–737.
    1. Allard J., Kurian R., Aghdassi E., Muggli R., Royall D. Lipid peroxidation during n-3 fatty acid and vitamin E supplementation in humans. Lipids. 1997;32:535–541.
    1. Mori T.A., Dunstan D.W., Burke V., Croft K.D., Rivera J.H., Beilin L.J. Effect of dietary fish and exercise training on urinary F2-isoprostane excretion in non–insulin-dependent diabetic patients. Metab Clin Exp. 1999;48:1402–1408.
    1. Nälsén C., Vessby B., Berglund L., Uusitupa M., Hermansen K., Riccardi G. Dietary (n-3) fatty acids reduce plasma F2-isoprostanes but not prostaglandin F2α in healthy humans. J Nutr. 2006;136(5):1222–1228.
    1. Martorell M., Capó X., Bibiloni M.M., Sureda A., Mestre-Alfaro A., Batle J.M. Docosahexaenoic acid supplementation promotes erythrocyte antioxidant defense and reduces protein nitrosative damage in male athletes. Lipids. 2015;50(2):131–148.
    1. McAnulty S.R., Nieman D.C., Fox-Rabinovich M., Duran V., McAnulty L.S., Henson D.A. Effect of n-3 fatty acids and antioxidants on oxidative stress after exercise. Med Sci Sports Exerc. 2010;42(9):1704–1711.
    1. Bloomer R.J., Larson D.E., Fisher-Wellman K.H., Galpin A.J., Schilling B.K. Effects of eicosapenaenoic acid and docosahexaenoic acid on resting and exercise-induced inflammatory and oxidative stress biomarkers: a randomized, placebo controlled, cross-over study. Lipids Health Dis. 2009;8:36.
    1. Martorell M., Capó X., Sureda A., Batle J.M., Llompart I., Argelich E. Effect of DHA on plasma fatty acid availability and oxidative stress during training season and football exercise. Food Funct. 2014;5(8):1920–1931.
    1. Lewis E.J.H., Radonic P.W., Wolever T.M.S., Wells G.D. 21 days of mammalian omega-3 fatty acid supplementation improves aspects of neuromuscular function and performance in male athletes compared to olive oil placebo. J Int Soc Sports Nutr. 2015;12:28.
    1. Lauritzen L., Hansen H.S., Jørgensen M.H., Michaelsen K.F. The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog Lipid Res. 2001;40(1–2):1–94.
    1. Salem N., Jr., Litman B., Kim H.-Y., Gawrisch K. Mechanism of action of docosahexaenoic acid in the nervous system. Lipids. 2001;36:945–959.
    1. Agostoni C. Role of long-chain polyunsaturated fatty acids in the first year of life. J Pediatr Gastroenterol Nutr. 2008;47:S41–S44.
    1. Harris W.S., Baack M.L. Beyond building better brains: bridging the docosahexaenoic acid (DHA) gap of prematurity. J Perinatol. 2015;35(1):1–7.
    1. O'Connor D.L., Hall R., Adamkin D., Auestad N., Castillo M., Connor W.E., Ross Preterm Lipid Study Growth and development in preterm infants fed long-chain polyunsaturated fatty acids: a prospective, randomized controlled trial. Pediatrics. 2001;108:359–371.
    1. Fewtrell M.S., Abbott R.A., Kennedy K., Singhal A., Morley R., Caine E. Randomized, double-blind trial of long-chain polyunsaturated fatty acid supplementation with fish oil and borage oil in preterm infants. J Pediatr. 2004;144:471–479.
    1. Clandinin M.T., Van Aerde J.E., Merkel K.L., Harris C.L., Springer M.A., Hansen J.W. Growth and development of preterm infants fed infant formulas containing docosahexaenoic acid and arachidonic acid. J Pediatr. 2005;146:461–468.
    1. Henriksen C., Haugholt K., Lindgren M., Aurvåg A.K., Rønnestad A., Grønn M. Improved cognitive development among preterm infants attributable to early supplementation of human milk with docosahexaenoic acid and arachidonic acid. Pediatrics. 2008;121:1137–1145.
    1. Isaacs E.B., Ross S., Kennedy K., Weaver L.T., Lucas A., Fewtrell M.S. 10-year cognition in preterms after random assignment to fatty acid supplementation in infancy. Pediatrics. 2011;128(4):e890–e898.
    1. Patten G.S., Abeywardena M.Y., McMurchie E.J., Jahangiri A. Dietary fish oil increases acetylcholine- and eicosanoid-induced contractility of isolated rat ileum. J Nutr. 2002;132(9):2506–2513.
    1. Bazan N.G., Musto A.E., Knott E.J. Endogenous signaling by omega-3 docosahexaenoic acid-derived mediators sustains homeostatic synaptic and circuitry integrity. Mol Neurobiol. 2011;44(2):216–222.

Source: PubMed

3
Se inscrever