Acute-Phase Inflammatory Reaction Predicts CMR Myocardial Scar Pattern and 2-Year Mortality in STEMI Patients Undergoing Primary PCI

Andras Mester, Nora Rat, Theodora Benedek, Diana Opincariu, Roxana Hodas, Monica Chitu, Imre Benedek, Andras Mester, Nora Rat, Theodora Benedek, Diana Opincariu, Roxana Hodas, Monica Chitu, Imre Benedek

Abstract

(1) Background: The inflammatory response following MI plays an important role in the healing, scar formation, and left ventricle (LV) remodeling. Cardiac magnetic resonance (CMR) imaging can accurately quantify the extent of myocardial scarring. The study aimed to investigate: (a) the relationship between acute inflammatory response and the CMR parameters of the scarring extent, and (b) the predictive power of inflammatory biomarkers and myocardial scarring for 2-year mortality. (2) Methods: The study included 202 STEMI patients, who underwent pPCI. Serum hs-CRP, IL-6, P-selectin, E-selectin, I-CAM, and V-CAM levels were determined at admission, and hs-CRP on the fifth day. Patients underwent LGE-CMR after 1 month, for LV volumes, ejection fraction (EF), infarct size (IS), and transmurality. Subjects were divided into tertiles according to the IS, and 2-year all-cause mortality was determined. (3) Results: IL-6 was associated with IS (r = 0.324, p = 0.01), increased transmurality index (r = 0.3, p = 0.01), and lower LVEF (r = −0.3, p = 0.02). Admission hs-CRP levels were not associated with IS, transmurality, or mortality, while hs-CRP at day 5 was a significant predictor for IS (AUC = 0.635, p = 0.05) as well as IL-6 levels (AUC = 0.685, p < 0.001). Mortality was significantly higher in the upper IS tertiles (6% vs. 8.7% vs. 24.52%, p = 0.005). IS was a significant predictor of 2-year mortality (AUC = 0.673, p = 0.002), with a cut-off value of 28.81 g, as well as high transmurality (AUC = 0.641, p = 0.013), with a cut off value of 18.38 g. (4) Conclusions: The serum levels of IL-6 and day-5 hs-CRP predict IS and transmurality, and day-5 hs-CRP levels are independent predictors of 2-year mortality in STEMI patients treated with pPCI. The CMR pattern of myocardial scarring after 1 month, as expressed by the magnitude of IS and transmurality, is a significant predictor for 2-year mortality after revascularized STEMI.

Keywords: CMR; LGE; STEMI; infarct size; inflammatory biomarkers; mortality; primary PCI; transmurality.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flowchart of the study design and procedures.
Figure 2
Figure 2
Two-year mortality rates and trend in the analyzed study group.
Figure 3
Figure 3
ROC curve analyses: prediction of infarct size based on (A) IL-6 and (B) day-5 hs-CRP; prediction of 2-year mortality based on CMR parameters (C) infarct size and (D) high transmural extent of the scar tissue.

References

    1. Timmis A., Townsend N., Gale C.P., Torbica A., Lettino M., Petersen S.E., Mossialos E.A., Maggioni A.P., Kazakiewicz D., May H.T., et al. European Society of Cardiology: Cardiovascular Disease Statistics 2019. Eur. Heart J. 2020;41:12–85. doi: 10.1093/eurheartj/ehz859.
    1. García-García C., Ribas N., Recasens L.L., Meroño O., Subirana I., Fernández A., Pérez A., Miranda F., Tizón-Marcos H., Martí-Almor J., et al. In-hospital prognosis and long-term mortality of STEMI in a reperfusion network. "Head to head" analysis: Invasive reperfusion vs optimal medical therapy. BMC Cardiovasc. Disord. 2017;17:139. doi: 10.1186/s12872-017-0574-6.
    1. Doost Hosseiny A., Moloi S., Chandrasekhar J., Farshid A. Mortality pattern and cause of death in a long-term follow-up of patients with STEMI treated with primary PCI. Open. Heart. 2016;3:e000405. doi: 10.1136/openhrt-2016-000405.
    1. Pedersen F., Butrymovich V., Kelbæk H., Wachtell K., Helqvist S., Kastrup J., Holmvang L., Clemmensen P., Engstrøm T., Grande P., et al. Short- and long-term cause of death in patients treated with primary PCI for STEMI. J. Am. Coll. Cardiol. 2014;64:2101–2108. doi: 10.1016/j.jacc.2014.08.037.
    1. Qian G., Jin R.J., Fu Z.H., Yang Y.Q., Su H.L., Dong W., Guo J., Jing J., Guo Y.L., Chen Y.D. Development and validation of clinical risk score to predict the cardiac rupture in patients with STEMI. Am. J. Emerg. Med. 2017;35:589–593. doi: 10.1016/j.ajem.2016.12.033.
    1. Fox K.A., Dabbous O.H., Goldberg R.J., Pieper K.S., Eagle K.A., Van de Werf F., Avezum A., Goodman S.G., Flather M.D., Anderson F.A., Jr., et al. Prediction of risk of death and myocardial infarction in the six months after presentation with acute coronary syndrome: Prospective multinational observational study (GRACE) BMJ. 2006;333:1091. doi: 10.1136/bmj.38985.646481.55.
    1. Tibaut M., Caprnda M., Kubatka P., Sinkovič A., Valentova V., Filipova S., Gazdikova K., Gaspar L., Mozos I., Egom E.E., et al. Markers of Atherosclerosis: Part 1—Serological Markers. Heart Lung. Circ. 2019;28:667–677. doi: 10.1016/j.hlc.2018.06.1057.
    1. Westman P.C., Lipinski M.J., Luger D., Waksman R., Bonow R.O., Wu E., Epstein S.E. Inflammation as a Driver of Adverse Left Ventricular Remodeling After Acute Myocardial Infarction. J. Am. Coll. Cardiol. 2016;67:2050–2060. doi: 10.1016/j.jacc.2016.01.073.
    1. Ortolani P., Marzocchi A., Marrozzini C., Palmerini T., Saia F., Taglieri N., Baldazzi F., Silenzi S., Bacchi-Reggiani M.L., Guastaroba P., et al. Predictive value of high sensitivity C-reactive protein in patients with ST-elevation myocardial infarction treated with percutaneous coronary intervention. Eur. Heart J. 2008;29:1241–1249. doi: 10.1093/eurheartj/ehm338.
    1. Caixeta A., Stone G.W., Mehran R., Lee E.A., McLaurin B.T., Cox D.A., Bertrand M.E., Lincoff A.M., Moses J.W., White H.D., et al. Predictive value of C-reactive protein on 30-day and 1-year mortality in acute coronary syndromes: An analysis from the ACUITY trial. J. Thromb. Thrombolysis. 2011;31:154–164. doi: 10.1007/s11239-010-0516-y.
    1. Ye L., Bai H.M., Jiang D., He B., Wen X.S., Ge P., Zhang D.Y. Combination of eosinophil percentage and high-sensitivity C-reactive protein predicts in-hospital major adverse cardiac events in ST-elevation myocardial infarction patients undergoing primary percutaneous coronary intervention. J. Clin. Lab. Anal. 2020;34:e23367. doi: 10.1002/jcla.23367.
    1. Fanola C.L., Morrow D.A., Cannon C.P., Jarolim P., Lukas M.A., Bode C., Hochman J.S., Goodrich E.L., Braunwald E., O’Donoghue M.L. Interleukin-6 and the Risk of Adverse Outcomes in Patients After an Acute Coronary Syndrome: Observations From the SOLID-TIMI 52 (Stabilization of Plaque Using Darapladib-Thrombolysis in Myocardial Infarction 52) Trial. J. Am. Heart Assoc. 2017;6:e005637. doi: 10.1161/JAHA.117.005637.
    1. Frangogiannis N.G. The inflammatory response in myocardial injury, repair, and remodelling. Nat. Rev. Cardiol. 2014;11:255–265. doi: 10.1038/nrcardio.2014.28.
    1. Ridker P.M., MacFadyen J.G., Glynn R.J., Bradwin G., Hasan A.A., Rifai N. Comparison of interleukin-6, C-reactive protein, and low-density lipoprotein cholesterol as biomarkers of residual risk in contemporary practice: Secondary analyses from the Cardiovascular Inflammation Reduction Trial. Eur. Heart J. 2020;41:2952–2961. doi: 10.1093/eurheartj/ehaa160.
    1. Shantsila E., Tapp L.D., Wrigley B.J., Montoro-García S., Lip G.Y. Receptors to interleukin-6 and adhesion molecules on circulating monocyte subsets in acute myocardial infarction. Thromb. Haemost. 2013;110:340–348. doi: 10.1160/TH13-02-0085.
    1. Lai S.L., Marín-Juez R., Stainier D.Y.R. Immune responses in cardiac repair and regeneration: A comparative point of view. Cell. Mol. Life Sci. 2019;76:1365–1380. doi: 10.1007/s00018-018-2995-5.
    1. Ong S.B., Hernández-Reséndiz S., Crespo-Avilan G.E., Mukhametshina R.T., Kwek X.Y., Cabrera-Fuentes H.A., Hausenloy D.J. Inflammation following acute myocardial infarction: Multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol. Ther. 2018;186:73–87. doi: 10.1016/j.pharmthera.2018.01.001.
    1. Hamed G.M., Fattah M.F. Clinical Relevance of matrix metalloproteinase 9 in patients with acute coronary syndrome. Clin. Appl. Thromb. Hemost. 2015;21:705–711. doi: 10.1177/1076029614567309.
    1. Kim R.J., Wu E., Rafael A., Chen E.L., Parker M.A., Simonetti O., Klocke F.J., Bonow R.O., Judd R.M. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N. Engl. J. Med. 2000;343:1445–1453. doi: 10.1056/NEJM200011163432003.
    1. Moulin K., Viallon M., Romero W., Chazot A., Mewton N., Isaaz K., Croisille P. MRI of Reperfused Acute Myocardial Infarction Edema: ADC Quantification versus T1 and T2 Mapping. Radiology. 2020;295:542–549. doi: 10.1148/radiol.2020192186.
    1. Stiermaier T., Thiele H., Eitel I. Early myocardial edema after acute myocardial infarction is stable and not bimodal in humans—Evidence from a large CMR multicenter study. Int. J. Cardiol. 2017;246:87–89. doi: 10.1016/j.ijcard.2017.05.064.
    1. Larose E., Rodés-Cabau J., Pibarot P., Rinfret S., Proulx G., Nguyen C.M., Déry J.P., Gleeton O., Roy L., Noël B., et al. Predicting late myocardial recovery and outcomes in the early hours of ST-segment elevation myocardial infarction traditional measures compared with microvascular obstruction, salvaged myocardium, and necrosis characteristics by cardiovascular magnetic resonance. J. Am. Coll. Cardiol. 2010;55:2459–2469. doi: 10.1016/j.jacc.2010.02.033.
    1. Bulluck H., Hammond-Haley M., Weinmann S., Martinez-Macias R., Hausenloy D.J. Myocardial Infarct Size by CMR in Clinical Cardioprotection Studies: Insights From Randomized Controlled Trials. JACC. Cardiovasc. Imaging. 2017;10:230–240. doi: 10.1016/j.jcmg.2017.01.008.
    1. Kendziora B., Dewey M. Prognostic value of the myocardial salvage index measured by T2-weighted and T1-weighted late gadolinium enhancement magnetic resonance imaging after ST-segment elevation myocardial infarction: A systematic review and meta-regression analysis. PLoS ONE. 2020;15:e0228736. doi: 10.1371/journal.pone.0228736.
    1. Eitel I., Stiermaier T., Lange T., Rommel K.P., Koschalka A., Kowallick J.T., Lotz J., Kutty S., Gutberlet M., Hasenfuß G., et al. Cardiac Magnetic Resonance Myocardial Feature Tracking for Optimized Prediction of Cardiovascular Events Following Myocardial Infarction. JACC Cardiovasc. Imaging. 2018;11:1433–1444. doi: 10.1016/j.jcmg.2017.11.034.
    1. Thygesen K., Alpert J.S., Jaffe A.S., Chaitman B.R., Bax J.J., Morrow D.A., White H.D. Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardial Infarction. J. Am. Coll. Cardiol. 2018;72:2231–2264. doi: 10.1016/j.gheart.2018.08.004.
    1. Lino D.O.C., Freitas I.A., Meneses G.C., Martins A.M.C., Daher E.F., Rocha J.H.C., Silva Junior G.B. Interleukin-6 and adhesion molecules VCAM-1 and ICAM-1 as biomarkers of post-acute myocardial infarction heart failure. Braz. J. Med. Biol. Res. 2019;52:e8658. doi: 10.1590/1414-431X20198658.
    1. Chen R.Z., Liu C., Zhou P., Tan Y., Sheng Z.X., Li J.N., Zhou J.Y., Wu Y., Yang Y.M., Song L., et al. Associations between postprocedural D-dimer, hs-CRP, LDL-C levels and prognosis of acute myocardial infarction patients treated by percutaneous coronary intervention. Zhonghua Xin Xue Guan Bing Za Zhi. 2020;48:359–366. doi: 10.3760/cma.j.cn112148-20190829-00527.
    1. Al Aseri Z.A., Habib S.S., Marzouk A. Predictive value of high sensitivity C-reactive protein on progression to heart failure occurring after the first myocardial infarction. Vasc. Health Risk. Manag. 2019;15:221–227. doi: 10.2147/VHRM.S198452.
    1. Morariu M., Márton E., Mester A., Rațiu M., Benedek I. Association Between Acute Inflammatory Response and Infarct Size in Stemi Patients Undergoing Primary PCI. J. Cardiovasc. Emerg. 2018;4:140–146. doi: 10.2478/jce-2018-0017.
    1. Kristono G.A., Holley A.S., Lakshman P., Brunton-O’Sullivan M.M., Harding S.A., Larsen P.D. Association between inflammatory cytokines and long-term adverse outcomes in acute coronary syndromes: A systematic review. Heliyon. 2020;6:e03704. doi: 10.1016/j.heliyon.2020.e03704.
    1. Opincariu D., Rodean I., Rat N., Hodas R., Benedek I., Benedek T. Systemic Vulnerability, as Expressed by I-CAM and MMP-9 at Presentation, Predicts One Year Outcomes in Patients with Acute Myocardial Infarction-Insights from the VIP Clinical Study. J. Clin. Med. 2021;10:3435. doi: 10.3390/jcm10153435.
    1. Stone G.W., Selker H.P., Thiele H., Patel M.R., Udelson J.E., Ohman E.M., Maehara A., Eitel I., Granger C.B., Jenkins P.L., et al. Relationship Between Infarct Size and Outcomes Following Primary PCI: Patient-Level Analysis From 10 Randomized Trials. J. Am. Coll. Cardiol. 2016;67:1674–1683. doi: 10.1016/j.jacc.2016.01.069.
    1. Stiermaier T., Jobs A., de Waha S., Fuernau G., Pöss J., Desch S., Thiele H., Eitel I. Optimized Prognosis Assessment in ST-Segment-Elevation Myocardial Infarction Using a Cardiac Magnetic Resonance Imaging Risk Score. Circ. Cardiovasc. Imaging. 2017;10:e006774. doi: 10.1161/CIRCIMAGING.117.006774.
    1. Eitel I., de Waha S., Wöhrle J., Fuernau G., Lurz P., Pauschinger M., Desch S., Schuler G., Thiele H. Comprehensive prognosis assessment by CMR imaging after ST-segment elevation myocardial infarction. J. Am. Coll. Cardiol. 2014;64:1217–1226. doi: 10.1016/j.jacc.2014.06.1194.
    1. Huang S., Frangogiannis N.G. Anti-inflammatory therapies in myocardial infarction: Failures, hopes and challenges. Br. J. Pharmacol. 2018;175:1377–1400. doi: 10.1111/bph.14155.
    1. Ridker P.M., Everett B.M., Thuren T., MacFadyen J.G., Chang W.H., Ballantyne C., Fonseca F., Nicolau J., Koenig W., Anker S.D., et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017;377:1119–1131. doi: 10.1056/NEJMoa1707914.
    1. Tardif J.C., Kouz S., Waters D.D., Bertrand O.F., Diaz R., Maggioni A.P., Pinto F.J., Ibrahim R., Gamra H., Kiwan G.S., et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. N. Engl. J. Med. 2019;381:2497–2505. doi: 10.1056/NEJMoa1912388.

Source: PubMed

3
Se inscrever