Placental adaptations in growth restriction

Song Zhang, Timothy R H Regnault, Paige L Barker, Kimberley J Botting, Isabella C McMillen, Christine M McMillan, Claire T Roberts, Janna L Morrison, Song Zhang, Timothy R H Regnault, Paige L Barker, Kimberley J Botting, Isabella C McMillen, Christine M McMillan, Claire T Roberts, Janna L Morrison

Abstract

The placenta is the primary interface between the fetus and mother and plays an important role in maintaining fetal development and growth by facilitating the transfer of substrates and participating in modulating the maternal immune response to prevent immunological rejection of the conceptus. The major substrates required for fetal growth include oxygen, glucose, amino acids and fatty acids, and their transport processes depend on morphological characteristics of the placenta, such as placental size, morphology, blood flow and vascularity. Other factors including insulin-like growth factors, apoptosis, autophagy and glucocorticoid exposure also affect placental growth and substrate transport capacity. Intrauterine growth restriction (IUGR) is often a consequence of insufficiency, and is associated with a high incidence of perinatal morbidity and mortality, as well as increased risk of cardiovascular and metabolic diseases in later life. Several different experimental methods have been used to induce placental insufficiency and IUGR in animal models and a range of factors that regulate placental growth and substrate transport capacity have been demonstrated. While no model system completely recapitulates human IUGR, these animal models allow us to carefully dissect cellular and molecular mechanisms to improve our understanding and facilitate development of therapeutic interventions.

Figures

Figure 1
Figure 1
Summary of the placental adaptations that occur in the placental insufficiency-induced IUGR fetus and contribute to decreased fetal growth.

References

    1. Li Z., Zeki R., Hilder L., Sullivan E.A. Australia’s Mothers and Babies 2010. Ca. no. PER 57 ed. AIHW National Perinatal Epidemiology and Statistics; Canberra, Australia: 2012.
    1. Limesand S.W., Rozance P.J., Zerbe G.O., Hutton J.C., Hay W.W., Jr. Attenuated insulin release and storage in fetal sheep pancreatic islets with intrauterine growth restriction. Endocrinology. 2006;147:1488–1497. doi: 10.1210/en.2005-0900.
    1. Bamfo J.E., Odibo A.O. Diagnosis and management of fetal growth restriction. J. Pregnancy. 2011;2011 doi: 10.1155/2011/640715.
    1. Barker D.J. Developmental origins or chronic disease. Public Healh. 2012;126:185–189. doi: 10.1016/j.puhe.2011.11.014.
    1. Barker D.J., Gluckman P.D., Godfrey K.M., Harding J.E., Owens J.A., Robinson J.S. Fetal nutrition and cardiovascular disease in adult life. Lancet. 1993;341:938–941. doi: 10.1016/0140-6736(93)91224-A.
    1. Li C.C.Y., Maloney C.A., Cropley J.E., Suter C.M. Epigenetic programming by maternal nutritions: Shaping future generations. Epigenomics. 2010;2:539–549. doi: 10.2217/epi.10.33.
    1. Barker D.J., Gelow J., Thornburg K., Osmond C., Kajantie E., Eriksson J.G. The early origins of chronic heart failure: Impaired placental growth and initiation of insulin resistance in childhood. Eur. J. Heart Fail. 2010;12:819–825. doi: 10.1093/eurjhf/hfq069.
    1. Jansson T., Powell T.L. Role of the placenta in fetal programming: Underlying mechanisms and potential interventional approaches. Clin. Sci. (Lond.) 2007;113:1–13. doi: 10.1042/CS20060339.
    1. Jones H.N., Powell T.L., Jansson T. Regulation of placental nutrient transport—A review. Placenta. 2007;28:763–774. doi: 10.1016/j.placenta.2007.05.002.
    1. Marconi A.M., Paolini C.L. Nutrient transport across the intrauterine growth-restricted placenta. Semin. Perinatol. 2008;32:178–181. doi: 10.1053/j.semperi.2008.02.007.
    1. Gude N.M., Roberts C.T., Kalionis B., King R.G. Growth and function of the normal human placenta. Thromb. Res. 2004;114:397–407. doi: 10.1016/j.thromres.2004.06.038.
    1. Sibley C.P., Brownbill P., Dilworth M., Glazier J.D. Review: Adaption in placental nutrient supply to meet fetal growth demand: Implications for programmings. Placenta. 2010;24:70–74. doi: 10.1016/j.placenta.2009.12.020.
    1. Lager S., Powell T.L. Regulation of nutrient transport across the placenta. J. Pregnancy. 2012;2012:1–14. doi: 10.1155/2012/179827.
    1. Barry J.S., Anthony R.V. The pregnant sheep as a model for human pregnancy. Theriogenology. 2008;69:55–67. doi: 10.1016/j.theriogenology.2007.09.021.
    1. Fowden A.L., Ward J.W., Wooding F.P.B., Forhead A.J., Constancia M. Programming placental nutrient transfer capacity. J. Physiol. 2006;572:5–15. doi: 10.1113/jphysiol.2005.104141.
    1. Ward J.W., Forhead A.J., Wooding F.P.B., Fowden A.L. Functional significance and cortisol dependence of the gross morphology of ovine placentomes during late gestation. Biol. Reprod. 2006;74:137–145. doi: 10.1095/biolreprod.105.046342.
    1. Ahokas R.A., McKinney E.T. Development and Physiology of the Placenta and Membrane. The Global Library of Women’s Medicine; London, UK: 2008.
    1. Fowden A.L., Sferruzzi-Perri A.N., Coan P.M., Burton G. Placental efficiency and adaptation: Endocrine regulation. J. Physiol. 2009;587:3459–3472. doi: 10.1113/jphysiol.2009.173013.
    1. Regnault T.R., Marconi A.M., Smith C.H., Glazier J.D., Novak D.A., Sibley C.P., Jansson T. Placental amino acid transport systems and fetal growth restriction—A workshop report. Placenta. 2005;26:76–80. doi: 10.1016/j.placenta.2005.02.006.
    1. Roberts C.T., Sohlstrom A., Kind K.L., Grant P.A., Earl R.A., Robinson J.S., Khong T.Y., Owens P.C., Owens J.A. Altered placental structure induced by maternal food restriction in guinea pigs: A role for circulating IGF-II and IGFBP-2 in the mother? Placenta. 2001;22:77–82. doi: 10.1053/plac.2001.0643.
    1. Anthony R.V., Scheaffer A.N., Wright C.D., Regnault T.R. Ruminant models of prenatal growth restriction. Reprod. Suppl. 2003;61:183–194.
    1. Regnault T.R., de Vrijer B., Galan H.L., Wilkening R.B., Battaglia F.C., Meschia G. Umbilical uptakes and transplacental concentration ratios of amino acids in severe fetal growth restriction. Pediatr. Res. 2013;73:602–611. doi: 10.1038/pr.2013.30.
    1. Morrison J.L. Sheep models of intrauterine growth restriction: Fetal adaptations and consequences. Clin. Exp. Pharmacol. Physiol. 2008;35:730–743. doi: 10.1111/j.1440-1681.2008.04975.x.
    1. Gagnon R., Langridge J., Inchley K., Murotsuki J., Possmayer F. Changes in surfactant-associated protein mRNA profile in growth-restricted fetal sheep. Am. J. Physiol. 1999;276:459–465.
    1. Jones C.T., Roebuck M.M., Walker D.W., Lagercrantz H., Johnston B.M. Cardiovascular, metabolic and endocrine effects of chemical sympathectomy and of adrenal demedullation in fetal sheep. J. Dev. Physiol. 1987;9:347–367.
    1. Miller S.L., Chai M., Loose J., Castillo-Melendez M., Walker D.W., Jenkin G., Wallace E.M. The effects of maternal betamethasone administration on the intrauterine growth-restricted fetus. Endocrinology. 2007;148:1288–1295. doi: 10.1210/en.2006-1058.
    1. Mallard E.C., Rees S., Stringer M., Cock M.L., Harding R. Effects of chronic placental insufficiency on brain development in fetal sheep. Pediatr. Res. 1998;43:262–270. doi: 10.1203/00006450-199802000-00018.
    1. Robinson J.S., Hart I.C., Kingston E.J., Jones C.T., Thorburn G.D. Studies on the growth of the fetal sheep. The effects of reduction of placental size on hormone concentration in fetal plasma. J. Dev. Physiol. 1980;2:239–248.
    1. Dobbing J., Sands J. Comparative aspects of the brain growth spurt. Early Hum. Dev. 1979;3:79–83. doi: 10.1016/0378-3782(79)90022-7.
    1. Regnault T.R.H., de Vrijer B., Galan H.L., Wilkening R.B., Battaglia F.C., Meschia G. Development and mechanisms of fetal hypoxia in severe fetal growth restriction. Placenta. 2007;28:714–723. doi: 10.1016/j.placenta.2006.06.007.
    1. Wilson M.E. Role of placental function in mediating conceptus growth and survival. J. Anim. Sci. 2002;80:195–201.
    1. Vonnahme K.A., Arndt W.J., Johnson M.L., Borowicz P.P., Reynolds L.P. Effect of morphology on placentome size, vascularity and vasoreactivity in late pregnant sheep. Biol. Reprod. 2008;79:976–982. doi: 10.1095/biolreprod.108.070748.
    1. Ehrhardt R.A., Bell A.W. Growth and metabolism of the ovine placenta during mid-gestation. Placenta. 1995;16:727–741. doi: 10.1016/0143-4004(95)90016-0.
    1. Vatnick I., Schoknecht P.A., Darrigrand R., Bell A.W. Growth and metabolism of the placenta after unilateral fetectomy in twin pregnant ewes. J. Dev. Physiol. 1991;15:351–356.
    1. Robinson J.S., Hartwich K.M., Walker S.K., Erwich J.J., Owens J.A. Early influences on embryonic and placental growth. Acta Paediatr. Suppl. 1997;423:159–164. doi: 10.1111/j.1651-2227.1997.tb18401.x.
    1. Alexander G. Studies on the placenta of the sheep (Ovis aries L.). Effect of surgical reduction in the number of caruncles. J. Reprod. Fertil. 1964;30:307–322. doi: 10.1530/jrf.0.0070307.
    1. Wilson M.E., Ford S.P. Comparative aspects of placental efficiency. Reprod. Suppl. 2001;58:223–232.
    1. Barker D.J.P., Thornburg K.L. Placental programming of chronic diseases, cancer and lifespan: A review. Placenta. 2013;34:841–845. doi: 10.1016/j.placenta.2013.07.063.
    1. Barker D.J., Bull A.R., Osmond C., Simmonds S.J. Fetal and placental size and risk of hypertension in adult life. BMJ. 1990;301:259–262. doi: 10.1136/bmj.301.6746.259.
    1. Sibai B.M., Frangieh A. Maternal adaptation to pregnancy. Curr. Opin. Obstet. Gynecol. 1995;7:420–426. doi: 10.1097/00001703-199512000-00003.
    1. Carter A.M. Factors affecting gas transfer across the placenta and the oxygen supply to the fetus. J. Dev. Physiol. 1989;12:305–322.
    1. Bell A.W., Kennaugh J.M., Battaglia F.C., Makowski E.L., Meschia G. Metabolic and circulatory studies of fetal lamb at midgestation. Am. J. Physiol. 1986;250:538–544.
    1. Bonds D.R., Crosby L.O., Cheek T.G., Hagerdal M., Gutsche B.B., Gabbe S.G. Estimation of human fetal-placental unit metabolic rate by application of the bohr principle. J. Dev. Physiol. 1986;8:49–54.
    1. Campbell A.G., Dawes G.S., Fishman A.P., Hyman A.I., James G.B. The oxygen consumption of the placenta and foetal membranes in the sheep. J. Physiol. 1966;182:439–464. doi: 10.1113/jphysiol.1966.sp007831.
    1. Coan P.M., Ferguson-Smith A.C., Burton G. Developmental dynamics of the definitive mouse placenta assessed by stereology. Biol. Reprod. 2004;70:1806–1813. doi: 10.1095/biolreprod.103.024166.
    1. Reynolds L.P., Borawicz P.P., Vonnahme K.A., Johnson M.L., Grazul-Bilska A.T., Wallace J.M., Caton J.S., Redmer D.A. Animal models of placental angiogenesis. Placenta. 2005;26:689–708. doi: 10.1016/j.placenta.2004.11.010.
    1. Demir R., Seval Y., Huppertz B. Vasculogenesis and angiogenesis in the early human placenta. Acta Histochem. 2007;109:257–265. doi: 10.1016/j.acthis.2007.02.008.
    1. Charnock-Jones D.S., Kaufmann P., Mayhew T.M. Aspects of human fetoplacental vasculogenesis and angiogenesis. I. Molecular regulation. Placenta. 2004;25:103–113. doi: 10.1016/j.placenta.2003.10.004.
    1. Ahmed A., Perkins J. Angiogenesis and intrauterine growth restriction. Baillieres Best Pract. Res. Clin. Obstet. Gynaecol. 2000;14:981–998. doi: 10.1053/beog.2000.0139.
    1. Maisonpierre P.C., Suri C., Jones P.F., Bartunkova S., Wiegand S.J., Radziejewski C., Compton D., McClain J., Aldrich T.H., Papadopoulos N., et al. Angiopoietin-2, a natural antagonist for tie2 that disrupts in vivo angiogenesis. Science. 1997;277:55–60. doi: 10.1126/science.277.5322.55.
    1. Plaisier M., Rodrigues S., Willems F., Koolwijk P., van Hinsbergh V.W., Helmerhorst F.M. Different degrees of vascularization and their relationship to the expression of vascular endothelial growth factor, placental growth factor, angiopoietins, and their receptors in first-trimester decidual tissues. Fertil. Steril. 2007;88:176–187. doi: 10.1016/j.fertnstert.2006.11.102.
    1. Cross J.C., Hemberger M., Lu Y., Nozaki T., Whiteley K., Masutani M., Adamson S.L. Trophoblast functions, angiogenesis and remodeling of the maternal vasculature in the placenta. Mol. Cell. Endocrinol. 2002;187:207–212. doi: 10.1016/S0303-7207(01)00703-1.
    1. Regnault T.R., de Vrijer B., Galan H.L., Davidsen M.L., Trembler K.A., Battaglia F.C., Wilkening R.B., Anthony R.V. The relationship between transplacental O2 diffusion and placental expression of PLGF, VEGF and their receptors in a placental insufficiency model of fetal growth restriction. J. Physiol. 2003;550:641–656. doi: 10.1113/jphysiol.2003.039511.
    1. Hagen A.S., Orbus R.J., Wilkening R.B., Regnault T.R., Anthony R.V. Placental expression of angiopoietin-1, angiopoietin-2 and tie-2 during placental development in an ovine model of placental insufficiency-fetal growth restriction. Pediatr. Res. 2005;58:1228–1232. doi: 10.1203/01.pdr.0000185266.23265.87.
    1. Fowden A.L., Forhead A.J., Coan P.M., Burton G. The placenta and intrauterine programming. J. Neuroendocrinol. 2008;20:439–450. doi: 10.1111/j.1365-2826.2008.01663.x.
    1. Sferruzzi-Perri A.N., Owens J.A., Pringle K.G., Roberts C.T. The neglected role of insulin-like growth factors in the maternal circulation regulating fetal growth. J. Physiol. 2011;589:7–20. doi: 10.1113/jphysiol.2010.198622.
    1. Roos S., Lagerlöf O., Wennergren M., Powell T.L., Jansson T. Regulation of amino acid transporters by glucose and growth factors in cultured primary human trophoblast cells is mediated by mtor signalling. Am. J. Physiol. Cell Physiol. 2009;297:723–731. doi: 10.1152/ajpcell.00191.2009.
    1. Harding J.E., Liu L., Evans P.C., Gluckman P.D. Insulin-like growth factor 1 alters feto-placental protein and carbohydrate metabolism in fetal sheep. Endocrinology. 1994;134:1509–1514.
    1. Constancia M., Angiolini E., Sandovic I., Smith P., Smith R., Kelsey G., Dean W., Ferguson-Smith A.C., Sibley C.P., Reik W., et al. Adaption of nutrient supply to fetal demand in the mouse involves interaction between the Igf2 gene and placental transporter proteins. Proc. Natl. Acad. Sci. USA. 2005;102:19219–19224. doi: 10.1073/pnas.0504468103.
    1. Sibley C.P., Coan P.M., Ferguson-Smith A.C., Dean W., Hughes J., Smith P., Reik W., Burton G.J., Fowden A.L., Constancia M. Placental-specific insulin-like growth factor 2 (Igf2) regulates the diffusional exchange characteristics of the mouse placenta. Proc. Natl. Acad. Sci. USA. 2004;101:8204–8208. doi: 10.1073/pnas.0402508101.
    1. Constancia M., Hemberger M., Hughes J., Dean W., Ferguson-Smith A., Fundele R., Stewart F., Kelsey G., Fowden A., Sibley C., et al. Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature. 2002;417:945–948. doi: 10.1038/nature00819.
    1. Huppertz B., Kadyrov M., Kingdom J.C. Apoptosis and its role in the trophoblast. Am. J. Obstet. Gynecol. 2006;195:29–39. doi: 10.1016/j.ajog.2005.07.039.
    1. Klionsky D.J., Emr S.D. Autophagy as a regulated pathway of cellular degradation. Science. 2000;290:1717–1721. doi: 10.1126/science.290.5497.1717.
    1. Signorelli P., Avagliano L., Virgili E., Gagliostro V., Doi P., Braidotti P., Bulfamante G.P., Ghidoni R., Marconi A.M. Autophagy in term normal human placentas. Placenta. 2011;32:482–485. doi: 10.1016/j.placenta.2011.03.005.
    1. Hung T.H., Hsieh T.T., Chen S.F., Li M.J., Yeh Y.L. Autophagy in the human placenta throughout gestation. PLoS One. 2013;8 doi: 10.1371/journal.pone.0083475.
    1. Klionsky D.J., Abdalla F.C., Abeliovich H., Abraham R.T., Acevedo-Arozena A., Adeli K., Agholme L., Agnello M., Agostinis P., Aguirre-Ghiso J.A., et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2012;8:445–544. doi: 10.4161/auto.19496.
    1. Crighton D., Wilkinson S., Ryan K.M. Dram links autophagy to p53 and programmed cell death. Autophagy. 2007;3:72–74. doi: 10.4161/auto.3438.
    1. Michael A.E., Thurston L.M., Rae M.T. Glucocorticoid metabolism and reproduction: A tale of two enzymes. Reproduction. 2003;126:425–441. doi: 10.1530/rep.0.1260425.
    1. Korgun E.T., Ozmen A., Unek G., Mendilcioglu I. The Effects of Glucocorticoids on Fetal and Placental Development. InTech; Rijeka, Croatia: 2012.
    1. Alfaidy N., Li W., MacIntosh T., Yang K., Challis J. Late gestation increase in 11beta-hydroxysteroid dehydrogenase 1 expression in human fetal membranes: A novel intrauterine source of cortisol. J. Clin. Endocrinol. Metab. 2003;88:5033–5038. doi: 10.1210/jc.2002-021915.
    1. Shams M., Kilby M.D., Somerset D.A., Howie A.J., Gupta A., Wood P.J., Afnan M., Stewart P.M. 11beta-hydroxysteroid dehydrogenase type 2 in human pregnancy and reduced expression in intrauterine growth restriction. Hum. Reprod. 1998;13:799–804. doi: 10.1093/humrep/13.4.799.
    1. Whorwood C.B., Firth K.M., Budge H., Symonds M.E. Maternal undernutrition during early to midgestation programs tissue-specific alterations in the expression of the glucocorticoid receptor, 11beta-hydroxysteroid dehydrogenase isoforms, and type 1 angiotensin ii receptor in neonatal sheep. Endocrinology. 2001;142:2854–2864.
    1. Sibley C.P., Turner M.A., Cetin I., Ayuk P., Boyd R., D’Souza S.W., Glazier J.D., Greenwood S.L., Jansson T., Powell T.L. Placental phenotypes of intrauterine growth. Pediatr. Res. 2005;58:827–832. doi: 10.1203/01.PDR.0000181381.82856.23.
    1. Brown K., Heller D.S., Zamudio S., Illsley N.P. Glucose transporter 3 (GLUT3) protein expression in human placenta across gestation. Placenta. 2011;32:1041–1049. doi: 10.1016/j.placenta.2011.09.014.
    1. Magnusson A.L., Powell T.L., Wennergren M., Jansson T. Glucose metabolism in the the human preterm and term placenta of IUGR fetuses. Placenta. 2004;25:337–346. doi: 10.1016/j.placenta.2003.08.021.
    1. DiGiacomo J.E., Hay W.W., Jr. Placental-fetal glucose exchange and placental glucose consumption in pregnant sheep. Am. J. Physiol. 1990;258:360–367.
    1. Hay W.W., Jr. Placental-fetal glucose exchange and fetal glucose metabolism. Trans. Am. Clin. Climatol. Assoc. 2006;117:321–340.
    1. Novakovic B., Gordon L., Robinson W.P., Desoye G., Saffery R. Glucose as a fetal nutrients: Dynamic regulation of several glucose transporter genes by DNA methylation in the human placenta across gestation. J. Nutr. Biochem. 2013;24:282–288. doi: 10.1016/j.jnutbio.2012.06.006.
    1. Dandrea J., Wilson V., Gopalakrishnan G., Heasman L., Budge H., Stephenson T., Symonds M.E. Maternal nutritional manipulation of placental growth and glucose transporter 1 (GLUT-1) abundance in sheep. Reproduction. 2001;122:793–800. doi: 10.1530/rep.0.1220793.
    1. Larqué E., Ruiz-Palacios M.R., Koletzko B. Placental regulation of fetal nutrient supply. Curr. Opin. Clin. Nutr. Metab. Care. 2013;16:292–297. doi: 10.1097/MCO.0b013e32835e3674.
    1. Wooding F.B., Fowden A.L., Bell A.W., Ehrhardt R.A., Limesand S.W., Hay W.W., Jr. Localisation of glucose transport in the ruminant placenta: Implications for sequential use of transporter isoforms. Placenta. 2005;26:626–640. doi: 10.1016/j.placenta.2004.09.013.
    1. Wolf H.J., Desoye G. Immunohistochemical localization of glucose transporters and insulin receptors in human fetal membranes at term. Histochemistry. 1993;100:379–385. doi: 10.1007/BF00268936.
    1. Xing A.Y., Challier J.C., Lepercq J., Cauzac M., Charron M.J., Girard J., Hauguel-de Mouzon S. Unexpected expression of glucose transporter 4 in villous stromal cells of human placenta. J. Clin. Endocrinol. Metab. 1998;83:4097–4101.
    1. Limesand S.W., Regnault T.R., Hay W.W., Jr. Characterization of glucose transporter 8 (GLUT8) in the ovine placenta of normal and growth restricted fetuses. Placenta. 2004;25:70–77. doi: 10.1016/j.placenta.2003.08.012.
    1. Carayannopoulos M.O., Chi M.M., Cui Y., Pingsterhaus J.M., McKnight R.A., Mueckler M., Devaskar S.U., Moley K.H. GLUT8 is a glucose transporter responsible for insulin-stimulated glucose uptake in the blastocyst. Proc. Natl. Acad. Sci. USA. 2000;97:7313–7318. doi: 10.1073/pnas.97.13.7313.
    1. Regnault T.R.H., Friedman J.E., Wilkening R.B., Anthony R.V., Hay W.W., Jr. Fetoplacental transport and utilization of amino acids in IUGR. A review. Placenta. 2005;26:52–62. doi: 10.1016/j.placenta.2005.01.003.
    1. Grillo M.A., Lanza A., Colombatto S. Transport of amino acids through the placenta and their role. Amino Acids. 2008;34:517–523. doi: 10.1007/s00726-007-0006-5.
    1. Desforges M., Sibley C.P. Placental nutrient supply and fetal growth. Int. J. Dev. Biol. 2010;54:377–390. doi: 10.1387/ijdb.082765md.
    1. Desforges M., Lacey H.A., Glazier J.D., Greenwood S.L., Mynett K.J., Speake P.F., Sibley C.P. Snat4 isoform of system A amino acid transporter is expressed in human placenta. Am. J. Physiol. Cell Physiol. 2006;290:305–312. doi: 10.1152/ajpcell.00258.2005.
    1. Regnault T.R.H., de Vrijer B., Battaglia F.C. Transport and metabolism of amino acids in placenta. Endocrine. 2002;19:23–41. doi: 10.1385/ENDO:19:1:23.
    1. Desforges M., Greenwood S.L., Glazier J.D., Westwood M., Sibley C.P. The contribution of snat1 to system A amino acid transporter activity in human placental trophoblast. Biochem. Biophys. Res. Commun. 2010;398:130–134. doi: 10.1016/j.bbrc.2010.06.051.
    1. Verrey F. System l: Heteromeric exchangers of large, neutral amino acids involved in directional transport. Pflugers Arch. 2003;445:529–533.
    1. Okamoto Y., Sakata M., Ogura K., Yamamoto T., Yamaguchi M., Tasaka K., Kurachi H., Tsurudome M., Murata Y. Expression and regulation of 4f2hc and hlat1 in human trophoblasts. Am. J. Physiol. 2002;282:196–204. doi: 10.1152/ajpcell.00009.2002.
    1. Gaccioli F., Roos S., Powell T.L., Jansson T. Isoforms of the system l-amino acid transporter are differentially polarised to the syncytiotrophoblast plasma membrane in human placenta. Reprod. Sci. 2011;18:200.
    1. Lewis R.M., Glazier J.D., Greenwood S.L., Bennett E.J., Godfrey K.M., Jackson A.A., Sibley C.P., Cameron I.T., Hanson M.A. L-serine uptake by human placental microvillous membrane vesicles. Placenta. 2007;28:445–452. doi: 10.1016/j.placenta.2006.06.014.
    1. Kudo Y., Boyd C.A.R. Characterisation of l-tryptophan transporters in human placenta: A comparison of brush border and basal membrane vesicles. J. Physiol. 2001;531:405–416. doi: 10.1111/j.1469-7793.2001.0405i.x.
    1. Bodoy S., Martin L., Zorzano A., Palacin M., Estevez R., Bertran J. Identification of lat4, a novel amino acid transporter with system l activity. J. Biol. Chem. 2005;280:12002–12011. doi: 10.1074/jbc.M408638200.
    1. Babu E., Kanai Y., Chairoungdua A., Kim D.K., Iribe Y., Tangtrongsup S., Jutabha P., Li Y., Ahmed N., Sakamoto S., et al. Identification of a novel system l amino acid transporter structurally distinct from heterodimeric amino acid transporters. J. Biol. Chem. 2003;278:43838–43845. doi: 10.1074/jbc.M305221200.
    1. Cleal J.K., Glazier J.D., Ntani G., Crozier S.R., Day P.E., Harvey N.C., Robinson S.M., Cooper C., Godfrey K.M., Hanson M.A., et al. Facilitated transporters mediate net efflux of amino acids to the fetus across the basal membrane of the placental syncytiotrophoblast. J. Physiol. 2011;589:987–997. doi: 10.1113/jphysiol.2010.198549.
    1. Cleal J.K., Brownbill P., Godfrey K.M., Jackson J.M., Jackson A.A., Sibley C.P., Hanson M.A., Lewis R.M. Modification of fetal plasma amino acid composition by placental amino acid exchangers in vitro. J. Physiol. 2007;582:871–882. doi: 10.1113/jphysiol.2007.130690.
    1. Ayuk P.T., Sibley C.P., Donnai P., D’Souza S., Glazier J.D. Development and polarization of cationic amino acid transporters and regulators in the human placenta. Am. J. Physiol. Cell Physiol. 2000;278:1162–1171.
    1. Kamath S.G., Furesz T.C., Way B.A., Smith C.H. Identification of three cationic amino acid transporters in placental trophoblast: Cloning, expression, and characterization of hcat-1. J. Membr. Biol. 1999;171:55–62. doi: 10.1007/s002329900558.
    1. Arriza J.L., Fairman W.A., Wadiche J.I., Murdoch G.H., Kavanaugh M.P., Amara S.G. Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J. Neurosci. 1994;14:5559–5569.
    1. Fairman W.A., Vandenberg R.J., Arriza J.L., Kavanaugh M.P., Amara S.G. An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature. 1995;375:599–603. doi: 10.1038/375599a0.
    1. Matthews J.C., Beveridge M.J., Malandro M.S., Rothstein J.D., Campbell-Thompson M., Verlander J.W., Kilberg M.S., Novak D.A. Activity and protein localization of multiple glutamate transporters in gestation day 14 vs. Day 20 rat placenta. Am. J. Physiol. 1998;274:603–614.
    1. Jansson T. Amino acid transporters in the human placenta. Pediatr. Res. 2001;49:141–147. doi: 10.1203/00006450-200102000-00003.
    1. Haggarty P. Fatty acid supply to the human fetus. Annu. Rev. Nutr. 2010;30:237–255. doi: 10.1146/annurev.nutr.012809.104742.
    1. Kazantzis M., Stahl A. Fatty acid transport proteins, implications in physiology and disease. Biochim. Biophys. Acta. 2012;1821:852–857. doi: 10.1016/j.bbalip.2011.09.010.
    1. Schaiff W.T., Bildirici I., Cheong M., Chern P.L., Nelson D.M., Sadovsky Y. Peroxisome proliferator-activated receptor-γ and retinoid X receptor signaling regulate fatty acid uptake by primary human placental trophoblasts. J. Clin. Endocrinol. Metab. 2005;90:4267–4275. doi: 10.1210/jc.2004-2265.
    1. Campbell F.M., Bush P.G., Veerkamp J.H., Dutta-Roy A.K. Detection and cellular localization of plasma membrane-associated and cytoplasmic fatty acid-binding proteins in human placenta. Placenta. 1998;19:409–415. doi: 10.1016/S0143-4004(98)90081-9.
    1. Biron-Shental T., Schaiff W.T., Ratajczak C.K., Bildirici I., Nelson D.M., Sadovsky Y. Hypoxia regulates the expression of fatty acid-binding proteins in primary term human trophoblasts. Am. J. Obstet. Gynecol. 2007;197:1–6. doi: 10.1016/j.ajog.2007.03.066.
    1. McMillen I.C., Robinson J.S. Developmental origins of the metabolic syndrome: Prediction, plasticity, and programming. Physiol. Rev. 2005;85:571–633. doi: 10.1152/physrev.00053.2003.
    1. Barker D.J. Fetal programming of coronary heart disease. Trends Endocrinol. Metab. 2002;13:364–368. doi: 10.1016/S1043-2760(02)00689-6.
    1. Barker D.J., Osmond C., Forsen T.J., Kajantie E., Eriksson J.G. Trajectories of growth among children who have coronary events as adults. N. Engl. J. Med. 2005;353:1802–1809. doi: 10.1056/NEJMoa044160.
    1. Moore V.M., Miller A.G., Boulton T.J.C., Cockington R.A., Craig I.H., Magarey A.M., Robinson J.S. Placental weight, birth measurements and blood pressure at age 8 years. Arch. Dis. Child. 1996;74:538–541. doi: 10.1136/adc.74.6.538.
    1. McMillen I.C., Adams M.B., Ross J.T., Coulter C.L., Simonetta G., Owens J.A., Robinson J.S., Edwards L.J. Fetal growth restriction: Adaptations and consequences. Reproduction. 2001;122:195–204. doi: 10.1530/rep.0.1220195.
    1. Morrison J.L., Duffield J.A., Muhulhausler B.S., Gentili S., McMillen I.C. Fetal growth restriction, catch-up growth and the early origins of insulin resistance and visceral obesity. Pediatr. Nephrol. 2009;25:669–677. doi: 10.1007/s00467-009-1407-3.
    1. Emmanouilides G.C., Townsend D.E., Bauer R.A. Effects of single umbilical artery ligation in the lamb fetus. Pediatrics. 1968;42:919–927.
    1. Oh W., Omori K., Erenberg A., Emmanouilides G.C. Umbilical blood flow and glucose uptake in lamb fetus following single umbilical artery ligation. Biol. Neonate. 1975;26:291–299. doi: 10.1159/000240741.
    1. Cheung C.Y., Bogic L., Gagnon R., Harding R., Brace R.A. Morphologic alterations in ovine placenta and fetal liver following induced severe placental insufficiency. J. Soc. Gynecol. Investig. 2004;11:521–528. doi: 10.1016/j.jsgi.2004.06.010.
    1. Sutherland A.E., Crossley K.J., Allison B.J., Jenkin G., Wallace E.M., Miller S.L. The effects of intrauterine growth restriction and antenatal glucocorticoids on ovine fetal lung development. Pediatr. Res. 2012;76:689–696. doi: 10.1038/pr.2012.19.
    1. Early R.J., McBride B.W., Vatnick I., Bell A.W. Chronic heat stress and prenatal development in sheep: Ii. Placental cellularity and metabolism. J. Anim. Sci. 1991;69:3610–3616.
    1. Regnault T.R., Orbus R.J., de Vrijer B., Davidsen M.L., Galan H.L., Wilkening R.B., Anthony R.V. Placental expression of VEGF, PLGF and their receptors in a model of placental insufficiency-intrauterine growth restriction (PI-IUGR) Placenta. 2002;23:132–144. doi: 10.1053/plac.2001.0757.
    1. Clapp J.F., 3rd, Szeto H.H., Larrow R., Hewitt J., Mann L.I. Umbilical blood flow response to embolization of the uterine circulation. Am. J. Obstet. Gynecol. 1980;138:60–67.
    1. Gagnon R., Johnston L., Murotsuki J. Fetal placental embolization in the late-gestation ovine fetus: Alterations in umbilical blood FLW and fetal heart rate patterns. Am. J. Obstet. Gynecol. 1996;175:63–72. doi: 10.1016/S0002-9378(96)70252-1.
    1. Louey S., Cock M.L., Stevenson K.M., Harding R. Placental insufficiency and fetal growth restriction lead to postnatal hypotension and alterd postnatal growth in sheep. Pediatr. Res. 2000;48:808–814. doi: 10.1203/00006450-200012000-00018.
    1. Owens J.A., Kind K.L., Carbone F., Robinson J.S., Owens P.C. Circulating insulin-like growth factors-I and -II and substrates in fetal sheep following restriction of placental growth. J. Endocrinol. 1994;140:5–13. doi: 10.1677/joe.0.1400005.
    1. Danielson L., IMcMillen I.C., Dyer J.L., Morrison J.L. Restriction of placental growth results in greater hypotensive response to α-adrenergic blockade in sheep during late gestation. J. Physiol. 2005;563:611–620. doi: 10.1113/jphysiol.2004.080523.
    1. Soo P.S., Hiscock J., Botting K.J., Roberts C.T., Davey A.K., Morrison J.L. Maternal undernutrition reduces P-glycoprotein in guinea pigs placenta and developing brain in late gestation. Reprod. Toxicol. 2012;33:374–381. doi: 10.1016/j.reprotox.2012.01.013.
    1. Robinson J.S., Kingston E.J., Jones C.T., Thornburn G.D. Studies on experimental growth retardation in sheep. The effect of removal of endometrial caruncles on fetal size and metabolism. J. Dev. Physiol. 1979;1:379–398.
    1. Chen C.P., Bajoria R., Aplin J.D. Decreased vascularization and cell proliferation in placentas of intrauterine growth-restricted fetuses with abnormal umbilical artery flow velocity waveforms. Am. J. Obstet. Gynecol. 2002;187:764–769. doi: 10.1067/mob.2002.125243.
    1. Mayhew T.M., Ohadike C., Baker P.N., Crocker I.P., Mitchell C., Ong S.S. Stereological investigation of placental morphology in pregnancies complicated by pre-eclampsia with and without intrauterine growth restriction. Placenta. 2003;24:219–226. doi: 10.1053/plac.2002.0900.
    1. Krebs C., Macara L.M., Leiser R., Bowman A.W., Greer I.A., Kingdom J.C. Intrauterine growth restriction with absent end-diastolic flow velocity in the umbilical artery is associated with maldevelopment of the placental terminal villous tree. Am. J. Obstet. Gynecol. 1996;175:1534–1542. doi: 10.1016/S0002-9378(96)70103-5.
    1. Roberts C.T., Owens P.C., Owens J.A. Maternal food restriction reduces the exchange surface area and increases the barrier thickness of the placenta in the guinea pig. Placenta. 2001;22:177–185. doi: 10.1053/plac.2000.0602.
    1. Bacon B.J., Gilbert R.D., Kaufmann P., Smith A.D., Trevino F.T., Longo L.D. Placental anatomy and diffusing capacity in guinea pigs following long-term maternal hypoxia. Placenta. 1984;5:475–487. doi: 10.1016/S0143-4004(84)80002-8.
    1. Reshetnikova O.S., Burton G.J., Milovanov A.P. Effects of hypobaric hypoxia on the fetoplacental unit: The morphometric diffusing capacity of the villous membrane at high altitude. Am. J. Obstet. Gynecol. 1994;171:1560–1565. doi: 10.1016/0002-9378(94)90402-2.
    1. Parraguez V.H., Atlagich M., Diaz R., Cepeda R., Gonzalez C., de los Reyes M., Bruzzone M.E., Behn C., Raggi L.A. Ovine placenta at high altitudes: Comparison of animals with different times of adaptation to hypoxic environment. Anim. Reprod. Sci. 2006;95:151–157. doi: 10.1016/j.anireprosci.2005.11.003.
    1. Penninga L., Longo L.D. Ovine placentome morphology: Effect of high altitude, long-term hypoxia. Placenta. 1998;19:187–193. doi: 10.1016/S0143-4004(98)90008-X.
    1. Steyn C., Hawkins P., Saito T., Noakes D.E., Kingdom J.C.P., Hanson M.A. Undernutrition during the first half of gestation increases the predominance of fetal tissue in late-gestation ovine placentomes. Eur. J. Obstet. Gynecol. Reprod. Biol. 2001;98:165–170. doi: 10.1016/S0301-2115(01)00321-9.
    1. Gardner D.S., Ward J.W., Giussani D.A., Fowden A.L. The effect of a reversible period of adverse intrauterine conditions during late gestation on fetal and placental weight and placentome distribution in sheep. Placenta. 2002;23:459–466. doi: 10.1053/plac.2002.0830.
    1. Semenza G.L. Hif-1: Mediator of physiological and pathophysiological responses to hypoxia. J. Appl. Physiol. 2000;88:1474–1480.
    1. Caniggia I., Winter J.L. Adriana and Luisa Castellucci award lecture 2001. Hypoxia inducible factor-1: Oxygen regulation of trophoblast differentiation in normal and pre-eclamptic pregnancies—A review. Placenta. 2002;23:47–57. doi: 10.1053/plac.2002.0815.
    1. Pringle K.G., Kind K.L., Thompson J.G., Roberts C.T. Complex interactions between hypoxia inducible factors, insulin-like growth factor-ii and oxygen in early murine trophoblasts. Placenta. 2007;28:1147–1157. doi: 10.1016/j.placenta.2007.05.009.
    1. Wheeler T., Elcock C.L., Anthony F.W. Angiogenesis and the placental environment. Placenta. 1995;16:289–296. doi: 10.1016/0143-4004(95)90115-9.
    1. Zhang E.G., Smith S.K., Baker P.N., Charnock-Jones D.S. The regulation and localization of angiopoietin-1, -2, and their receptor tie2 in normal and pathologic human placentae. Mol. Med. 2001;7:624–635.
    1. Toal M., Chan C., Fallah S., Alkazalen F., Chaddha V., Winderm R.C., Kingdom J.C. Usefulness of a placental profile in high-risk pregnancies. Am. J. Obstet. Gynecol. 2007;196:363–371. doi: 10.1016/j.ajog.2006.10.897.
    1. Pijnenborg R., Vercruysse L., Hanssens M. The uterine spiral arteries in human pregnancy: Facts and controversies. Placenta. 2006;27:939–958. doi: 10.1016/j.placenta.2005.12.006.
    1. Lyall F., Young A., Boswell F., Kingdom J.C., Greer I.A. Placental expression of vascular endothelial growth factor in placentae from pregnancies complicated by pre-eclampsia and intrauterine growth restriction does not support placental hypoxia at delivery. Placenta. 1997;18:269–276. doi: 10.1016/S0143-4004(97)80061-6.
    1. Barut F., Barut A., Gun B.D., Kandemir N.O., Harma M.I., Harma M., Aktunc E., Ozdamar S.O. Intrauterine growth restriction and placental angiogenesis. Diagn. Pathol. 2010;5 doi: 10.1186/1746-1596-5-24.
    1. Akram S.K., Sahlin L., Ostlund E., Hagenas L., Fried G., Soder O. Placental IGF-I, estrogen receptor, and progesterone receptor expression, and maternal anthropometry in growth-restricted pregnancies in the swedish population. Horm. Res. Paediatr. 2011;75:131–137. doi: 10.1159/000320466.
    1. Koutsaki M., Sifakis S., Zaravinos A., Koutroulakis D., Koukoura O., Spandidos D.A. Decreased placental expression of hPGH, IGF-I and IGFBP-1 in pregnancies complicated by fetal growth restriction. Growth Horm. IGF Res. 2011;21:31–36. doi: 10.1016/j.ghir.2010.12.002.
    1. De Vrijer B., Davidsen M.L., Wilkening R.B., Anthony R.V., Regnault T.R. Altered placental and fetal expression of IGFS and IGF-binding proteins associated with intrauterine growth restriction in fetal sheep during early and mid-pregnancy. Pediatr. Res. 2006;60:507–512. doi: 10.1203/01.PDR.0000242364.78002.71.
    1. Cuffe J.S., Walton S.L., Singh R.R., Spiers J.G., Bielefeldt-Ohmann H., Wilkinson L., Little M.H., Moritz K.M. Mid- to late term hypoxia in the mouse alters placental morphology, glucocorticoid regulatory pathways and nutrient transporters in a sex-specific manner. J. Physiol. 2014;592:3127–3141. doi: 10.1113/jphysiol.2014.272856.
    1. Erel C.T., Dane B., Calay Z., Kaleli S., Aydinli K. Apoptosis in the placenta of pregnancies complicated with iugr. Int. J. Gynaecol. Obstet. 2001;73:229–235. doi: 10.1016/S0020-7292(01)00373-3.
    1. Smith S.C., Baker P.N., Symonds E.M. Increased placental apoptosis in intrauterine growth restriction. Am. J. Obstet. Gynecol. 1997;177:1395–1401. doi: 10.1016/S0002-9378(97)70081-4.
    1. Levy R., Smith S.D., Chandler K., Sadovsky Y., Nelson D.M. Apoptosis in human cultured trophoblasts is enhanced by hypoxia and diminished by epidermal growth factor. Am. J. Physiol. Cell Physiol. 2000;278:982–988.
    1. Hung T.H., Chen S.F., Liou J.D., Hsu J.J., Li M.J., Yeh Y.L., Hsieh T.T. Bax, Bak and mitochondrial oxidants are involved in hypoxia-reoxygenation-induced apoptosis in human placenta. Placenta. 2008;29:565–583. doi: 10.1016/j.placenta.2008.03.005.
    1. Levy R., Smith S.D., Yusuf K., Huettner P.C., Kraus F.T., Sadovsky Y., Nelson D.M. Trophoblast apoptosis from pregnancies complicated by fetal growth restriction is associated with enhanced p53 expression. Am. J. Obstet. Gynecol. 2002;186:1056–1061. doi: 10.1067/mob.2002.122250.
    1. Endo H., Okamoto A., Yamada K., Nikaido T., Tanaka T. Frequent apoptosis in placental villi from pregnancies complicated with intrauterine growth restriction and without maternal symptoms. Int. J. Mol. Med. 2005;16:79–84.
    1. Heazell A.E., Sharp A.N., Baker P.N., Crocker I.P. Intra-uterine growth restriction is associated with increased apoptosis and altered expression of proteins in the p53 pathway in villous trophoblast. Apoptosis. 2011;16:135–144. doi: 10.1007/s10495-010-0551-3.
    1. Hung T.H., Chen S.F., Lo L.M., Li M.J., Yeh Y.L., Hsieh T.T. Increased autophagy in placentas of intrauterine growth-restricted pregnancies. PLoS One. 2012;7 doi: 10.1371/journal.pone.0040957.
    1. Chen B., Longtine M.S., Nelson D.M. Hypoxia induces autophagy in primary human trophoblasts. Endocrinology. 2012;153:4946–4954. doi: 10.1210/en.2012-1472.
    1. Jaquiery A.L., Oliver M.H., Bloomfield F.H., Connor K.L., Challis J.R., Harding J.E. Fetal exposure to excess glucocorticoid is unlikely to explain the effects of periconceptional undernutrition in sheep. J. Physiol. 2006;572:109–118. doi: 10.1113/jphysiol.2006.105734.
    1. Mericq V., Medina P., Kakarieka E., Marquez L., Johnson M.C., Iniguez G. Differences in expression and activity of 11beta-hydroxysteroid dehydrogenase type 1 and 2 in human placentas of term pregnancies according to birth weight and gender. Eur. J. Endocrinol. 2009;161:419–425. doi: 10.1530/EJE-09-0308.
    1. Zamudio S., Torricos T., Fik E., Oyala M., Echalar L., Pullockaran J., Tutino E., Martin B., Belliappa S., Balanza E., et al. Hypoglycemia and the origin of hypoxia-induced reduction in human fetal growth. PLoS One. 2010;5 doi: 10.1371/journal.pone.0008551.
    1. Owens J.A., Falconer J., Robinson J.S. Restriction of placental size in sheep enhances efficiency of placental transfer of antipyrine, 3-o-methyl-d-glucose but not of urea. J. Dev. Physiol. 1987;9:457–464.
    1. Owens J.A., Falconer J., Robinson J.S. Effect of restriction of placental growth on fetal and utero-placental metabolism. J. Dev. Physiol. 1987;9:225–238.
    1. Baumann M.U., Zamudio S., Illsley N.P. Hypoxic upregulation of glucose transporters in BeWo choriocarcinoma cells is mediated by hypoxia-inducible factor-1. Am. J. Physiol. Cell Physiol. 2007;293:477–485. doi: 10.1152/ajpcell.00075.2007.
    1. Janzen C., Lei M.Y., Cho J., Sullivan P., Shin B.C., Devaskar S.U. Placental glucose transporter 3 (GLUT3) is up-regulated in human pregnancies complicated by late-onset intrauterine growth restriction. Placenta. 2013;34:1072–1078. doi: 10.1016/j.placenta.2013.08.010.
    1. Dubova E.A., Pavlov K.A., Kulikova G.V., Shchegolev A.I., Sukhikh G.T. Glucose transporters expression in the placental terminal villi of preeclampsia and intrauterine growth retardation complicated pregnancies. Health. 2013;5:100–104. doi: 10.4236/health.2013.57A4014.
    1. Zamudio S., Baumann M.U., Illsley N.P. Effects of chronic hypoxia in vivo on the expression of human placental glucose transporter. Placenta. 2006;27:49–55. doi: 10.1016/j.placenta.2004.12.010.
    1. Jansson T., Wennergren M., Illsley N.P. Glucose transporter protein expression in human placenta throughout gestation and in intrauterine growth retardation. J. Clin. Endocrinol. Metab. 1993;77:1554–1562.
    1. Jansson T., Ylven K., Wennergren M., Powell T.L. Glucose transport and system A activity in syncytiotrophoblast microvillous and basal plasma membranes in intrauterine growth restriction. Placenta. 2002;23:392–399. doi: 10.1053/plac.2002.0826.
    1. Glazier J.D., Cetin I., Perugino G., Ronzoni S., Grey A.M., Mahendran D., Marconi A.M., Pardi G., Sibley C.P. Association between the activity of the system A amino acid transporter in the microvillous plasma membrane of the human placenta and severity of fetal compromise in intrauterine growth restriction. Pediatr. Res. 1997;42:514–519. doi: 10.1203/00006450-199710000-00016.
    1. Mando C., Tabano S., Pileri P., Colapietro P., Marino M.A., Avagliano L., Doi P., Bulfamante G., Miozzo M., Cetin I. Snat2 expression and regulation in human growth-restricted placentas. Pediatr. Res. 2013;74:104–110. doi: 10.1038/pr.2013.83.
    1. Jansson T., Scholtbach V., Powell T.L. Placental transport of leucine and lysine is reduced in intrauterine growth restriction. Pediatr. Res. 1998;44:532–537. doi: 10.1203/00006450-199810000-00011.
    1. Paolini C.L., Marconi A.M., Ronzoni S., di Noio M., Fennessey P.V., Pardi G., Battaglia F.C. Placental transport of leucine, phenylalanine, glycine, and proline in intrauterine growth-restricted pregnancies. J. Clin. Endocrinol. Metab. 2001;86:5427–5432. doi: 10.1210/jcem.86.11.8036.
    1. Ross J.C., Fennessey P.V., Wilkening R.B., Battaglia F.C., Meschia G. Placental transport and fetal utilization of leucine in a model of fetal growth retardation. Am. J. Physiol. 1996;270:491–503.
    1. Anderson A.H., Fennessey P.V., Meschia G., Wilkening R.B., Battaglia F.C. Placental transport of threonine and its utilization in the normal and growth-restricted fetus. Am. J. Physiol. 1997;272:892–900.
    1. De Vrijer B., Regnault T.R., Wilkening R.B., Meschia G., Battaglia F.C. Placental uptake and transport of ACP, a neutral nonmetabolizable amino acid, in an ovine model of fetal growth restriction. Am. J. Physiol. Endocrinol. Metab. 2004;287:1114–1124. doi: 10.1152/ajpendo.00259.2004.
    1. Godfrey K.M., Matthews N., Glazier J., Jackson A., Wilman C., Sibley C.P. Neutral amino acid uptake by the microvillous plasma membrane of the human placenta is inversely related to fetal size at birth in normal pregnancy. J. Clin. Endocrinol. Metab. 1998;83:3320–3326.
    1. Nelson D.M., Smith S.D., Furesz T.C., Sadovsky Y., Ganapathy V., Parvin C.A., Smith C.H. Hypoxia reduces expression and function of system A amino acid transporters in cultured term human trophoblasts. Am. J. Physiol. Cell Physiol. 2003;284:310–315. doi: 10.1152/ajpcell.00253.2002.
    1. Mishima T., Miner J.H., Morizane M., Stahl A., Sadovsky Y. The expression and function of fatty acid transport protein-2 and -4 in the murine placenta. PLoS One. 2011;6 doi: 10.1371/journal.pone.0025865.
    1. Laivuori H., Gallaher M.J., Collura L., Crombleholme W.R., Markovic N., Rajakumar A., Hubel C.A., Roberts J.M., Powers R.W. Relationships between maternal plasma leptin, placental leptin mRNA and protein in normal pregnancy, pre-eclampsia and intrauterine growth restriction without pre-eclampsia. Mol. Hum. Reprod. 2006;12:551–556. doi: 10.1093/molehr/gal064.

Source: PubMed

3
Se inscrever