Pilot investigation of circulating angiogenic and inflammatory biomarkers associated with vascular malformations

Sarah E Wetzel-Strong, Shantel Weinsheimer, Jeffrey Nelson, Ludmila Pawlikowska, Dewi Clark, Mark D Starr, Yingmiao Liu, Helen Kim, Marie E Faughnan, Andrew B Nixon, Douglas A Marchuk, Sarah E Wetzel-Strong, Shantel Weinsheimer, Jeffrey Nelson, Ludmila Pawlikowska, Dewi Clark, Mark D Starr, Yingmiao Liu, Helen Kim, Marie E Faughnan, Andrew B Nixon, Douglas A Marchuk

Abstract

Background: Vascular malformations in the central nervous system are difficult to monitor and treat due to their inaccessible location. Angiogenic and inflammatory proteins are secreted into the bloodstream and may serve as useful biomarkers for identifying patients at risk for complications or with certain disease phenotypes.

Methods: A validated multiplex protein array consisting of 26 angiogenic and inflammatory biomarkers (Angiome) was assessed in plasma isolated from healthy controls and patients with either sporadic brain arteriovenous malformation (BAVM), familial cerebral cavernous malformation (CCM), or hereditary hemorrhagic telangiectasia (HHT). These samples were obtained from archives of ongoing research studies at the University of California San Francisco and through prospective collection at the Toronto HHT Centre at St. Michael's Hospital.

Results: We compared circulating biomarker levels from each patient group to healthy controls and analyzed each pairwise combination of patient groups for differences in biomarker levels. Additionally, we analyzed the HHT samples to determine the association between biomarker levels and the following HHT-specific phenotypes, BAVM, pulmonary arteriovenous malformation (PAVM), liver vascular malformation (LVM), and gastrointestinal (GI) bleeding. Compared to controls, levels of SDF1 were significantly elevated in HHT patients (Proportional Increase [PI] = 1.87, p < 0.001, q = 0.011). Levels of sENG were significantly reduced in HHT patients compared to controls (PI = 0.56, p < 0.001, q < 0.001), reflecting the prevalence of HHT1 patients in this cohort. Levels of IL6 (PI = 3.22, p < 0.001, q < 0.001) and sTGFβR3 (PI = 0.70, p = 0.001, q < 0.029) differed significantly in CCM patients compared to controls. Compared to controls, ten of the biomarkers were significantly different in sporadic BAVM patients (q-values < 0.05). Among the pairwise combinations of patient groups, a significant elevation was observed in TGFβ1 in CCM patients compared to sporadic BAVM patients (PI = 2.30, p < 0.001, q = 0.034). When examining the association of circulating biomarker levels with HHT-specific phenotypes, four markers were significantly lower in HHT patients with BAVM (q-values < 0.05), and four markers were significantly higher in patients with LVM (q-values < 0.05).

Conclusions: This pilot study suggests that the profile of circulating angiogenic and inflammatory biomarkers may be unique to each type of vascular malformation. Furthermore, this study indicates that circulating biomarkers may be useful for assessing phenotypic traits of vascular malformations.

Keywords: Biomarkers; CCM; HHT; Vascular malformations.

Conflict of interest statement

The authors declare no competing interests.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
IL6 levels elevated in patients with vascular malformations compared to healthy controls. Log-transformed biomarker levels for patients with HHT, CCM, or sporadic BAVM and healthy controls were plotted

References

    1. Akers AL, Ball KL, Clancy M, Comi AM, Faughnan ME, Gopal-Srivastava R, et al. Brain Vascular Malformation Consortium: overview, progress and future directions. J Rare Disord. 2013;1(1):5.
    1. Liu Y, Starr MD, Brady JC, Rushing C, Bulusu A, Pang H, et al. Biomarker signatures correlate with clinical outcome in refractory metastatic colorectal cancer patients receiving bevacizumab and everolimus. Mol Cancer Ther. 2015;14(4):1048–1056. doi: 10.1158/1535-7163.MCT-14-0923-T.
    1. Gbenedio OM, Bonnans C, Grun D, Wang CY, Hatch AJ, Mahoney MR, et al. RasGRP1 is a potential biomarker to stratify anti-EGFR therapy response in colorectal cancer. JCI Insight. 2019;5:e127552. doi: 10.1172/jci.insight.127552.
    1. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–867. doi: 10.1038/nature01322.
    1. Armstrong AJ, Nixon AB, Carmack A, Eisen T, Stadler WM, Jones RJ, et al. Angiokines associated with outcomes after sunitinib or everolimus treatment in patients with non-clear cell renal cell carcinoma. Clin Cancer Res. 2021;27:3503. doi: 10.1158/1078-0432.CCR-21-1636.
    1. Liu Y, Lyu J, Bell Burdett K, Sibley AB, Hatch AJ, Starr MD, et al. Prognostic and predictive biomarkers in patients with metastatic colorectal cancer receiving regorafenib. Mol Cancer Ther. 2020;19(10):2146–2154. doi: 10.1158/1535-7163.MCT-20-0249.
    1. Retta SF, Glading AJ. Oxidative stress and inflammation in cerebral cavernous malformation disease pathogenesis: two sides of the same coin. Int J Biochem Cell Biol. 2016;81(Pt B):254–270. doi: 10.1016/j.biocel.2016.09.011.
    1. Ardelean DS, Letarte M. Anti-angiogenic therapeutic strategies in hereditary hemorrhagic telangiectasia. Front Genet. 2015;6:35. doi: 10.3389/fgene.2015.00035.
    1. Girard R, Zeineddine HA, Koskimaki J, Fam MD, Cao Y, Shi C, et al. Plasma biomarkers of inflammation and angiogenesis predict cerebral cavernous malformation symptomatic hemorrhage or lesional growth. Circ Res. 2018;122(12):1716–1721. doi: 10.1161/CIRCRESAHA.118.312680.
    1. Girard R, Li Y, Stadnik A, Shenkar R, Hobson N, Romanos S, et al. A Roadmap for developing plasma diagnostic and prognostic biomarkers of cerebral cavernous angioma with symptomatic hemorrhage (CASH) Neurosurgery. 2021;88(3):686–697. doi: 10.1093/neuros/nyaa478.
    1. Lyne SB, Girard R, Koskimaki J, Zeineddine HA, Zhang D, Cao Y, et al. Biomarkers of cavernous angioma with symptomatic hemorrhage. JCI Insight. 2019;4(12):e128577. doi: 10.1172/jci.insight.128577.
    1. Cannavicci A, Zhang Q, Kutryk MJB. Non-coding RNAs and hereditary hemorrhagic telangiectasia. J Clin Med. 2020;9(10):3333. doi: 10.3390/jcm9103333.
    1. Zhang Q, Kandic I, Faughnan ME, Kutryk MJ. Elevated circulating microRNA-210 levels in patients with hereditary hemorrhagic telangiectasia and pulmonary arteriovenous malformations: a potential new biomarker. Biomarkers. 2013;18(1):23–29. doi: 10.3109/1354750X.2012.728624.
    1. Letarte M, McDonald ML, Li C, Kathirkamathamby K, Vera S, Pece-Barbara N, et al. Reduced endothelial secretion and plasma levels of transforming growth factor-beta1 in patients with hereditary hemorrhagic telangiectasia type 1. Cardiovasc Res. 2005;68(1):155–164. doi: 10.1016/j.cardiores.2005.04.028.
    1. Steineger J, Ueland T, Aukrust P, Michelsen A, Osnes T, Heimdal K, et al. Pentraxin 3 level is elevated in hereditary hemorrhagic telangiectasia and reflects the severity of disease-associated epistaxis. Laryngoscope. 2019;129(1):E44–E49. doi: 10.1002/lary.27548.
    1. Thalgott JH, Dos-Santos-Luis D, Hosman AE, Martin S, Lamande N, Bracquart D, et al. Decreased expression of vascular endothelial growth factor receptor 1 contributes to the pathogenesis of hereditary hemorrhagic telangiectasia type 2. Circulation. 2018;138(23):2698–2712. doi: 10.1161/CIRCULATIONAHA.117.033062.
    1. Hauer AJ, Kleinloog R, Giuliani F, Rinkel GJE, de Kort GA, Berkelbach van der Sprenkel JW, et al. RNA-sequencing highlights inflammation and impaired integrity of the vascular wall in brain arteriovenous malformations. Stroke. 2020;51(1):268–274. doi: 10.1161/STROKEAHA.119.025657.
    1. Thompson KP, Nelson J, Kim H, Pawlikowska L, Marchuk DA, Lawton MT, et al. Predictors of mortality in patients with hereditary hemorrhagic telangiectasia. Orphanet J Rare Dis. 2021;16(1):12. doi: 10.1186/s13023-020-01579-2.
    1. Hou T, Tieu BC, Ray S, Recinos Iii A, Cui R, Tilton RG, et al. Roles of IL-6-gp130 signaling in vascular inflammation. Curr Cardiol Rev. 2008;4(3):179–192. doi: 10.2174/157340308785160570.
    1. Pawlikowska L, Tran MN, Achrol AS, McCulloch CE, Ha C, Lind DL, et al. Polymorphisms in genes involved in inflammatory and angiogenic pathways and the risk of hemorrhagic presentation of brain arteriovenous malformations. Stroke. 2004;35(10):2294–2300. doi: 10.1161/01.STR.0000141932.44613.b1.
    1. Vander Ark A, Cao J, Li X. TGF-beta receptors: in and beyond TGF-beta signaling. Cell Signal. 2018;52:112–120. doi: 10.1016/j.cellsig.2018.09.002.
    1. Cunha SI, Magnusson PU, Dejana E, Lampugnani MG. Deregulated TGF-beta/BMP signaling in vascular malformations. Circ Res. 2017;121(8):981–999. doi: 10.1161/CIRCRESAHA.117.309930.
    1. Maddaluno L, Rudini N, Cuttano R, Bravi L, Giampietro C, Corada M, et al. EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature. 2013;498(7455):492–496. doi: 10.1038/nature12207.
    1. Prigoda NL, Savas S, Abdalla SA, Piovesan B, Rushlow D, Vandezande K, et al. Hereditary haemorrhagic telangiectasia: mutation detection, test sensitivity and novel mutations. J Med Genet. 2006;43(9):722–728. doi: 10.1136/jmg.2006.042606.
    1. Ojeda-Fernandez L, Barrios L, Rodriguez-Barbero A, Recio-Poveda L, Bernabeu C, Botella LM. Reduced plasma levels of Ang-2 and sEng as novel biomarkers in hereditary hemorrhagic telangiectasia (HHT) Clin Chim Acta. 2010;411(7–8):494–499. doi: 10.1016/j.cca.2009.12.023.
    1. Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science. 1999;283(5403):845–848. doi: 10.1126/science.283.5403.845.
    1. Kim BG, Kim YH, Stanley EL, Garrido-Martin EM, Lee YJ, Oh SP. CXCL12–CXCR4 signalling plays an essential role in proper patterning of aortic arch and pulmonary arteries. Cardiovasc Res. 2017;113(13):1677–1687. doi: 10.1093/cvr/cvx188.
    1. Gao P, Chen Y, Lawton MT, Barbaro NM, Yang GY, Su H, et al. Evidence of endothelial progenitor cells in the human brain and spinal cord arteriovenous malformations. Neurosurgery. 2010;67(4):1029–1035. doi: 10.1227/NEU.0b013e3181ecc49e.
    1. Dingenouts CK, Goumans MJ, Bakker W. Mononuclear cells and vascular repair in HHT. Front Genet. 2015;6:114. doi: 10.3389/fgene.2015.00114.
    1. Rossi E, Sanz-Rodriguez F, Eleno N, Duwell A, Blanco FJ, Langa C, et al. Endothelial endoglin is involved in inflammation: role in leukocyte adhesion and transmigration. Blood. 2013;121(2):403–415. doi: 10.1182/blood-2012-06-435347.
    1. Young K, Conley B, Romero D, Tweedie E, O'Neill C, Pinz I, et al. BMP9 regulates endoglin-dependent chemokine responses in endothelial cells. Blood. 2012;120(20):4263–4273. doi: 10.1182/blood-2012-07-440784.
    1. Gris T, Laplante P, Thebault P, Cayrol R, Najjar A, Joannette-Pilon B, et al. Innate immunity activation in the early brain injury period following subarachnoid hemorrhage. J Neuroinflammation. 2019;16(1):253. doi: 10.1186/s12974-019-1629-7.
    1. Polin RS, Bavbek M, Shaffrey ME, Billups K, Bogaev CA, Kassell NF, et al. Detection of soluble E-selectin, ICAM-1, VCAM-1, and L-selectin in the cerebrospinal fluid of patients after subarachnoid hemorrhage. J Neurosurg. 1998;89(4):559–567. doi: 10.3171/jns.1998.89.4.0559.
    1. Karaman S, Leppanen VM, Alitalo K. Vascular endothelial growth factor signaling in development and disease. Development. 2018;145(14):dev151019. doi: 10.1242/dev.151019.
    1. Letteboer TG, Mager JJ, Snijder RJ, Koeleman BP, Lindhout D, Ploos van Amstel JK, et al. Genotype–phenotype relationship in hereditary haemorrhagic telangiectasia. J Med Genet. 2006;43(4):371–377. doi: 10.1136/jmg.2005.035451.
    1. Sabba C, Pasculli G, Lenato GM, Suppressa P, Lastella P, Memeo M, et al. Hereditary hemorrhagic telangiectasia: clinical features in ENG and ALK1 mutation carriers. J Thromb Haemost. 2007;5(6):1149–1157. doi: 10.1111/j.1538-7836.2007.02531.x.
    1. Hashimoto T, Wen G, Lawton MT, Boudreau NJ, Bollen AW, Yang GY, et al. Abnormal expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in brain arteriovenous malformations. Stroke. 2003;34(4):925–931. doi: 10.1161/01.STR.0000061888.71524.DF.
    1. Botella LM, Albinana V, Ojeda-Fernandez L, Recio-Poveda L, Bernabeu C. Research on potential biomarkers in hereditary hemorrhagic telangiectasia. Front Genet. 2015;6:115. doi: 10.3389/fgene.2015.00115.
    1. Shovlin CL, Guttmacher AE, Buscarini E, Faughnan ME, Hyland RH, Westermann CJ, et al. Diagnostic criteria for hereditary hemorrhagic telangiectasia (Rendu–Osler–Weber syndrome) Am J Med Genet. 2000;91(1):66–67. doi: 10.1002/(SICI)1096-8628(20000306)91:1<66::AID-AJMG12>;2-P.

Source: PubMed

3
Se inscrever