Genetic Causes of Cardiomyopathy in Children: First Results From the Pediatric Cardiomyopathy Genes Study

Stephanie M Ware, James D Wilkinson, Muhammad Tariq, Jeffrey A Schubert, Arthi Sridhar, Steven D Colan, Ling Shi, Charles E Canter, Daphne T Hsu, Steven A Webber, Debra A Dodd, Melanie D Everitt, Paul F Kantor, Linda J Addonizio, John L Jefferies, Joseph W Rossano, Elfriede Pahl, Paolo Rusconi, Wendy K Chung, Teresa Lee, Jeffrey A Towbin, Ashwin K Lal, Surbhi Bhatnagar, Bruce Aronow, Phillip J Dexheimer, Lisa J Martin, Erin M Miller, Lynn A Sleeper, Hiedy Razoky, Jason Czachor, Steven E Lipshultz, Pediatric Cardiomyopathy Registry Study Group, Stephanie M Ware, James D Wilkinson, Muhammad Tariq, Jeffrey A Schubert, Arthi Sridhar, Steven D Colan, Ling Shi, Charles E Canter, Daphne T Hsu, Steven A Webber, Debra A Dodd, Melanie D Everitt, Paul F Kantor, Linda J Addonizio, John L Jefferies, Joseph W Rossano, Elfriede Pahl, Paolo Rusconi, Wendy K Chung, Teresa Lee, Jeffrey A Towbin, Ashwin K Lal, Surbhi Bhatnagar, Bruce Aronow, Phillip J Dexheimer, Lisa J Martin, Erin M Miller, Lynn A Sleeper, Hiedy Razoky, Jason Czachor, Steven E Lipshultz, Pediatric Cardiomyopathy Registry Study Group

Abstract

Background Pediatric cardiomyopathy is a genetically heterogeneous disease with substantial morbidity and mortality. Current guidelines recommend genetic testing in children with hypertrophic, dilated, or restrictive cardiomyopathy, but practice variations exist. Robust data on clinical testing practices and diagnostic yield in children are lacking. This study aimed to identify the genetic causes of cardiomyopathy in children and to investigate clinical genetic testing practices. Methods and Results Children with familial or idiopathic cardiomyopathy were enrolled from 14 institutions in North America. Probands underwent exome sequencing. Rare sequence variants in 37 known cardiomyopathy genes were assessed for pathogenicity using consensus clinical interpretation guidelines. Of the 152 enrolled probands, 41% had a family history of cardiomyopathy. Of 81 (53%) who had undergone clinical genetic testing for cardiomyopathy before enrollment, 39 (48%) had a positive result. Genetic testing rates varied from 0% to 97% between sites. A positive family history and hypertrophic cardiomyopathy subtype were associated with increased likelihood of genetic testing (P=0.005 and P=0.03, respectively). A molecular cause was identified in an additional 21% of the 63 children who did not undergo clinical testing, with positive results identified in both familial and idiopathic cases and across all phenotypic subtypes. Conclusions A definitive molecular genetic diagnosis can be made in a substantial proportion of children for whom the cause and heritable nature of their cardiomyopathy was previously unknown. Practice variations in genetic testing are great and should be reduced. Improvements can be made in comprehensive cardiac screening and predictive genetic testing in first-degree relatives. Overall, our results support use of routine genetic testing in cases of both familial and idiopathic cardiomyopathy. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT01873963.

Keywords: exome; heart failure; infant; molecular; mutation.

Conflict of interest statement

Dr Steven E. Lipshultz is a consultant for Tenaya Therapeutics, Bayer, and on an advisory board for Myokardia.

Figures

Figure 1. Characteristics of 152 children in…
Figure 1. Characteristics of 152 children in the pediatric cardiomyopathy genes study.
A, Distribution of cardiomyopathy phenotypes; B, Median (interquartile range) age at cardiomyopathy diagnosis by sex and cardiomyopathy phenotype. DCM indicates dilated cardiomyopathy; HCM, hypertrophic cardiomyopathy; LVNC, left ventricular noncompaction; and RCM, restrictive cardiomyopathy.
Figure 2. Frequency of clinical genetic cardiomyopathy…
Figure 2. Frequency of clinical genetic cardiomyopathy panel testing by cardiomyopathy subtype.
DCM indicates dilated cardiomyopathy; HCM, hypertrophic cardiomyopathy; LVNC, left ventricular noncompaction; and RCM, restrictive cardiomyopathy.
Figure 3. Clinical genetic testing results in…
Figure 3. Clinical genetic testing results in 81 cardiomyopathy patients by phenotype.
Results interpreted as pathogenic or likely pathogenic are considered positive. Patients who did not have cardiomyopathy panel testing were excluded. DCM indicates dilated cardiomyopathy; HCM, hypertrophic cardiomyopathy; LVNC, left ventricular noncompaction; RCM, restrictive cardiomyopathy; and VUS, variant of uncertain significance.
Figure 4. Frequency of positive exome testing…
Figure 4. Frequency of positive exome testing results in children with cardiomyopathy by phenotype and family history status.
DCM indicates dilated cardiomyopathy; HCM, hypertrophic cardiomyopathy; LVNC, left ventricular noncompaction; and RCM, restrictive cardiomyopathy.

References

    1. Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, Moss AJ, Seidman CE, Young JB; American Heart Association, Council on Clinical Cardiology Heart Failure, and Transplantation Committee, Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Group; Council on Epidemiology and Prevention . Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation. 2006;113:1807–1816. DOI: 10.1161/CIRCULATIONAHA.106.174287.
    1. Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, Naidu SS, Nishimura RA, Ommen SR, Rakowski H, et al. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2011;58:2703–2738. DOI: 10.1016/j.jacc.2011.10.825.
    1. Hershberger RE, Givertz MM, Ho CY, Judge DP, Kantor PF, McBride KL, Morales A, Taylor MRG, Vatta M, Ware SM. Genetic evaluation of cardiomyopathy—a Heart Failure Society of America practice guideline. J Card Fail. 2018;24:281–302. DOI: 10.1016/j.cardfail.2018.03.004.
    1. Ackerman MJ, Priori SG, Willems S, Berul C, Brugada R, Calkins H, Camm AJ, Ellinor PT, Gollob M, Hamilton R, et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm. 2011;8:1308–1339. DOI: 10.1016/j.hrthm.2011.05.020.
    1. Miller EM, Wang Y, Ware SM. Uptake of cardiac screening and genetic testing among hypertrophic and dilated cardiomyopathy families. J Genet Couns. 2013;22:258–267. DOI: 10.1007/s10897-012-9544-4.
    1. Nugent AW, Daubeney PEF, Chondros P, Carlin JB, Cheung M, Wilkinson LC, Davis AM, Kahler SG, Chow CW, Wilkinson JL, et al. The epidemiology of childhood cardiomyopathy in Australia. N Engl J Med. 2003;348:1639–1646. DOI: 10.1056/NEJMoa021737.
    1. Kindel SJ, Miller EM, Gupta R, Cripe LH, Hinton RB, Spicer RL, Towbin JA, Ware SM. Pediatric cardiomyopathy: importance of genetic and metabolic evaluation. J Card Fail. 2012;18:396–403. DOI: 10.1016/j.cardfail.2012.01.017.
    1. Lipshultz SE, Sleeper LA, Towbin JA, Lowe AM, Orav EJ, Cox GF, Lurie PR, McCoy KL, McDonald MA, Messere JE, et al. The incidence of pediatric cardiomyopathy in two regions of the United States. N Engl J Med. 2003;348:1647–1655. DOI: 10.1056/NEJMoa021715.
    1. Morita H, Rehm HL, Menesses A, McDonough B, Roberts AE, Kucherlapati R, Towbin JA, Seidman JG, Seidman CE. Shared genetic causes of cardiac hypertrophy in children and adults. N Engl J Med. 2008;358:1899–1908. DOI: 10.1056/NEJMoa075463.
    1. Tariq M, Ware SM. Importance of genetic evaluation and testing in pediatric cardiomyopathy. World J Card. 2014;6:1156–1165. DOI: 10.4330/wjc.v6.i11.1156.
    1. Lee TM, Hsu DT, Kantor P, Towbin JA, Ware SM, Colan SD, Chung WK, Jefferies JL, Rossano JW, Castleberry CD, et al. Pediatric cardiomyopathies. Circ Res. 2017;121:855–873. DOI: 10.1161/CIRCRESAHA.116.309386.
    1. Ware SM. Genetics of paediatric cardiomyopathies. Curr Opin Pediatr. 2017;29:534–540. DOI: 10.1097/MOP.0000000000000533.
    1. Kaski JP, Syrris P, Tome Esteban MT, Jenkins S, Pantazis A, Deanfield JE, McKenna WJ, Elliott PM. Prevalence of sarcomere protein gene mutations in preadolescent children with hypertrophic cardiomyopathy. Circ Cardiovasc Genet. 2009;2:436–441. DOI: 10.1161/CIRCGENETICS.108.821314.
    1. Loar RW, Bos JM, Will ML, Ommen SR, Ackerman MJ. Genotype‐phenotype correlations of hypertrophic cardiomyopathy when diagnosed in children, adolescents, and young adults. Congenit Heart Dis. 2015;10:529–536. DOI: 10.1111/chd.12280.
    1. Alfares AA, Kelly MA, McDermott G, Funke BH, Lebo MS, Baxter SB, Shen J, McLaughlin HM, Clark EH, Babb LJ, et al. Results of clinical genetic testing of 2,912 probands with hypertrophic cardiomyopathy: expanded panels offer limited additional sensitivity. Genet Med. 2015;17:880–888. DOI: 10.1038/gim.2014.205.
    1. Bales ND, Johnson NM, Judge DP, Murphy AM. Comprehensive versus targeted genetic testing in children with hypertrophic cardiomyopathy. Pediatr Cardiol. 2016;37:845–851. DOI: 10.1007/s00246-016-1358-y.
    1. Fourey D, Care M, Siminovitch KA, Weissler‐Snir A, Hindieh W, Chan RH, Gollob MH, Rakowski H, Adler A. Prevalence and clinical implication of double mutations in hypertrophic cardiomyopathy: revisiting the gene‐dose effect. Circ Cardiovasc Genet. 2017;10:e001685. DOI: 10.1161/CIRCGENETICS.116.001685.
    1. Ellepola CD, Knight LM, Fischbach P, Deshpande SR. Genetic testing in pediatric cardiomyopathy. Pediatr Cardiol. 2018;39:491–500. DOI: 10.1007/s00246-017-1779-2.
    1. Ouellette AC, Mathew J, Manickaraj AK, Manase G, Zahavich L, Wilson J, George K, Benson L, Bowdin S, Mital S. Clinical genetic testing in pediatric cardiomyopathy: is bigger better? Clin Genet. 2018;93:33–40. DOI: 10.1111/cge.13024.
    1. Quiat D, Witkowski L, Zouk H, Daly KP, Roberts AE. Retrospective analysis of clinical genetic testing in pediatric primary dilated cardiomyopathy: testing outcomes and the effects of variant reclassification. J Am Heart Assoc. 2020;9:e016195. DOI: 10.1161/JAHA.120.016195.
    1. Al‐Wakeel‐Marquard N, Degener F, Herbst C, Kühnisch J, Dartsch J, Schmitt B, Kuehne T, Messroghli D, Berger F, Klaassen S. RIKADA study reveals risk factors in pediatric primary cardiomyopathy. J Am Heart Assoc. 2019;8:e012531. DOI: 10.1161/JAHA.119.012531.
    1. Grenier MA, Osganian SK, Cox GF, Towbin JA, Colan SD, Lurie PR, Sleeper LA, Orav EJ, Lipshultz SE. Design and implementation of the North American Pediatric Cardiomyopathy Registry. Am Heart J. 2000;139:S86–S95. DOI: 10.1067/mhj.2000.103933.
    1. Wilkinson JD, Sleeper LA, Alvarez JA, Bublik N, Lipshultz SE; the Pediatric Cardiomyopathy Registry Group . The Pediatric Cardiomyopathy Registry: 1995‐2007. Prog Pediatr Cardiol. 2008;25:31–36. DOI: 10.1016/j.ppedcard.2007.11.006.
    1. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, et al. The genome analysis Toolkit: a MapReduce framework for analyzing next‐generation DNA sequencing data. Genome Res. 2010;20:1297–1303. DOI: 10.1101/gr.107524.110.
    1. Herman DS, Lam L, Taylor MRG, Wang L, Teekakirikul P, Christodoulou D, Conner L, DePalma SR, McDonough B, Sparks E, et al. Truncations of titin causing dilated cardiomyopathy. N Engl J Med. 2012;366:619–628. DOI: 10.1056/NEJMoa1110186.
    1. Golbus JR, Puckelwartz MJ, Fahrenbach JP, Dellefave‐Castillo LM, Wolfgeher D, McNally EM. Population‐based variation in cardiomyopathy genes. Circ Cardiovasc Genet. 2012;5:391–399. DOI: 10.1161/CIRCGENETICS.112.962928.
    1. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier‐Foster J, Grody WW, Hegde M, Lyon E, Spector E, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–424. DOI: 10.1038/gim.2015.30.
    1. Arola A, Jokinen E, Ruuskanen O, Saraste M, Pesonen E, Kuusela AL, Tikanoja T, Paavilainen T, Simell O. Epidemiology of idiopathic cardiomyopathies in children and adolescents. A nationwide study in Finland. Am J Epidemiol. 1997;146:385–393. DOI: 10.1093/oxfordjournals.aje.a009291.
    1. Colan SD, Lipshultz SE, Lowe AM, Sleeper LA, Messere J, Cox GF, Lurie PR, Orav EJ, Towbin JA. Epidemiology and cause‐specific outcome of hypertrophic cardiomyopathy in children: findings from the Pediatric Cardiomyopathy Registry. Circulation. 2007;115:773–781. DOI: 10.1161/CIRCULATIONAHA.106.621185.
    1. Towbin JA, Lowe AM, Colan SD, Sleeper LA, Orav EJ, Clunie S, Messere J, Cox GF, Lurie PR, Hsu D, et al. Incidence, causes, and outcomes of dilated cardiomyopathy in children. JAMA. 2006;296:1867–1876. DOI: 10.1001/jama.296.15.1867.
    1. Wilkinson JD, Landy DC, Colan SD, Towbin JA, Sleeper LA, Orav EJ, Cox GF, Canter CE, Hsu DT, Webber SA, et al. The pediatric cardiomyopathy registry and heart failure: key results from the first 15 years. Heart Fail Clin. 2010;6:401–413, vii. DOI: 10.1016/j.hfc.2010.05.002.
    1. Webber SA, Lipshultz SE, Sleeper LA, Lu M, Wilkinson JD, Addonizio LJ, Canter CE, Colan SD, Everitt MD, Jefferies JL, et al. Outcomes of restrictive cardiomyopathy in childhood and the influence of phenotype: a report from the Pediatric Cardiomyopathy Registry. Circulation. 2012;126:1237–1244. DOI: 10.1161/CIRCULATIONAHA.112.104638.
    1. Cox GF, Sleeper LA, Lowe AM, Towbin JA, Colan SD, Orav EJ, Lurie PR, Messere JE, Wilkinson JD, Lipshultz SE. Factors associated with establishing a causal diagnosis for children with cardiomyopathy. Pediatrics. 2006;118:1519–1531. DOI: 10.1542/peds.2006-0163.
    1. Ware SM. Evaluation of genetic causes of cardiomyopathy in childhood. Cardiol Young. 2015;25(suppl 2):43–50. DOI: 10.1017/S1047951115000827.
    1. Lipshultz SE, Orav EJ, Wilkinson JD, Towbin JA, Messere JE, Lowe AM, Sleeper LA, Cox GF, Hsu DT, Canter CE, et al. Risk stratification at diagnosis for children with hypertrophic cardiomyopathy: an analysis of data from the Pediatric Cardiomyopathy Registry. Lancet. 2013;382:1889–1897. DOI: 10.1016/S0140-6736(13)61685-2.
    1. Rusconi P, Wilkinson JD, Sleeper LA, Lu M, Cox GF, Towbin JA, Colan SD, Webber SA, Canter CE, Ware SM, et al. Differences in presentation and outcomes between children with familial dilated cardiomyopathy and children with idiopathic dilated cardiomyopathy: a report from the Pediatric Cardiomyopathy Registry Study Group. Circ Heart Fail. 2017;10:e002637. DOI: 10.1161/CIRCHEARTFAILURE.115.002637.
    1. Wilkinson JD, Lowe AM, Salbert BA, Sleeper LA, Colan SD, Cox GF, Towbin JA, Connuck DM, Messere JE, Lipshultz SE. Outcomes in children with Noonan syndrome and hypertrophic cardiomyopathy: a study from the Pediatric Cardiomyopathy Registry. Am Heart J. 2012;164:442–448. DOI: 10.1016/j.ahj.2012.04.018.
    1. Miller EM, Hinton RB, Czosek R, Lorts A, Parrott A, Shikany AR, Ittenbach RF, Ware SM. Genetic testing in pediatric left ventricular noncompaction. Circ Cardiovasc Genet. 2017;10:e001735. DOI: 10.1161/CIRCGENETICS.117.001735.
    1. van Waning JI, Caliskan K, Hoedemaekers YM, van Spaendonck‐Zwarts KY, Baas AF, Boekholdt SM, van Melle JP, Teske AJ, Asselbergs FW, Backx Ad PCM, et al. Genetics, clinical features, and long‐term outcome of noncompaction cardiomyopathy. J Am Coll Cardiol. 2018;71:711–722. DOI: 10.1016/j.jacc.2017.12.019.
    1. McPherson E. Genetic diagnosis and testing in clinical practice. Clin Med Res. 2006;4:123–129. DOI: 10.3121/cmr.4.2.123.
    1. Spiech KM, Tripathy PR, Woodcock AM, Sheth NA, Collins KS, Kannegolla K, Sinha AD, Sharfuddin AA, Pratt VM, Khalid M, et al. Implementation of a renal precision medicine program: clinician attitudes and acceptance. Life. 2020;10:32. DOI: 10.3390/life10040032.
    1. Hendricks‐Sturrup MKM, Sturm AC, Lu CY. Barriers and facilitators to genetic testing for familial hypercholesterolemia in the United States: a review. J Pers Med. 2019;9:32. DOI: 10.3390/jpm9030032.
    1. Knight LM, Miller E, Kovach J, Arscott P, von Alvensleben JC, Bradley D, Valdes SO, Ware SM, Meyers L, Travers CD, et al. Genetic testing and cascade screening in pediatric long QT syndrome and hypertrophic cardiomyopathy. Heart Rhythm. 2020;17:106–112. DOI: 10.1016/j.hrthm.2019.06.015.
    1. Kaski JP, Syrris P, Burch M, Tome‐Esteban M‐T, Fenton M, Christiansen M, Andersen PS, Sebire N, Ashworth M, Deanfield JE, et al. Idiopathic restrictive cardiomyopathy in children is caused by mutations in cardiac sarcomere protein genes. Heart. 2008;94:1478–1484. DOI: 10.1136/hrt.2007.134684.
    1. Ingles J, McGaughran J, Scuffham PA, Atherton J, Semsarian C. A cost‐effectiveness model of genetic testing for the evaluation of families with hypertrophic cardiomyopathy. Heart. 2012;98:625–630. DOI: 10.1136/heartjnl-2011-300368.
    1. Hershberger RE, Morales A. Dilated cardiomyopathy overview. In: Adam MP, Editor‐in‐Chief. GeneReviews [Internet]. Seattle, WA: University of Washington, Seattle; 2007. [updated August 23, 2018].
    1. Amendola LM, Dorschner MO, Robertson PD, Salama JS, Hart R, Shirts BH, Murray ML, Tokita MJ, Gallego CJ, Kim DS, et al. Actionable exomic incidental findings in 6503 participants: challenges of variant classification. Genome Res. 2015;25:305–315. DOI: 10.1101/gr.183483.114.
    1. Amendola L, Jarvik G, Leo M, McLaughlin H, Akkari Y, Amaral M, Berg J, Biswas S, Bowling K, Conlin L, et al. Performance of ACMG‐AMP Variant‐interpretation guidelines among nine laboratories in the Clinical Sequencing Exploratory Research Consortium. Am J Hum Genet. 2016;99:247. DOI: 10.1016/j.ajhg.2016.06.001.
    1. Walsh R, Buchan R, Wilk A, John S, Felkin LE, Thomson KL, Chiaw TH, Loong CCW, Pua CJ, Raphael C, et al. Defining the genetic architecture of hypertrophic cardiomyopathy: re‐evaluating the role of non‐sarcomeric genes. Eur Heart J. 2017;38:3461–3468. DOI: 10.1093/eurheartj/ehw603.
    1. Walsh R, Thomson KL, Ware JS, Funke BH, Woodley J, McGuire KJ, Mazzarotto F, Blair E, Seller A, Taylor JC, et al. Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. Genet Med. 2017;19:192–203. DOI: 10.1038/gim.2016.90.

Source: PubMed

3
Se inscrever