Systemic Vulnerability, as Expressed by I-CAM and MMP-9 at Presentation, Predicts One Year Outcomes in Patients with Acute Myocardial Infarction-Insights from the VIP Clinical Study

Diana Opincariu, Ioana Rodean, Nora Rat, Roxana Hodas, Imre Benedek, Theodora Benedek, Diana Opincariu, Ioana Rodean, Nora Rat, Roxana Hodas, Imre Benedek, Theodora Benedek

Abstract

(1) Background: The prediction of recurrent events after acute myocardial infarction (AMI) does not sufficiently integrate systemic inflammation, coronary morphology or ventricular function in prediction algorithms. We aimed to evaluate the accuracy of inflammatory biomarkers, in association with angiographical and echocardiographic parameters, in predicting 1-year MACE after revascularized AMI. (2) Methods: This is an extension of a biomarker sub-study of the VIP trial (NCT03606330), in which 225 AMI patients underwent analysis of systemic vulnerability and were followed for 1 year. Hs-CRP, MMP-9, IL-6, I-CAM, V-CAM and E-selectin were determined at 1 h after revascularization. The primary end-point was the 1-year MACE rate. (3) Results: The MACE rate was 24.8% (n = 56). There were no significant differences between groups in regard to IL-6, V-CAM and E-selectin. The following inflammatory markers were significantly higher in MACE patients: hs-CRP (11.1 ± 13.8 vs. 5.1 ± 4.4 mg/L, p = 0.03), I-CAM (452 ± 283 vs. 220.5 ± 104.6, p = 0.0003) and MMP-9 (2255 ± 1226 vs. 1099 ± 706.1 ng/mL p = 0.0001). The most powerful predictor for MACE was MMP-9 of >1155 ng/mL (AUC-0.786, p < 0.001) even after adjustments for diabetes, LVEF, acute phase complications and other inflammatory biomarkers. For STEMI, the most powerful predictors for MACE included I-CAM > 239.7 ng/mL, V-CAM > 877.9 ng/mL and MMP-9 > 1393 ng/mL. (4) Conclusions: High levels of I-CAM and MMP-9 were the most powerful predictors for recurrent events after AMI for the overall study population. For STEMI subjects, the most important predictors included increased levels of I-CAM, V-CAM and MMP-9, while none of the analyzed parameters had proven to be predictive. Inflammatory biomarkers assayed during the acute phase of AMI presented a more powerful predictive capacity for MACE than the LVEF.

Keywords: MMP-9; acute myocardial infarction; angiographical characteristics; predictors for 1 year-MACE; serum inflammatory biomarkers.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Distribution of primary (a) and secondary (b) study end-points for the overall study population.
Figure 2
Figure 2
MACE rates in STEMI versus NSTEMI patients. The occurrence of 1 year MACE was significantly more frequent in patients with NSTEMI.
Figure 3
Figure 3
ROC analysis for the accuracy of serum and imaging markers in predicting 1 year MACE in patients with AMI. (a) ROC curve for hs-CRP in predicting MACE; (b) ROC curve for I-CAM in predicting MACE; (c) ROC curve for MMP-9 in predicting MACE; (d) ROC curve for LVEF% in predicting MACE.

References

    1. World Health Organization. [(accessed on 12 December 2020)]; Available online: .
    1. Cabrera-Fuentes H.A., Alba-Alba C., Aragones J., Bernhagen J., Boisvert W.A., Bøtker H.E., Cesarman-Maus G., Fleming I., Garcia-Dorado D., Lecour S., et al. Meeting report from the 2nd International Symposium on New Frontiers in Cardiovascular Research. Protecting the cardiovascular system from ischemia: Between bench and bedside. Basic Res. Cardiol. 2016;111:7. doi: 10.1007/s00395-015-0527-0.
    1. Zhang L.J., Li N., Li Y., Zeng X.T., Liu M.Y. Cardiac Biomarkers Predicting MACE in Patients Undergoing Noncardiac Surgery: A Meta-Analysis. Front. Physiol. 2019;9:1923. doi: 10.3389/fphys.2018.01923.
    1. Abu-Assi E., García-Acuña J.M., Peña-Gil C., González-Juanatey J.R. Validation of the GRACE risk score for predicting death within 6 months of follow-up in a contemporary cohort of patients with acute coronary syndrome. Rev. Esp. Cardiol. 2010;63:640–648. doi: 10.1016/S0300-8932(10)70156-1.
    1. Correia L.C., Garcia G., Kalil F., Ferreira F., Carvalhal M., Oliveira R., Silva A., Vasconcelos I., Henri C., Noya-Rabelo M. Prognostic value of TIMI score versus GRACE score in ST-segment elevation myocardial infarction. Arq. Bras. Cardiol. 2014;103:98–106. doi: 10.5935/abc.20140095.
    1. Chen Y.H., Huang S.S., Lin S.J. TIMI and GRACE Risk Scores Predict Both Short-Term and Long-Term Outcomes in Chinese Patients with Acute Myocardial Infarction. Acta Cardiol. Sin. 2018;34:4–12. doi: 10.6515/ACS.201801_34(1).20170730B.
    1. Hansson G.K., Libby P., Tabas I. Inflammation and plaque vulnerability. J. Intern. Med. 2015;278:483–493. doi: 10.1111/joim.12406.
    1. Westman P.C., Lipinski M.J., Luger D., Waksman R., Bonow R.O., Wu E., Epstein S.E. Inflammation as a Driver of Adverse Left Ventricular Remodeling After Acute Myocardial Infarction. J. Am. Coll. Cardiol. 2016;67:2050–2060. doi: 10.1016/j.jacc.2016.01.073.
    1. Naghavi M., Libby P., Falk E., Casscells S.W., Litovsky S., Rumberger J., Badimon J.J., Stefanadis C., Moreno P., Pasterkamp G., et al. From vulnerable plaque to vulnerable patient: A call for new definitions and risk assessment strategies: Part I. Circulation. 2003;108:1664–1672. doi: 10.1161/01.CIR.0000087480.94275.97.
    1. Naghavi M., Libby P., Falk E., Casscells S.W., Litovsky S., Rumberger J., Badimon J.J., Stefanadis C., Moreno P., Pasterkamp G., et al. From vulnerable plaque to vulnerable patient: A call for new definitions and risk assessment strategies: Part II. Circulation. 2003;108:1772–1778. doi: 10.1161/01.CIR.0000087481.55887.C9.
    1. Wensley F., Gao P., Burgess S., Kaptoge S., Di Angelantonio E., Shah T., Engert J.C., Clarke R., Davey-Smith G., Nordestgaard B.G., et al. Association between C reactive protein and coronary heart disease: Mendelian randomization analysis based on individual participant data. BMJ. 2011;342:d548. doi: 10.1136/bmj.d548.
    1. Eltoft A., Arntzen K.A., Hansen J.B., Wilsgaard T., Mathiesen E.B., Johnsen S.H. C-reactive protein in atherosclerosis—A risk marker but not a causal factor? A 13-year population-based longitudinal study: The Tromsø study. Atherosclerosis. 2017;263:293–300. doi: 10.1016/j.atherosclerosis.2017.07.001.
    1. Shrivastava A.K., Singh H.V., Raizada A., Kumar Singh S. C-reactive protein, inflammation and coronary heart disease. Egypt. Heart J. 2015;67:89–97. doi: 10.1016/j.ehj.2014.11.005.
    1. Strang F., Schunkert H. C-reactive protein and coronary heart disease: All said--is not it? Mediat. Inflamm. 2014;2014:757123. doi: 10.1155/2014/757123.
    1. Rubin J., Chang H.J., Nasir K., Blumenthal R.S., Blaha M.J., Choi E.K., Chang S.A., Yoon Y.E., Chun E.J., Choi S.I., et al. Association between high-sensitivity C-reactive protein and coronary plaque subtypes assessed by 64-slice coronary computed tomography angiography in an asymptomatic population. Circ. Cardiovasc. Imaging. 2011;4:201–209. doi: 10.1161/CIRCIMAGING.109.929901.
    1. Carrero J.J., Andersson Franko M., Obergfell A., Gabrielsen A., Jernberg T. hsCRP Level and the Risk of Death or Recurrent Cardiovascular Events in Patients with Myocardial Infarction: A Healthcare-Based Study. J. Am. Heart Assoc. 2019;8:e012638. doi: 10.1161/JAHA.119.012638.
    1. Polyakova E.A., Mikhaylov E.N. The prognostic role of high-sensitivity C-reactive protein in patients with acute myocardial infarction. J. Geriatr. Cardiol. 2020;17:379–383. doi: 10.11909/j.issn.1671-5411.2020.07.007.
    1. Badimon L., Peña E., Arderiu G., Padró T., Slevin M., Vilahur G., Chiva-Blanch G. C-Reactive Protein in Atherothrombosis and Angiogenesis. Front. Immunol. 2018;9:430. doi: 10.3389/fimmu.2018.00430.
    1. Fanola C.L., Morrow D.A., Cannon C.P., Jarolim P., Lukas M.A., Bode C., Hochman J.S., Goodrich E.L., Braunwald E., O’Donoghue M.L. Interleukin-6 and the Risk of Adverse Outcomes in Patients After an Acute Coronary Syndrome: Observations From the SOLID-TIMI 52 (Stabilization of Plaque Using Darapladib-Thrombolysis in Myocardial Infarction 52) Trial. J. Am. Heart Assoc. 2017;6:e005637. doi: 10.1161/JAHA.117.005637.
    1. Lino D.O.C., Freitas I.A., Meneses G.C., Martins A., Daher E.F., Rocha J., Silva Junior G.B. Interleukin-6 and adhesion molecules VCAM-1 and ICAM-1 as biomarkers of post-acute myocardial infarction heart failure. Braz. J. Med. Biol. Res. 2019;52:e8658. doi: 10.1590/1414-431x20198658.
    1. Lahdentausta L., Leskelä J., Winkelmann A., Tervahartiala T., Sorsa T., Pesonen E., Pussinen P.J. Serum MMP-9 Diagnostics, Prognostics, and Activation in Acute Coronary Syndrome and Its Recurrence. J. Cardiovasc. Transl. Res. 2018;11:210–220. doi: 10.1007/s12265-018-9789-x.
    1. Li T., Li X., Feng Y., Dong G., Wang Y., Yang J. The Role of Matrix Metalloproteinase-9 in Atherosclerotic Plaque Instability. Mediat. Inflamm. 2020;2020:3872367. doi: 10.1155/2020/3872367.
    1. Hamed G.M., Fattah M.F. Clinical Relevance of matrix metalloproteinase 9 in patients with acute coronary syndrome. Clin. Appl. Thromb. Hemost. 2015;21:705–711. doi: 10.1177/1076029614567309.
    1. Pussinen P.J., Sarna S., Puolakkainen M., Öhlin H., Sorsa T., Pesonen E. The balance of serum matrix metalloproteinase-8 and its tissue inhibitor in acute coronary syndrome and its recurrence. Int. J. Cardiol. 2013;167:362–368. doi: 10.1016/j.ijcard.2011.12.095.
    1. Postadzhiyan A.S., Tzontcheva A.V., Kehayov I., Finkov B. Circulating soluble adhesion molecules ICAM-1 and VCAM-1 and their association with clinical outcome, troponin T and C-reactive protein in patients with acute coronary syndromes. Clin. Biochem. 2008;41:126–133. doi: 10.1016/j.clinbiochem.2007.09.001.
    1. Karpasova E.A., Diatlova A.S., Linkova N.S., Bunin V.A., Polyakova V.O., Krylova Y.S., Kvetnoy I.M. Troponins, Adhesion Molecules, and Interleukins as Diagnostic Markers of CVDs: Expression in Peripheral Tissues. Biol. Bull. Rev. 2020;10:296–307. doi: 10.1134/S2079086420040039.
    1. Blankenberg S., Rupprecht H.J., Bickel C., Peetz D., Hafner G., Tiret L., Meyer J. Circulating cell adhesion molecules and death in patients with coronary artery disease. Circulation. 2001;104:1336–1342. doi: 10.1161/hc3701.095949.
    1. Doo Y.C., Han S.J., Park W.J., Kim S.M., Choi S.H., Cho G.Y., Hong K.S., Han K.R., Lee N.H., Oh D.J., et al. Associations between C-reactive protein and circulating cell adhesion molecules in patients with unstable angina undergoing coronary intervention and their clinical implication. Clin. Cardiol. 2005;28:47–51. doi: 10.1002/clc.4960280112.
    1. Doğan C., Bayram Z., Çap M., Özkalaycı F., Unkun T., Erdoğan E., Uslu A., Acar R.D., Guvendi B., Akbal Ö.Y., et al. Comparison of 30-Day MACE between Immediate versus Staged Complete Revascularization in Acute Myocardial Infarction with Multivessel Disease, and the Effect of Coronary Lesion Complexity. Medicina. 2019;55:51. doi: 10.3390/medicina55020051.
    1. Agra Bermejo R., Cordero A., García-Acuña J.M., Gómez Otero I., Varela Román A., Martínez Á., Álvarez Rodríguez L., Abou-Jokh C., Rodríguez-Mañero M., Cid Álvarez B., et al. Determinants and Prognostic Impact of Heart Failure and Left Ventricular Ejection Fraction in Acute Coronary Syndrome Settings. Rev. Esp. Cardiol. 2018;71:820–828. doi: 10.1016/j.recesp.2017.10.047.
    1. Baksyte G., Macas A., Brazdzionyte J., Saferis V., Tamosiunas M., Krisciukaitis A. Prognostic markers in the acute phase of myocardial infarction. Crit. Care. 2007;11(Suppl. S2):P240. doi: 10.1186/cc5400.
    1. Wang J.C., Normand S.L., Mauri L., Kuntz R.E. Coronary artery spatial distribution of acute myocardial infarction occlusions. Circulation. 2004;110:278–328. doi: 10.1161/01.CIR.0000135468.67850.F4.
    1. Morrow D.A., Antman E.M., Charlesworth A., Cairns R., Murphy S.A., de Lemos J.A., Giugliano R.P., McCabe C.H., Braunwald E. TIMI risk score for ST-elevation myocardial infarction: A convenient, bedside, clinical score for risk assessment at presentation: An intravenous nPA for treatment of infarcting myocardium early II trial substudy. Circulation. 2000;102:2031–2037. doi: 10.1161/01.CIR.102.17.2031.
    1. Chotechuang Y., Phrommintikul A., Kuanprasert S., Muenpa R., Ruengorn C., Patumanond J., Chaichuen T., Thanachaikun N., Benjanuwatra T., Sukonthasarn A. GRACE score and cardiovascular outcomes prediction among the delayed coronary intervention after postfibrinolytic STEMI patients in a limited PCI-capable hospital. Open Heart. 2020;7:e001133. doi: 10.1136/openhrt-2019-001133.
    1. Thygesen K., Alpert J.S., Jaffe A.S., Chaitman B.R., Bax J.J., Morrow D.A., White H.D. Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardial Infarction. J. Am. Coll. Cardiol. 2018;72:2231–2264. doi: 10.1016/j.jacc.2018.08.1038.
    1. Fang L., Moore X.L., Dart A.M., Wang L.M. Systemic inflammatory response following acute myocardial infarction. J. Geriatr. Cardiol. 2015;12:305–312. doi: 10.11909/j.issn.1671-5411.2015.03.020.
    1. Wang H., Eitzman D.T. Acute myocardial infarction leads to acceleration of atherosclerosis. Atherosclerosis. 2013;229:18–22. doi: 10.1016/j.atherosclerosis.2013.04.004.
    1. Mohamedali B., Shroff A. Impact of smoking status on cardiovascular outcomes following percutaneous coronary intervention. Clin. Cardiol. 2013;36:372–377. doi: 10.1002/clc.22134.
    1. Steele L., Palmer J., Lloyd A., Fotheringham J., Iqbal J., Grech E.D. The impact of smoking on mortality after acute ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention: A retrospective cohort outcome study at 3 years. J. Thromb. Thrombolysis. 2019;47:520–526. doi: 10.1007/s11239-019-01812-1.
    1. Aune E., Røislien J., Mathisen M., Thelle D.S., Otterstad J.E. The “smoker’s paradox” in patients with acute coronary syndrome: A systematic review. BMC Med. 2011;9:97. doi: 10.1186/1741-7015-9-97.
    1. Jain S., Gautam V., Naseem S. Acute-phase proteins: As diagnostic tool. J. Pharm. Bioallied. Sci. 2011;3:118–127. doi: 10.4103/0975-7406.76489.
    1. Kristono G.A., Holley A.S., Lakshman P., Brunton-O’Sullivan M.M., Harding S.A., Larsen P.D. Association between inflammatory cytokines and long-term adverse outcomes in acute coronary syndromes: A systematic review. Heliyon. 2020;6:e03704. doi: 10.1016/j.heliyon.2020.e03704.
    1. Ong S.B., Hernández-Reséndiz S., Crespo-Avilan G.E., Mukhametshina R.T., Kwek X.Y., Cabrera-Fuentes H.A., Hausenloy D.J. Inflammation following acute myocardial infarction: Multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol. Ther. 2018;186:73–87. doi: 10.1016/j.pharmthera.2018.01.001.
    1. Gupta S., Gupta V.K., Gupta R., Arora S., Gupta V. Relationship of high-sensitive C-reactive protein with cardiovascular risk factors, clinical presentation and angiographic profile in patients with acute coronary syndrome: An Indian perspective. Indian Heart J. 2013;65:359–365. doi: 10.1016/j.ihj.2013.04.035.
    1. Koosha P., Roohafza H., Sarrafzadegan N., Vakhshoori M., Talaei M., Sheikhbahaei E., Sadeghi M. High Sensitivity C-Reactive Protein Predictive Value for Cardiovascular Disease: A Nested Case Control from Isfahan Cohort Study (ICS) Glob. Heart. 2020;15:3. doi: 10.5334/gh.367.
    1. Krintus M., Kozinski M., Stefanska A., Sawicki M., Obonska K., Fabiszak T., Kubica J., Sypniewska G. Value of C-reactive protein as a risk factor for acute coronary syndrome: A comparison with apolipoprotein concentrations and lipid profile. Mediat. Inflamm. 2012;2012:419804. doi: 10.1155/2012/419804.
    1. Kang D.O., Park Y., Seo J.H., Jeong M.H., Chae S.C., Ahn T.H., Jang W.Y., Kim W., Park E.J., Choi B.G., et al. KAMIR-NIH Registry Investigators. Time-dependent prognostic effect of high sensitivity C-reactive protein with statin therapy in acute myocardial infarction. J. Cardiol. 2019;74:74–83. doi: 10.1016/j.jjcc.2018.12.022.
    1. Lucci C., Cosentino N., Genovese S., Campodonico J., Milazzo V., De Metrio M., Rondinelli M., Riggio D., Biondi M.L., Rubino M., et al. Prognostic impact of admission high-sensitivity C-reactive protein in acute myocardial infarction patients with and without diabetes mellitus. Cardiovasc. Diabetol. 2020;19:183. doi: 10.1186/s12933-020-01157-7.
    1. Ammirati E., Cannistraci C.V., Cristell N.A., Vecchio V., Palini A.G., Tornvall P., Paganoni A.M., Miendlarzewska E.A., Sangalli L.M., Monello A., et al. Identification and predictive value of interleukin-6+ interleukin-10+ and interleukin-6- interleukin-10+ cytokine patterns in ST-elevation acute myocardial infarction. Circ. Res. 2012;111:1336–1348. doi: 10.1161/CIRCRESAHA.111.262477.
    1. Ridker P.M., Hennekens C.H., Roitman-Johnson B., Stampfer M.J., Allen J. Plasma concentration of soluble intercellular adhesion molecule 1 and risks of future myocardial infarction in apparently healthy men. Lancet. 1998;351:88–92. doi: 10.1016/S0140-6736(97)09032-6.
    1. O’Malley T., Ludlam C.A., Riemermsa R.A., Fox K.A. Early increase in levels of soluble inter-cellular adhesion molecule-1 (sICAM-1); potential risk factor for the acute coronary syndromes. Eur. Heart J. 2001;22:1226–1234. doi: 10.1053/euhj.2000.2480.
    1. Haverslag R., Pasterkamp G., Hoefer I.E. Targeting adhesion molecules in cardiovascular disorders. Cardiovasc. Hematol. Disord. Drug. Targets. 2008;8:252–260. doi: 10.2174/187152908786786188.
    1. Güray U., Erbay A.R., Güray Y., Yilmaz M.B., Boyaci A.A., Sasmaz H., Korkmaz S., Kütük E. Levels of soluble adhesion molecules in various clinical presentations of coronary atherosclerosis. Int. J. Cardiol. 2004;96:235–240. doi: 10.1016/j.ijcard.2003.07.014.
    1. Turhan H., Saydam G.S., Erbay A.R., Ayaz S., Yasar A.S., Aksoy Y., Basar N., Yetkin E. Increased plasma soluble adhesion molecules; ICAM-1, VCAM-1, and E-selectin levels in patients with slow coronary flow. Int. J. Cardiol. 2006;108:224–230. doi: 10.1016/j.ijcard.2005.05.008.
    1. Hillis G.S., Terregino C., Taggart P., Killian A., Zhao N., Kaplan J., Dalsey W.C., Mangione A. Soluble intercellular adhesion molecule-1 as a predictor of early adverse events in patients with chest pain compatible with myocardial ischemia. Ann. Emerg. Med. 2001;38:223–228. doi: 10.1067/mem.2001.117199.
    1. Luc G., Arveiler D., Evans A., Amouyel P., Ferrieres J., Bard J.M., Elkhalil L., Fruchart J.C., Ducimetiere P. PRIME Study Group. Circulating soluble adhesion molecules ICAM-1 and VCAM-1 and incident coronary heart disease: The PRIME Study. Atherosclerosis. 2003;170:169–176. doi: 10.1016/S0021-9150(03)00280-6.
    1. Van Doren S.R. Matrix metalloproteinase interactions with collagen and elastin. Matrix Biol. 2015;44:224–231. doi: 10.1016/j.matbio.2015.01.005.
    1. Opstad T.B., Seljeflot I., Bøhmer E., Arnesen H., Halvorsen S. MMP-9 and Its Regulators TIMP-1 and EMMPRIN in Patients with Acute ST-Elevation Myocardial Infarction: A NORDISTEMI Substudy. Cardiology. 2018;139:17–24. doi: 10.1159/000481684.
    1. Zhu J.J., Zhao Q., Qu H.J., Li X.M., Chen Q.J., Liu F., Chen B.D., Yang Y.N. Usefulness of plasma matrix metalloproteinase-9 levels in prediction of in-hospital mortality in patients who received emergent percutaneous coronary artery intervention following myocardial infarction. Oncotarget. 2017;8:105809–105818. doi: 10.18632/oncotarget.22401.
    1. Desperak P., Hawranek M., Gąsior P., Desperak A., Lekston A., Gąsior M. Long-term outcomes of patients with multivessel coronary artery disease presenting non-ST-segment elevation acute coronary syndromes. Cardiol. J. 2019;26:157–168. doi: 10.5603/CJ.a2017.0110.
    1. Van der Schaaf R.J., Vis M.M., Sjauw K.D., Koch K.T., Baan J., Jr., Tijssen J.G., de Winter R.J., Piek J.J., Henriques J.P. Impact of multivessel coronary disease on long-term mortality in patients with ST-elevation myocardial infarction is due to the presence of a chronic total occlusion. Am. J. Cardiol. 2006;98:1165–1169. doi: 10.1016/j.amjcard.2006.06.010.
    1. Karpiński L., Płaksej R., Kosmala W., Witkowska M. Serum levels of interleukin-6, interleukin-10 and C-reactive protein in relation to left ventricular function in patients with myocardial infarction treated with primary angioplasty. Kardiol. Pol. 2008;66:1279–1285.
    1. Swiatkiewicz I., Taub P.R. The usefulness of C-reactive protein for the prediction of post-infarct left ventricular systolic dysfunction and heart failure. Kardiol. Pol. 2018;76:821–829. doi: 10.5603/KP.a2018.0091.
    1. Mao S., Liang Y., Chen P., Zhang Y., Yin X., Zhang M. In-depth proteomics approach reveals novel biomarkers of cardiac remodelling after myocardial infarction: An exploratory analysis. J. Cell Mol. Med. 2020;24:10042–10051. doi: 10.1111/jcmm.15611.
    1. Groot H.E., Al Ali L., van der Horst I.C.C., Schurer R., van der Werf H.W., Lipsic E., van Veldhuisen D.J., Karper J.C., van der Harst P. Plasma interleukin 6 levels are associated with cardiac function after ST-elevation myocardial infarction. Clin. Res. Cardiol. 2019;108:612–621. doi: 10.1007/s00392-018-1387-z.
    1. Vanhaverbeke M., Veltman D., Pattyn N., De Crem N., Gillijns H., Cornelissen V., Janssens S., Sinnaeve P.R. C-reactive protein during and after myocardial infarction in relation to cardiac injury and left ventricular function at follow-up. Clin. Cardiol. 2018;41:1201–1206. doi: 10.1002/clc.23017.
    1. Tomaniak M., Katagiri Y., Modolo R., de Silva R., Khamis R.Y., Bourantas C.V., Torii R., Wentzel J.J., Gijsen F., van Soest G., et al. Vulnerable plaques and patients: State-of-the-art. Eur. Heart J. 2020;41:2997–3004. doi: 10.1093/eurheartj/ehaa227.
    1. Jones D.P., Patel J. Therapeutic Approaches Targeting Inflammation in Cardiovascular Disorders. Biology. 2018;7:49. doi: 10.3390/biology7040049.
    1. Shah S.R., Abbasi Z., Fatima M., Ochani R.K., Shahnawaz W., Asim Khan M., Shah S.A. Canakinumab and cardiovascular outcomes: Results of the CANTOS trial. J. Community Hosp. Intern. Med. Perspect. 2018;8:21–22. doi: 10.1080/20009666.2018.1428023.
    1. Huang S., Frangogiannis N.G. Anti-inflammatory therapies in myocardial infarction: Failures, hopes and challenges. Br. J. Pharmacol. 2018;175:1377–1400. doi: 10.1111/bph.14155.

Source: PubMed

3
Se inscrever