Reward circuitry dysfunction in psychiatric and neurodevelopmental disorders and genetic syndromes: animal models and clinical findings

Gabriel S Dichter, Cara A Damiano, John A Allen, Gabriel S Dichter, Cara A Damiano, John A Allen

Abstract

This review summarizes evidence of dysregulated reward circuitry function in a range of neurodevelopmental and psychiatric disorders and genetic syndromes. First, the contribution of identifying a core mechanistic process across disparate disorders to disease classification is discussed, followed by a review of the neurobiology of reward circuitry. We next consider preclinical animal models and clinical evidence of reward-pathway dysfunction in a range of disorders, including psychiatric disorders (i.e., substance-use disorders, affective disorders, eating disorders, and obsessive compulsive disorders), neurodevelopmental disorders (i.e., schizophrenia, attention-deficit/hyperactivity disorder, autism spectrum disorders, Tourette's syndrome, conduct disorder/oppositional defiant disorder), and genetic syndromes (i.e., Fragile X syndrome, Prader-Willi syndrome, Williams syndrome, Angelman syndrome, and Rett syndrome). We also provide brief overviews of effective psychopharmacologic agents that have an effect on the dopamine system in these disorders. This review concludes with methodological considerations for future research designed to more clearly probe reward-circuitry dysfunction, with the ultimate goal of improved intervention strategies.

Figures

Figure 1
Figure 1
Schematic illustration of the DA pathways and circuitry that regulate dopamine (DA) release in the human brain. The DA-containing neurons in the ventral tegmental area (VTA)/substantia nigra (SN) project to the nucleus accumbens (mesolimbic pathway; orange), to the cortex (mesocortical pathway; yellow) and caudate putamen (nigrostriatal pathway; purple). DA neuron firing rates are maintained at tonic levels in part due to steady-state inhibitory firing from the ventral pallidum. Excitatory glutamatergic fibers (green) project from the prefrontal cortex, amygdala, and hippocampus, that synapse on striatal targets, including the nucleus accumbens (NAc). The NAc sends GABAergic projections (red) to the ventral pallidum that suppress ventral pallidum inhibition of the VTA, thereby facilitating phasic burst firing of ventral tegmental area DA neurons. Note: Placement of structures is only approximate. Amyg, amygdala; Caud, caudate; DA, dopamine; GABA, GABAergic projections; Glu, glutamatergic projections; Hipp, hippocampus; Put, putamen; VP, ventral pallidum. (Figure and legend adapted with permission from Treadway and Zald [19].)
Figure 2
Figure 2
Schematic illustration of cellular mechanisms of neurotransmission in the mesolimbic dopamine (DA) reward pathway. Shown is a synapse between a ventral tegmental area DA neuron axon terminal and a medium spiny neuron (MSN) in the nucleus accumbens (NAc) in the ventral striatum. Transmission begins with an action potential that arrives to the terminal, inducing synaptic vesicle fusion and release of DA. The release of DA into the NAc stimulates various populations of MSNs, whose response to the transmitter depends on the types of DA receptors they express. DA stimulation of neurons containing D1 or D5 receptors (so-called D1-like receptors) results in activation of heterotrimeric Golf/Gs proteins, which activate the enzyme adenylyl cyclase, resulting in the synthesis of the second messenger cAMP. In contrast to this mechanism, DA stimulation of MSNs that express D2, D3 or D4 (or D2-like receptors) activate sheterotrimeric Gi/Go proteins, which inhibit adenylyl cyclase activity to decrease cAMP. The level of intracellular cAMP controls the activation of protein kinase A, which regulates additional signaling molecules including dopamine- and cAMP-regulated neuronal phosphoprotein of 32 kDa (DARPP-32) and the transcription factor cAMP response element binding (CREB) protein, both of which can modulate gene expression and additional cellular responses. The response to DA is generally terminated when DA is removed from the synapse by reuptake via the DA transporter (DAT). After reuptake, the transmitter can be repackaged into synaptic vesicles or may be degraded by the enzyme monoamine oxidase, resulting in the DA metabolite homovanillic acid. In addition, the enzyme catechol-o-methyltransferase (COMT) may also control DA levels by breaking down DA to 3-methoxytyramine (3-MT), AC, adenylyl cyclase; ATP; adensosine triphosphate; cAMP; cyclic adenosine monophosphate; HVA, homovanillic acid; MAO, monoamine oxidase; VTA, ventral tegmental area.

References

    1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 4. DSM-IV, Washington; 1994.
    1. Aupperle RL, Paulus MP. Neural systems underlying approach and avoidance in anxiety disorders. Dialogues Clin Neurosci. 2010;12(4):517–531.
    1. Murray EA, Wise SP, Drevets WC. Localization of dysfunction in major depressive disorder: prefrontal cortex and amygdala. Biol Psychiatr. 2011;69(12):e43.
    1. Kerns JG, Cohen JD, MacDonald AW, Johnson MK, Stenger VA, Aizenstein H, Carter CS. Decreased conflict- and error-related activity in the anterior cingulate cortex in subjects with Schizophrenia. Am J Psychiatr. 2005;162(10):1833–1839.
    1. Pannu Hayes J, Labar KS, Petty CM, McCarthy G, Morey RA. Alterations in the neural circuitry for emotion and attention associated with posttraumatic stress symptomatology. Psychiatr Res. 2009;172(1):7–15.
    1. NIMH. The National Institute of Mental Health Strategic Plan. National Institute of Mental Health (NIH Publication 08–6368), Bethesda; 2008. .
    1. Insel TR, Cuthbert BN. Endophenotypes: Bridging genomic complexity and disorder heterogeneity. Biol Psychiatr. 2009;66(11):988–989.
    1. Miller G. Psychiatry. Beyond DSM: Seeking a brain-based classification of mental illness. Science. 2010;327(5972):1437.
    1. Carter CS. Applying new approaches from cognitive neuroscience to enhance drug development for the treatment of impaired cognition in schizophrenia. Schizophr Bull. 2005;31(4):810–815.
    1. Hasler G, Drevets WC, Manji HK, Charney DS. Discovering endophenotypes for major depression. Neuropsychopharmacology. 2004;29(10):1765–1781.
    1. Jacob S, Landeros-Weisenberger A, Leckman JF. Autism spectrum and obsessive-compulsive disorders: OC behaviors, phenotypes and genetics. Autism Res. 2009;2(6):293–311.
    1. Charney DS, Barlow DH, Botteron KN, Cohen JD, Goldman D, Gur RC. In: A Research Agenda for DSM-V. Kupfer DJ, First MB, Regier DA, editor. American Psychiatric Association, Washington; 2002. Neuroscience research agenda to guide development of a pathophysiologically based classification system; pp. 31–83.
    1. Gottesman II, Gould TD. The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatr. 2003;160(4):636–645.
    1. Gottesman II, Shields J. Genetic theorizing and schizophrenia. Br J Psychiatr. 1973;122(566):15–30.
    1. Ernst M, Daniele T, Frantz K. New perspectives on adolescent motivated behavior: Attention and conditioning. Deve Cognit Neurosci. 2011;1(4):377–389.
    1. Gladwin TE, Figner B, Crone EA, Wiers RW. Addiction, adolescence, and the integration of control and motivation. Dev Cognit Neurosci. 2011;1(4):364–376.
    1. Fairchild G. The developmental psychopathology of motivation in adolescence. Deve Cognit Neurosci. 2011;1(4):414–429.
    1. Luman M, Tripp G, Scheres A. Identifying the neurobiology of altered reinforcement sensitivity in ADHD: A review and research agenda. Neurosci Biobehav Rev. 2010;34(5):744–754.
    1. Treadway MT, Zald DH. Reconsidering anhedonia in depression: lessons from translational neuroscience. Neurosci Biobehav Rev. 2011;35(3):537–555.
    1. Ernst M, Fudge JL. A developmental neurobiological model of motivated behavior: anatomy, connectivity and ontogeny of the triadic nodes. Neurosci Biobehav Rev. 2009;33(3):367–382.
    1. Delgado MR. Reward-related responses in the human striatum. Ann N Y Acad Sci. 2007;1104:70–88.
    1. Smith KS, Berridge KC, Aldridge JW. Disentangling pleasure from incentive salience and learning signals in brain reward circuitry. Proc Natl Acad Sci. 2011;108(27):E255.
    1. Barch DM, Dowd EC. Goal representations and motivational drive in schizophrenia: the role of prefrontal-striatal interactions. Schizophr Bull. 2010;36(5):919–934.
    1. Delgado MR, Li J, Schiller D, Phelps EA. The role of the striatum in aversive learning and aversive prediction errors. Philosophical Transactions of the Royal Society of London. Ser B Biol Sci. 2008;363(1511):3787–3800.
    1. Han S, Huettel SA, Raposo A, Adcock RA, Dobbins IG. Functional significance of striatal responses during episodic decisions: recovery or goal attainment? J Neurosci. 2010;30(13):4767–4775.
    1. van der Schaaf ME, Warmerdamc E, Crone EA, Cools R. Distinct linear and non-linear trajectories of reward and punishment reversal learning during development: Relevance for dopamine’s role in adolescent decision making. Dev Cognit Neurosci. 2011;1:578–590.
    1. Aarts E, van Holstein M, Cools R. Striatal dopamine and the interface between motivation and cognition. Front Psychol. 2011;2:163.
    1. Knutson B, Cooper JC. Functional magnetic resonance imaging of reward prediction. Curr Opin Neurol. 2005;18(4):411–417.
    1. Schultz W. Reward signaling by dopamine neurons. Neuroscientist. 2001;7(4):293–302.
    1. Kable JW, Glimcher PW. The neurobiology of decision: consensus and controversy. Neuron. 2009;63(6):733–745.
    1. Platt ML, Huettel SA. Risky business: the neuroeconomics of decision making under uncertainty. Nat Neurosci. 2008;11(4):398–403.
    1. Rangel A, Camerer C, Montague PR. A framework for studying the neurobiology of value-based decision making. Nat Rev Neurosci. 2008;9(7):545–556.
    1. Hayes DJ, Greenshaw AJ. 5-HT receptors and reward-related behaviour: a review. Neurosci Biobehav Rev. 2011;35(6):1419–1449.
    1. Park J, Wheeler RA, Fontillas K, Keithley RB, Carelli RM, Wightman RM. Catecholamines in the bed nucleus of the stria terminalis reciprocally respond to reward and aversion. Biol Psychiatr. 2011;71(4):327–334.
    1. Cooper JR, Bloom FE, Roth RH. The Biochemical Basis of Neuropharmacology. Oxford University Press, Oxford; 2003.
    1. Enoch MA. The role of GABA(A) receptors in the development of alcoholism. Pharmacol Biochem Behav. 2008;90(1):95–104.
    1. Grueter BA, Rothwell PE, Malenka RC. Integrating synaptic plasticity and striatal circuit function in addiction. Curr Opin Neurobiol. 2011. .
    1. Russo SJ, Dietz DM, Dumitriu D, Morrison JH, Malenka RC, Nestler EJ. The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci. 2011;33(6):267–276.
    1. Berridge KC, Kringelbach ML. Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology (Berl) 2008;199(3):457–480.
    1. Berridge KC, Robinson TE. Parsing reward. Trends Neurosci. 2003;26(9):507–513.
    1. Berridge KC, Robinson TE, Aldridge JW. Dissecting components of reward: 'liking', 'wanting', and learning. Curr Opin Pharmacol. 2009;9(1):65–73.
    1. Graybiel AM. Habits, rituals, and the evaluative brain. Annu Rev Neurosci. 2008;31:359–387.
    1. Salamone JD. Functions of mesolimbic dopamine: changing concepts and shifting paradigms. Psychopharmacol Berl. 2007;191(3):389.
    1. Wise RA. Dopamine and reward: The anhedonia hypothesis 30 years on. Neurotoxicol Res. 2008;14(2–3):169–183.
    1. Kringelbach ML, Berridge KC. Pleasures of the Brain. Oxford University Press, New York; 2009.
    1. Rushworth MF, Noonan MP, Boorman ED, Walton ME, Behrens TE. Frontal cortex and reward-guided learning and decision-making. Neuron. 2011;70(6):1054–1069.
    1. Graybiel AM. The basal ganglia. Curr Biol. 2000;10(14):R509–R511.
    1. Yin HH, Knowlton BJ. The role of the basal ganglia in habit formation. Nat Rev Neurosci. 2006;7(6):464–476.
    1. Hoebel BG, Avena NM, Rada P. Accumbens dopamine-acetylcholine balance in approach and avoidance. Curr Opin Pharmacol. 2007;7(6):617–627.
    1. vbIkemoto S, Panksepp J. The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Res Rev. 1999;31(1):6–41.
    1. Salamone JD, Correa M, Farrar AM, Nunes EJ, Pardo M. Dopamine, behavioral economics, and effort. Front Behav Neurosci. 2009;3:13–15.
    1. Berridge KC, Scherer K. In: Handbook of Affective Sciences. Davidson RJ, Goldsmith HH, editor. Oxford University Press, Oxford; 2003. Comparing the emotional brain of humans to other animals.
    1. Davidson RJ, Sutton SK. Affective neuroscience: the emergence of a discipline. Curr Opin Neurobiol. 1995;5(2):217–224.
    1. Olds J, Milner P. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol. 1954;47(6):419–427.
    1. Wise RA. Addictive drugs and brain stimulation reward. Annu Rev Neurosci. 1996;19:319–340.
    1. Haber SN. The primate basal ganglia: Parallel and integrative networks. J Chem Neuroanat. 2003;26(4):317–330.
    1. McBride WJ, Murphy JM, Ikemoto S. Localization of brain reinforcement mechanisms: Intracranial self-administration and intracranial place-conditioning studies. Behav Brain Res. 1999;101(2):129–152.
    1. Chau DT, Roth RM, Green AI. The neural circuitry of reward and its relevance to psychiatric disorders. Curr Psychiatr Rep. 2004;6(5):391–399.
    1. Lindvall O, Bjorklund A. In: Chemical Neuroanatomy. Emson PC, editor. Raven, New York; 1983. Dopamine- and norepinephine-containing neuron systems: Their anatomy in the rat brain; pp. 229–255.
    1. Swerdlow NR, Koob GF. Dopamine, schizophrenia, mania, and depression: toward a unified hypothesis of cortico-striato-pallido-thalamic function. Behav Brain Sci. 1987;10:197–245.
    1. Haber SN, McFarland NR. The concept of the ventral striatum in nonhuman primates. Ann N Y Acad Sci. 1999;877:33–48.
    1. McGinty JF. Advancing from the ventral striatum to the extended amygdala. Implications for neuropsychiatry and drug abuse. Introduction. Ann New York Acad Sci. 1999;877(McGinty JF):xii–xv.
    1. Kalivas PW, Barnes CD. Limbic Motor Circuits and Neuropsychiatry. CRC Press, Boca Raton; 1993.
    1. Mogenson GJ, Jones DL, Yim CY. From motivation to action: Functional interface between the limbic system and the motor system. Progr Neurobiol. 1980;14(2–3):69–97.
    1. Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011;63(1):182–217.
    1. Girault JA, Greengard P. The neurobiology of dopamine signaling. Arch Neurol. 2004;61(5):641–644.
    1. Neve KA, Seamans JK, Trantham-Davidson H. Dopamine receptor signaling. J Recept Signal Transduct Res. 2004;24(3):165–205.
    1. Mogenson GJ, Wu M, Jones DL. Locomotor activity elicited by injections of picrotoxin into the ventral tegmental area is attenuated by injections of GABA into the globus pallidus. Brain Res. 1980;191(2):569–571.
    1. Nicola SM, Surmeier J, Malenka RC. Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci. 2000;23:185–215.
    1. Hopf FW, Cascini MG, Gordon AS, Diamond I, Bonci A. Cooperative activation of dopamine D1 and D2 receptors increases spike firing of nucleus accumbens neurons via G-protein betagamma subunits. J Neurosci. 2003;23(12):5079–5087.
    1. Cacciapaglia F, Wightman RM, Carelli RM. Rapid dopamine signaling differentially modulates distinct microcircuits within the nucleus accumbens during sucrose-directed behavior. J Neurosci. 2011;31(39):13860–13869.
    1. Tsai HC, Zhang F, Adamantidis A, Stuber GD, Bonci A, de Lecea L, Deisseroth K. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science. 2009;324(5930):1080–1084.
    1. Riddle EL, Fleckenstein AE, Hanson GR. Role of monoamine transporters in mediating psychostimulant effects. AAPS J. 2005;7(4):E847.
    1. Beveridge TJ, Smith HR, Nader MA, Porrino LJ. Abstinence from chronic cocaine self-administration alters striatal dopamine systems in rhesus monkeys. Neuropsychopharmacology. 2009;34(5):1162–1171.
    1. Little KY, Zhang L, Desmond T, Frey KA, Dalack GW, Cassin BJ. Striatal dopaminergic abnormalities in human cocaine users. Am J Psychiatr. 1999;156(2):238–245.
    1. Seeman P, Lee T. Antipsychotic drugs: Direct correlation between clinical potency and presynaptic action on dopamine neurons. Science. 1975;188(4194):1217–1219.
    1. Guillin O, Abi-Dargham A, Laruelle M. Neurobiology of dopamine in schizophrenia. Int Rev Neurobiol. 2007;78:1–39.
    1. Weinberger D, Laruelle M. In: Neuropsychopharmacology: The Fifth Generation of Progress. Davis KL, Charney DS, Coyle JT, Nemeroff C, editor. Lippincott, Williams, and Wilkins, New York; 2001. Neurochemical and neuropharmachological imaging in schizophrenia; pp. 833–856.
    1. Seeman P. All roads to schizophrenia lead to dopamine supersensitivity and elevated dopamine D2(high) receptors. CNS Neurosci Therapy. 2011;17(2):118–132.
    1. Kellendonk C, Simpson EH, Polan HJ, Malleret G, Vronskaya S, Winiger V, Moore H, Kandel ER. Transient and selective overexpression of dopamine D2 receptors in the striatum causes persistent abnormalities in prefrontal cortex functioning. Neuron. 2006;49(4):603–615.
    1. Kim KS, Lee KW, Im JY, Yoo JY, Kim SW, Lee JK, Nestler EJ, Han PL. Adenylyl cyclase type 5 (AC5) is an essential mediator of morphine action. Proc Natl Acad Sci. 2006;103(10):3908–3913.
    1. Greengard P. The neurobiology of dopamine signaling. Biosci Rep. 2001;21(3):247–269.
    1. Gould TD, Manji HK. DARPP-32: A molecular switch at the nexus of reward pathway plasticity. Proc Natl Acad Sci. 2005;102(2):253–254.
    1. Valjent E, Pascoli V, Svenningsson P, Paul S, Enslen H, Corvol JC, Stipanovich A, Caboche J, Lombroso PJ, Nairn AC, Greengard P, Herve D, Girault JA. Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum. Proc Natl Acad Sci. 2005;102(2):491–496.
    1. Zachariou V, Benoit-Marand M, Allen PB, Ingrassia P, Fienberg AA, Gonon F, Greengard P, Picciotto MR. Reduction of cocaine place preference in mice lacking the protein phosphatase 1 inhibitors DARPP 32 or Inhibitor 1. Biol Psychiatr. 2002;51(8):612–620.
    1. Nestler EJ. Is there a common molecular pathway for addiction? Nat Neurosci. 2005;8(11):1445–1449.
    1. Nestler EJ, Barrot M, Self DW. DeltaFosB: a sustained molecular switch for addiction. Proc Natl Acad Sci. 2001;98(20):11042–11046.
    1. McClung CA, Nestler EJ. Regulation of gene expression and cocaine reward by CREB and DeltaFosB. Nat Neurosci. 2003;6(11):1208–1215.
    1. Barrot M, Olivier JD, Perrotti LI, DiLeone RJ, Berton O, Eisch AJ, Impey S, Storm DR, Neve RL, Yin JC, Zachariou V, Nestler EJ. CREB activity in the nucleus accumbens shell controls gating of behavioral responses to emotional stimuli. Proc Natl Acad Sci. 2002;99(17):11435–11440.
    1. Walters CL, Godfrey M, Li X, Blendy JA. Alterations in morphine-induced reward, locomotor activity, and thermoregulation in CREB-deficient mice. Brain Res. 2005;1032(1–2):193–199.
    1. Chen BT, Hopf FW, Bonci A. Synaptic plasticity in the mesolimbic system: therapeutic implications for substance abuse. Ann N Y Acad Sci. 2010;1187:129–139.
    1. De Biasi M, Dani JA. Reward, addiction, withdrawal to nicotine. Annu Rev Neurosci. 2011;34:105–130.
    1. Maze I, Nestler EJ. The epigenetic landscape of addiction. Ann N Y Acad Sci. 2011;1216:99–113.
    1. Nestler EJ, Hyman SE. Animal models of neuropsychiatric disorders. Nat Neurosci. 2010;13(10):1161–1169.
    1. Nesse RM. Evolutionary biology: a basic science for psychiatry. World Psychiatr. 2002;1(1):7–9.
    1. Panksepp J. Affective Neuroscience: the Foundations of Human and Animal Emotions. Oxford University Press, In. Oxford; 1998.
    1. Hayden BY, Parikh PC, Deaner RO, Platt ML. Economic principles motivating social attention in humans. Proc R Soc Biol Sci. 2007;274(1619):1751–1756.
    1. Ernst M, Nelson EE, McClure EB, Monk CS, Munson S, Eshel N, Zarahn E, Leibenluft E, Zametkin A, Towbin K, Blair J, Charney D, Pine DS. Choice selection and reward anticipation: an fMRI study. Neuropsychologia. 2004;42(12):1585–1597.
    1. Knutson B, Adams CM, Fong GW, Hommer D. Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci. 2001;21(16):RC159.
    1. Zald DH, Boileau I, El-Dearedy W, Gunn R, McGlone F, Dichter GS, Dagher A. Dopamine transmission in the human striatum during monetary reward tasks. J Neurosci. 2004;24(17):4105–4112.
    1. Kim H, Shimojo S, O'Doherty JP. Overlapping responses for the expectation of juice and money rewards in human ventromedial prefrontal cortex. Cerebr Cortex. 2010;21(4):769–776.
    1. Kalivas PW, Volkow ND. The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatr. 2005;162(8):1403–1413.
    1. Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatr. 2005;62(6):617–627.
    1. Bechara A. Decision making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective. Nat Neurosci. 2005;8(11):1458–1463.
    1. Bickel WK, Miller ML, Yi R, Kowal BP, Lindquist DM, Pitcock JA. Behavioral and neuroeconomics of drug addiction: competing neural systems and temporal discounting processes. Drug Alcohol Depend. 2007;90(Suppl 1):S85–S91.
    1. Hommer DW, Bjork JM, Gilman JM. Imaging brain response to reward in addictive disorders. Ann N Y Acad Sci. 2011;1216(1):50–61.
    1. Parvaz MA, Alia-Klein N, Woicik PA, Volkow ND, Goldstein RZ. Neuroimaging for drug addiction and related behaviors. Rev Neurosci. 2011;22(6):609–624.
    1. Jessor R. Jessor SL: Problem Behavior and Psychosocial Development: A Longitudinal Study of Youth. Academic, New York; 1977.
    1. Pihl RO, Peterson J, Finn P. Inherited predisposition to alcoholism: characteristics of sons of male alcoholics. J Abnorm Psychol. 1990;99(3):291–301.
    1. Newman JP, Wallace JF. Diverse pathways to deficient self-regulation: implications for disinhibitory psychopathology in children. Clin Pschol Rev. 1993;13:699–720.
    1. Fairchild G, van Goozen SH, Stollery SJ, Aitken MR, Savage J, Moore SC, Goodyer IM. Decision making and executive function in male adolescents with early-onset or adolescence-onset conduct disorder and control subjects. Biol Psychiatr. 2009;66(2):162–168.
    1. Lane SD, Cherek DR. Risk taking by adolescents with maladaptive behavior histories. Exp Clin Psychopharmacol. 2001;9(1):74–82.
    1. Di Chiara G, Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Nat Acad Sci. 1988;85(14):5274–5278.
    1. Koob GF, Bloom FE. Cellular and molecular mechanisms of drug dependence. Science. 1988;242(4879):715–723.
    1. Drevets WC, Gautier C, Price JC, Kupfer DJ, Kinahan PE, Grace AA, Price JL, Mathis CA. Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria. Biol Psychiatr. 2001;49(2):81–96.
    1. Volkow ND, Wang GJ, Fowler JS, Gatley SJ, Ding YS, Logan J, Dewey SL, Hitzemann R, Lieberman J. Relationship between psychostimulant-induced "high" and dopamine transporter occupancy. Proc Natl Acad Sci. 1996;93(19):10388–10392.
    1. Volkow ND, Wang GJ, Ma Y, Fowler JS, Zhu W, Maynard L, Telang F, Vaska P, Ding YS, Wong C, Swanson JM. Expectation enhances the regional brain metabolic and the reinforcing effects of stimulants in cocaine abusers. J Neurosci. 2003;23(36):11461–11468.
    1. Volkow ND, Wang GJ, Telang F, Fowler JS, Logan J, Childress AR, Jayne M, Ma Y, Wong C. Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. J Neurosci. 2006;26(24):6583–6588.
    1. Waelti P, Dickinson A, Schultz W. Dopamine responses comply with basic assumptions of formal learning theory. Nature. 2001;412(6842):43–48.
    1. Volkow ND, Fowler JS, Wang GJ, Baler R, Telang F. Imaging dopamine's role in drug abuse and addiction. Neuropharmacology. 2009;56(Suppl 1):3–8.
    1. Fibiger HC, LePiane FG, Jakubovic A, Phillips AG. The role of dopamine in intracranial self-stimulation of the ventral tegmental area. J Neurosci. 1987;7(12):3888–3896.
    1. Willuhn I, Wanat MJ, Clark JJ, Phillips PE. Dopamine signaling in the nucleus accumbens of animals self-administering drugs of abuse. Curr Top Behav Neurosci. 2010;3:29–71.
    1. Wise RA, Bozarth MA. A psychomotor stimulant theory of addiction. Psychol Rev. 1987;94(4):469–492.
    1. Koob GF, Le Moal M. Addiction and the brain antireward system. Annu Rev Psychol. 2008;59:29–53.
    1. Cheer JF, Wassum KM, Heien ML, Phillips PE, Wightman RM. Cannabinoids enhance subsecond dopamine release in the nucleus accumbens of awake rats. J Neurosci. 2004;24(18):4393–4400.
    1. Cheer JF, Wassum KM, Sombers LA, Heien ML, Ariansen JL, Aragona BJ, Phillips PE, Wightman RM. Phasic dopamine release evoked by abused substances requires cannabinoid receptor activation. J Neurosci. 2007;27(4):791–795.
    1. Stuber GD, Wightman RM, Carelli RM. Extinction of cocaine self-administration reveals functionally and temporally distinct dopaminergic signals in the nucleus accumbens. Neuron. 2005;46(4):661–669.
    1. Ritz MC, Lamb RJ, Goldberg SR, Kuhar MJ. Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science. 1987;237(4819):1219–1223.
    1. Panlilio LV, Goldberg SR. Self-administration of drugs in animals and humans as a model and an investigative tool. Addiction. 2007;102(12):1863–1870.
    1. Yokel R. Intravenous Self-Administration: Response Rates, the Effects of Pharmacological Challenges, and Drug Preference. Springer, New York; 1987.
    1. Carlezon WA, Devine DP, Wise RA. Habit-forming actions of nomifensine in nucleus accumbens. Psychopharmacol Berl. 1995;122(2):194–197.
    1. Woolverton WL, Goldberg LI, Ginos JZ. Intravenous self-administration of dopamine receptor agonists by rhesus monkeys. J Pharmacol Exp Therapy. 1984;230(3):678–683.
    1. Yokel RA, Wise RA. Amphetamine-type reinforcement by dopaminergic agonists in the rat. Psychopharmacol Berl. 1978;58(3):289–296.
    1. Caine SB, Koob GF. Effects of dopamine D-1 and D-2 antagonists on cocaine self-administration under different schedules of reinforcement in the rat. J Pharmacol Exp Ther. 1994;270(1):209–218.
    1. De Wit H, Wise RA. Blockade of cocaine reinforcement in rats with the dopamine receptor blocker pimozide, but not with the noradrenergic blockers phentolamine or phenoxybenzamine. Can J Psychol. 1977;31(4):195–203.
    1. Ettenberg A, Pettit HO, Bloom FE, Koob GF. Heroin and cocaine intravenous self-administration in rats: Mediation by separate neural systems. Psychopharmacol Berl. 1982;78(3):204–209.
    1. Roberts DC, Koob GF. Disruption of cocaine self-administration following 6-hydroxydopamine lesions of the ventral tegmental area in rats. Pharmacol Biochem Behav. 1982;17(5):901–904.
    1. Xi ZX, Stein EA. Baclofen inhibits heroin self-administration behavior and mesolimbic dopamine release. J Pharmacol Exp Therapy. 1999;290(3):1369–1374.
    1. Corrigall WA, Franklin KB, Coen KM, Clarke PB. The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacol Berl. 1992;107(2–3):285–289.
    1. Lyness WH, Friedle NM, Moore KE. Destruction of dopaminergic nerve terminals in nucleus accumbens: Effect on d-amphetamine self-administration. Pharmacol Biochem Behav. 1979;11(5):553–556.
    1. Pettit HO, Ettenberg A, Bloom FE, Koob GF. Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats. Psychopharmacol Berl. 1984;84(2):167–173.
    1. Roberts DC, Koob GF, Klonoff P, Fibiger HC. Extinction and recovery of cocaine self-administration following 6-hydroxydopamine lesions of the nucleus accumbens. Pharmacol Biochem Behav. 1980;12(5):781–787.
    1. Shoaib M, Swanner LS, Beyer CE, Goldberg SR, Schindler CW. The GABAB agonist baclofen modifies cocaine self-administration in rats. Behav Pharmacol. 1998;9(3):195–206.
    1. Wexler BE, Gottschalk CH, Fulbright RK, Prohovnik I, Lacadie CM, Rounsaville BJ, Gore JC. Functional magnetic resonance imaging of cocaine craving. Am J Psychiatr. 2001;158(1):86–95.
    1. Buhler M, Vollstadt-Klein S, Kobiella A, Budde H, Reed LJ, Braus DF, Buchel C, Smolka MN. Nicotine Dependence Is Characterized by Disordered Reward Processing in a Network Driving Motivation. Biol Psychiatry. 2009.
    1. Myrick H, Anton RF, Li X, Henderson S, Drobes D, Voronin K, George MS. Differential brain activity in alcoholics and social drinkers to alcohol cues: relationship to craving. Neuropsychopharmacology. 2004;29(2):393–402.
    1. Oberlin BG, Dzemidzic M, Bragulat V, Lehigh CA, Talavage T, O'Connor SJ, Kareken DA. Limbic responses to reward cues correlate with antisocial trait density in heavy drinkers. Neuroimage. 2011;60(1):644–652.
    1. Filbey FM, Schacht JP, Myers US, Chavez RS, Hutchison KE. Marijuana craving in the brain. Proc Natl Acad Sci. 2009;106(31):13016–13021.
    1. Volkow ND, Wang GJ, Kollins SH, Wigal TL, Newcorn JH, Telang F, Fowler JS, Zhu W, Logan J, Ma Y, Pradhan K, Wong C, Swanson JM. Evaluating dopamine reward pathway in ADHD: Clinical implications. JAMA. 2009;302(10):1084–1091.
    1. Bozarth MA. New perspectives on cocaine addiction: recent findings from animal research. Can J Physiol Pharmacol. 1989;67(9):1158–1167.
    1. Comings DE, Blum K. Reward deficiency syndrome: genetic aspects of behavioral disorders. Progr Brain Res. 2000;126:325–341.
    1. Asensio S, Romero MJ, Palau C, Sanchez A, Senabre I, Morales JL, Carcelen R, Romero FJ. Altered neural response of the appetitive emotional system in cocaine addiction: An fMRI Study. Addict Biol. 2010;15(4):504–516.
    1. Gilman JM, Hommer DW. Modulation of brain response to emotional images by alcohol cues in alcohol-dependent patients. Addiction Biol. 2008;13(3–4):423–434.
    1. Bühler M, Vollstadt-Klein S, Kobiella A, Budde H, Reed LJ, Braus DF, Buchel C, Smolka MN. Nicotine dependence is characterized by disordered reward processing in a network driving motivation. Biol Psychiatr. 2010;67(8):745–752.
    1. Andrews MM, Meda SA, Thomas AD, Potenza MN, Krystal JH, Worhunsky P, Stevens MC, O'Malley S, Book GA, Reynolds B, Pearlson GD. Individuals family history positive for alcoholism show functional magnetic resonance imaging differences in reward sensitivity that are related to impulsivity factors. Biol Psychiatr. 2011;69(8):675–683.
    1. Lubman DI, Yucel M, Kettle JW, Scaffidi A, Mackenzie T, Simmons JG, Allen NB. Responsiveness to drug cues and natural rewards in opiate addiction: Associations with later heroin use. Arch Gen Psychiatr. 2009;66(2):205–212.
    1. Luo S, Ainslie G, Giragosian L, Monterosso JR. Striatal hyposensitivity to delayed rewards among cigarette smokers. Drug Alcohol Depend. 2011;116(1–3):18–23.
    1. Jia Z, Worhunsky PD, Carroll KM, Rounsaville BJ, Stevens MC, Pearlson GD, Potenza MN. An initial study of neural responses to monetary incentives as related to treatment outcome in cocaine dependence. Biol Psychiatr. 2011;70(6):553–560.
    1. Schneider S, Peters J, Bromberg U, Brassen S, Miedl SF, Banaschewski T, Barker GJ, Conrod P, Flor H, Garavan H. Risk taking and the adolescent reward system: A potential common link to Substance abuse. Am J Psychiatr. 2011;169(1):39–46.
    1. Peters J, Bromberg U, Schneider S, Brassen S, Menz M, Banaschewski T, Conrod PJ, Flor H, Gallinat J, Garavan H. Lower ventral striatal activation during reward anticipation in adolescent smokers. Am J Psychiatr. 2011;168(5):540.
    1. Nestor L, Hester R, Garavan H. Increased ventral striatal BOLD activity during non-drug reward anticipation in cannabis users. Neuroimage. 2010;49(1):1133–1143.
    1. Koob GF, Le Moal M. Plasticity of reward neurocircuitry and the 'dark side' of drug addiction. Nat Neurosci. 2005;8(11):1442–1444.
    1. Martinez D, Narendran R. Imaging neurotransmitter release by drugs of abuse. Curr Top Behav Neurosci. 2010;3:219–245.
    1. Martinez D, Broft A, Foltin RW, Slifstein M, Hwang DR, Huang Y, Perez A, Frankle WG, Cooper T, Kleber HD, Fischman MW, Laruelle M. Cocaine dependence and d2 receptor availability in the functional subdivisions of the striatum: Relationship with cocaine-seeking behavior. Neuropsychopharmacology. 2004;29(6):1190–1202.
    1. Volkow ND, Fowler JS, Wang GJ, Hitzemann R, Logan J, Schlyer DJ, Dewey SL, Wolf AP. Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers. Synapse. 1993;14(2):169–177.
    1. Volkow ND, Fowler JS, Wolf AP, Schlyer D, Shiue CY, Alpert R, Dewey SL, Logan J, Bendriem B, Christman D. et al.Effects of chronic cocaine abuse on postsynaptic dopamine receptors. Am J Psychiatr. 1990;147(6):719–724.
    1. Volkow ND, Wang GJ, Fowler JS, Logan J, Gatley SJ, Hitzemann R, Chen AD, Dewey SL, Pappas N. Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects. Nature. 1997;386(6627):830–833.
    1. Wang GJ, Volkow ND, Fowler JS, Logan J, Abumrad NN, Hitzemann RJ, Pappas NS, Pascani K. Dopamine D2 receptor availability in opiate-dependent subjects before and after naloxone-precipitated withdrawal. Neuropsychopharmacology. 1997;16(2):174–182.
    1. Hietala J, West C, Syvalahti E, Nagren K, Lehikoinen P, Sonninen P, Ruotsalainen U. Striatal D2 dopamine receptor binding characteristics in vivo in patients with alcohol dependence. Psychopharmacol (Berl) 1994;116(3):285–290.
    1. Volkow ND, Wang GJ, Fowler JS, Logan J, Hitzemann R, Ding YS, Pappas N, Shea C, Piscani K. Decreases in dopamine receptors but not in dopamine transporters in alcoholics. Alcoholism Clin Exp Res. 1996;20(9):1594–1598.
    1. Volkow ND, Chang L, Wang GJ, Fowler JS, Ding YS, Sedler M, Logan J, Franceschi D, Gatley J, Hitzemann R, Gifford A, Wong C, Pappas N. Low level of brain dopamine D2 receptors in methamphetamine abusers: association with metabolism in the orbitofrontal cortex. Am J Psychiatr. 2001;158(12):2015–2021.
    1. Volkow ND, Wang G, Fowler JS, Logan J, Gerasimov M, Maynard L, Ding Y, Gatley SJ, Gifford A, Franceschi D. Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. J Neurosci. 2001;21(2):RC121.
    1. Melis M, Spiga S, Diana M. The dopamine hypothesis of drug addiction: Hypodopaminergic state. Int Rev Neurobiol. 2005;63:101–154.
    1. Volkow ND, Fowler JS, Wang GJ. Role of dopamine in drug reinforcement and addiction in humans: results from imaging studies. Behav Pharmacol. 2002;13(5–6):355–366.
    1. Volkow ND, Wang GJ, Fowler JS, Thanos PP, Logan J, Gatley SJ, Gifford A, Ding YS, Wong C, Pappas N. Brain DA D2 receptors predict reinforcing effects of stimulants in humans: replication study. Synapse. 2002;46(2):79–82.
    1. Schott BH, Minuzzi L, Krebs RM, Elmenhorst D, Lang M, Winz OH, Seidenbecher CI, Coenen HH, Heinze HJ, Zilles K, Duzel E, Bauer A. Mesolimbic functional magnetic resonance imaging activations during reward anticipation correlates with reward-related ventral striatal dopamine release. J Neurosci. 2008;28(52):14311–14319.
    1. Karila L, Weinstein A, Aubin HJ, Benyamina A, Reynaud M, Batki SL. Pharmacological approaches to methamphetamine dependence: A focused review. Br J Clin Pharmacol. 2010;69(6):578–592.
    1. Anderson AL, Reid MS, Li SH, Holmes T, Shemanski L, Slee A, Smith EV, Kahn R, Chiang N, Vocci F, Ciraulo D, Dackis C, Roache JD, Salloum IM, Somoza E, Urschel HC, Elkashef AM. Modafinil for the treatment of cocaine dependence. Drug Alcohol Depend. 2009;104(1–2):133–139.
    1. McElhiney MC, Rabkin JG, Rabkin R, Nunes EV. Provigil (modafinil) plus cognitive behavioral therapy for methamphetamine use in HIV + gay men: a pilot study. Am J Drug Alcohol Abuse. 2009;35(1):34–37.
    1. Garrett BE, Rose CA, Henningfield JE. Tobacco addiction and pharmacological interventions. Expet Opin Pharmacother. 2001;2(10):1545–1555.
    1. Grabowski J, Rhoades H, Schmitz J, Stotts A, Daruzska LA, Creson D, Moeller FG. Dextroamphetamine for cocaine-dependence treatment: a double-blind randomized clinical trial. J Clin Psychopharmacol. 2001;21(5):522–526.
    1. Meredith CW, Jaffe C, Yanasak E, Cherrier M, Saxon AJ. An open-label pilot study of risperidone in the treatment of methamphetamine dependence. J Psychoactive Drugs. 2007;39(2):167–172.
    1. Stoops WW, Lile JA, Glaser PE, Rush CR. A low dose of aripiprazole attenuates the subject-rated effects of d-amphetamine. Drug Alcohol Depend. 2006;84(2):206–209.
    1. Brent DA, Maalouf FT. Pediatric depression: is there evidence to improve evidence-based treatments? J Child Psychol Psychiatr. 2009;50(1–2):143–152.
    1. Kovacs M. Presentation and course of major depressive disorder during childhood and later years of the life span. J Am Acad Child Adolesc Psychiatr. 1996;35(6):705–715.
    1. Rohde P, Beevers CG, Stice E, O'Neil K. Major and minor depression in female adolescents: Onset, course, symptom presentation, and demographic associations. J Clin Psychol. 2009;65(12):1339–1349.
    1. Bromet E, Andrade LH, Hwang I, Sampson NA, Alonso J, de Girolamo G, de Graaf R, Demyttenaere K, Hu C, Iwata N, Karam AN, Kaur J, Kostyuchenko S, Lepine JP, Levinson D, Matschinger H, Mora ME, Browne MO, Posada-Villa J, Viana MC, Williams DR, Kessler RC. Cross-national epidemiology of DSM-IV major depressive episode. BMC Med. 2011;9:90.
    1. Davidson RJ. Affective style and affective disorders: Perspectives from affective neuroscience. Cognit Emot. 1998;12(3):307–330.
    1. Willner P. Chronic mild stress (CMS) revisited: Consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology. 2005;52(2):90–110.
    1. Willner P. Validity, reliability and utility of the chronic mild stress model of depression: A 10-year review and evaluation. Psychopharmacol Berl. 1997;134(4):319–329.
    1. Willner P, Towell A, Sampson D, Sophokleous S, Muscat R. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacol Berl. 1987;93(3):358–364.
    1. Muscat R, Papp M, Willner P. Reversal of stress-induced anhedonia by the atypical antidepressants, fluoxetine and maprotiline. Psychopharmacol (Berl) 1992;109(4):433–438.
    1. Papp M, Muscat R, Willner P. Subsensitivity to rewarding and locomotor stimulant effects of a dopamine agonist following chronic mild stress. Psychopharmacol Berl. 1993;110(1–2):152–158.
    1. Papp M, Willner P, Muscat R. Behavioural sensitization to a dopamine agonist is associated with reversal of stress-induced anhedonia. Psychopharmacol Berl. 1993;110(1–2):159–164.
    1. Strekalova T, Couch Y, Kholod N, Boyks M, Malin D, Leprince P, Steinbusch HM. Update in the methodology of the chronic stress paradigm: internal control matters. Behav Brain Funct. 2011;7:9.
    1. Bekris S, Antoniou K, Daskas S, Papadopoulou-Daifoti Z. Behavioural and neurochemical effects induced by chronic mild stress applied to two different rat strains. Behav Brain Res. 2005;161(1):45–59.
    1. Imperato A, Angelucci L, Casolini P, Zocchi A, Puglisi-Allegra S. Repeated stressful experiences differently affect limbic dopamine release during and following stress. Brain Res. 1992;577(2):194–199.
    1. Mangiavacchi S, Masi F, Scheggi S, Leggio B, De Montis MG, Gambarana C. Long-term behavioral and neurochemical effects of chronic stress exposure in rats. J Neurochem. 2001;79(6):1113–1121.
    1. Ossowska G, Nowa G, Kata R, Klenk-Majewska B, Danilczuk Z, Zebrowska-Lupina I. Brain monoamine receptors in a chronic unpredictable stress model in rats. J Neural Transm. 2001;108(3):311–319.
    1. Dunlop BW, Nemeroff CB. The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatr. 2007;64(3):327–337.
    1. Eshel N, Roiser JP. Reward and punishment processing in depression. Biol Psychiatr. 2010;68(2):118–124.
    1. Hasler G, Northoff G. Discovering imaging endophenotypes for major depression. Mol Psychiatr. 2011;16(6):604–619.
    1. Henriques JB, Davidson RJ. Decreased responsiveness to reward in depression. Cognit Emot. 2000;14(5):711–724.
    1. McFarland BR, Klein DN. Emotional reactivity in depression: diminished responsiveness to anticipated reward but not to anticipated punishment or to nonreward or avoidance. Depress Anxiety. 2009;26(2):117–122.
    1. Pizzagalli DA, Iosifescu D, Hallett LA, Ratner KG, Fava M. Reduced hedonic capacity in major depressive disorder: evidence from a probabilistic reward task. J Psychiatr Res. 2008;43(1):76–87.
    1. Robinson OJ, Cools R, Carlisi CO, Sahakian BJ, Drevets WC. Ventral striatum response during reward and punishment reversal learning in unmedicated major depressive disorder. Am J Psychiatr. 2011;169(2):152–159.
    1. Liu W, Chan RCK, Wang L, Huang J, Cheung EFC, Gong Q, Gollan JK. Deficits in sustaining reward responses in subsyndromal and syndromal major depression. Progr Neuro Psychopharmacol Biol Psychiatr. 2011;35(4):1045–1052.
    1. Tremblay LK, Naranjo CA, Cardenas L, Herrmann N, Busto UE. Probing brain reward system function in major depressive disorder: Altered response to dextroamphetamine. Arch Gen Psychiatr. 2002;59(5):409–416.
    1. Treadway MT, Buckholtz JW, Schwartzman AN, Lambert WE, Zald DH. Worth the 'EEfRT'? The effort expenditure for rewards task as an objective measure of motivation and anhedonia. PLoS One. 2009;4(8):e6598.
    1. Epstein J, Pan H, Kocsis JH, Yang Y, Butler T, Chusid J, Hochberg H, Murrough J, Strohmayer E, Stern E, Silbersweig DA. Lack of ventral striatal response to positive stimuli in depressed versus normal subjects. Am J Psychiatr. 2006;163(10):1784–1790.
    1. Keedwell PA, Andrew C, Williams SC, Brammer MJ, Phillips ML. The neural correlates of anhedonia in major depressive disorder. Biol Psychiatr. 2005;58:843–853.
    1. Kumar P, Waiter G, Ahearn T, Milders M, Reid I, Steele JD. Abnormal temporal difference reward-learning signals in major depression. Brain. 2008;131(8):2084–2093.
    1. Mitterschiffthaler MT, Kumari V, Malhi GS, Brown RG, Giampietro VP, Brammer MJ, Suckling J, Poon L, Simmons A, Andrew C, Sharma T. Neural response to pleasant stimuli in anhedonia: an fMRI study. Neuroreport. 2003;14(2):177–182.
    1. Schaefer HS, Putnam KM, Benca RM, Davidson RJ. Event-related functional magnetic resonance imaging measures of neural activity to positive social stimuli in pre- and post-treatment depression. Biol Psychiatr. 2006;60(9):974–986.
    1. Kumari V, Mitterschiffthaler MT, Teasdale JD, Malhi GS, Brown RG, Giampietro V, Brammer MJ, Poon L, Simmons A, Williams SC, Checkley SA, Sharma T. Neural abnormalities during cognitive generation of affect in treatment-resistant depression. Biol Psychiatr. 2003;54(8):777–791.
    1. Ochsner KN, Ray RD, Cooper JC, Robertson ER, Chopra S, Gabrieli JD, Gross JJ. For better or for worse: neural systems supporting the cognitive down- and up-regulation of negative emotion. Neuroimage. 2004;23(2):483–499.
    1. Keedwell PA, Andrew C, Williams SCR, Brammer MJ, Zelaya F, Phillips ML. The neural correlates of depression. Biol Psychiatr. 2003;53:171S.
    1. Liotti M, Mayberg HS, McGinnis S, Brannan SL, Jerabek P. Unmasking disease-specific cerebral blood flow abnormalities: mood challenge in patients with remitted unipolar depression. Am J Psychiatr. 2002;159(11):1830–1840.
    1. Forbes EE, Christopher May J, Siegle GJ, Ladouceur CD, Ryan ND, Carter CS, Birmaher B, Axelson DA, Dahl RE. Reward-related decision-making in pediatric major depressive disorder: An fMRI study. J Child Psychol Psychiatr. 2006;47(10):1031–1040.
    1. Forbes EE, Hariri AR, Martin SL, Silk JS, Moyles DL, Fisher PM, Brown SM, Ryan ND, Birmaher B, Axelson DA, Dahl RE. Altered striatal activation predicting real-world positive affect in adolescent major depressive disorder. Am J Psychiatr. 2009;166(1):64–73.
    1. Forbes EE, Olino TM, Ryan ND, Birmaher B, Axelson D, Moyles DL, Dahl RE. Reward-related brain function as a predictor of treatment response in adolescents with major depressive disorder. Cognit Affect Behav Neurosci. 2010;10(1):107–118.
    1. Olino TM, McMakin DL, Dahl RE, Ryan ND, Silk JS, Birmaher B, Axelson DA, Forbes EE. "I won, but I'm not getting my hopes up": depression moderates the relationship of outcomes and reward anticipation. Psychiatr Res. 2011;194(3):393–395.
    1. Osuch EA, Bluhm RL, Williamson PC, Theberge J, Densmore M, Neufeld RW. Brain activation to favorite music in healthy controls and depressed patients. Neuroreport. 2009;20(13):1204–1208.
    1. Pizzagalli DA, Holmes AJ, Dillon DG, Goetz EL, Birk JL, Bogdan R, Dougherty DD, Iosifescu DV, Rauch SL, Fava M. Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder. Am J Psychiatr. 2009;166(6):702–710.
    1. Steele J, Kumar P, Ebmeier K. Blunted response to feedback information in depressive illness. Brain. 2007;130(9):2367.
    1. Tremblay LK, Naranjo CA, Graham SJ, Herrmann N, Mayberg HS, Hevenor S, Busto UE. Functional neuroanatomical substrates of altered reward processing in major depressive disorder revealed by a dopaminergic probe. Arch Gen Psychiatr. 2005;62(11):1228.
    1. Wacker J, Dillon DG, Pizzagalli DA. The role of the nucleus accumbens and rostral anterior cingulate cortex in anhedonia: Integration of resting EEG, fMRI, and volumetric techniques. Neuroimage. 2009;46(1):327–337.
    1. Smoski MJ, Felder J, Bizzell J, Green SR, Ernst M, Lynch TR, Dichter GS. fMRI of alterations in reward selection, anticipation, and feedback in major depressive disorder. J Affect Disord. 2009;118(1–3):69–78.
    1. Knutson B, Bhanji JP, Cooney RE, Atlas LY, Gotlib IH. Neural responses to monetary incentives in major depression. Biol Psychiatr. 2008;63(7):686–692.
    1. Dichter GS, Felder JN, Petty C, Bizzell J, Ernst M, Smoski MJ. The effects of psychotherapy on neural responses to rewards in major depression. Biol Psychiatr. 2009;66(9):886–897.
    1. Forbes EE, Ryan ND, Phillips ML, Manuck SB, Worthman CM, Moyles DL, Tarr JA, Sciarrillo SR, Dahl RE. Healthy adolescents' neural response to reward: associations with puberty, positive affect, and depressive symptoms. J Am Acad Child Adolesc Psychiatr. 2010;49(2):162–172.
    1. Smoski MJ, Rittenberg A, Dichter GS. Major depressive disorder is characterized by greater reward network activation to monetary than pleasant image rewards. Psychiatr Res Neuroimaging. 2011;194(3):263–270.
    1. Alloy LB, Ambramson LY, Raniere D, Dyller IM. In: Handbook of Research Methods in Clinical Psychology. 2. Kendall PC, Butcher JN, Holmbeck GN, editor. Wiley, New York; 1999. Research methods in adult psychopathology; pp. 466–498.
    1. Mednick SA, McNeil TF. Current methodology in research on the etiology of schizophrenia: serious difficulties which suggest the use of the high-risk-group method. Psychol Bull. 1968;70(6):681–693.
    1. McCabe C, Cowen PJ, Harmer CJ. Neural representation of reward in recovered depressed patients. Psychopharmacol (Berl) 2009;205(4):667–677.
    1. Dichter GS, Kozink RV, McClernon FJ, Smoski MJ. Remitted major depression is characterized by reward network hyperactivation during reward anticipation and hypoactivation during reward outcomes. J Affect Disord. 2012;136(3):1126–1134.
    1. Kerestes R, Ladouceur CD, Meda S, Nathan PJ, Blumberg HP, Maloney K, Ruf B, Saricicek A, Pearlson GD, Bhagwagar Z, Phillips ML. Abnormal prefrontal activity subserving attentional control of emotion in remitted depressed patients during a working memory task with emotional distracters. Psychol Med. 2012;42:29–40.
    1. McCabe C, Mishor Z, Cowen PJ, Harmer CJ. Diminished neural processing of aversive and rewarding stimuli during selective serotonin reuptake inhibitor treatment. Biol Psychiatr. 2010;67(5):439–445.
    1. Etkin A, Egner T, Kalisch R. Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cognit Sci. 2011;15(2):85–93.
    1. Liu X, Hairston J, Schrier M, Fan J. Common and distinct networks underlying reward valence and processing stages: a meta-analysis of functional neuroimaging studies. Neurosci Biobehav Rev. 2011;35(5):1219–1236.
    1. Wallis JD, Kennerley SW. Heterogeneous reward signals in prefrontal cortex. Curr Opin Neurobiol. 2010;20(2):191–198.
    1. Ebert D, Feistel H, Barocka A. Effects of sleep deprivation on the limbic system and the frontal lobes in affective disorders: a study with Tc-99 m-HMPAO SPECT. Psychiatr Res. 1991;40(4):247–251.
    1. Ebert D, Feistel H, Kaschka W, Barocka A, Pirner A. Single photon emission computerized tomography assessment of cerebral dopamine D2 receptor blockade in depression before and after sleep deprivation–preliminary results. Biol Psychiatr. 1994;35(11):880–885.
    1. Wu J, Buchsbaum MS, Gillin JC, Tang C, Cadwell S, Wiegand M, Najafi A, Klein E, Hazen K, Bunney WE, Fallon JH, Keator D. Prediction of antidepressant effects of sleep deprivation by metabolic rates in the ventral anterior cingulate and medial prefrontal cortex. Am J Psychiatr. 1999;156(8):1149–1158.
    1. Wu JC, Gillin JC, Buchsbaum MS, Hershey T, Johnson JC, Bunney WE. Effect of sleep deprivation on brain metabolism of depressed patients. Am J Psychiatr. 1992;149(4):538–543.
    1. Brody AL, Saxena S, Mandelkern MA, Fairbanks LA, Ho ML, Baxter LR. Brain metabolic changes associated with symptom factor improvement in major depressive disorder. Biol Psychiatr. 2001;50(3):171–178.
    1. Brody AL, Saxena S, Silverman DH, Alborzian S, Fairbanks LA, Phelps ME, Huang SC, Wu HM, Maidment K, Baxter LR. Brain metabolic changes in major depressive disorder from pre- to post-treatment with paroxetine. Psychiatr Res. 1999;91(3):127–139.
    1. Mayberg HS. Limbic-cortical dysregulation: a proposed model of depression. J Neuropsychiatr Clin Neurosci. 1997;9(3):471–481.
    1. Mayberg HS, Brannan SK, Tekell JL, Silva JA, Mahurin RK, McGinnis S, Jerabek PA. Regional metabolic effects of fluoxetine in major depression: Serial changes and relationship to clinical response. Biol Psychiatr. 2000;48(8):830–843.
    1. Pizzagalli D, Pascual-Marqui RD, Nitschke JB, Oakes TR, Larson CL, Abercrombie HC, Schaefer SM, Koger JV, Benca RM, Davidson RJ. Anterior cingulate activity as a predictor of degree of treatment response in major depression: Evidence from brain electrical tomography analysis. Am J Psychiatr. 2001;158(3):405–415.
    1. Kennedy SH, Evans KR, Kruger S, Mayberg HS, Meyer JH, McCann S, Arifuzzman AI, Houle S, Vaccarino FJ. Changes in regional brain glucose metabolism measured with positron emission tomography after paroxetine treatment of major depression. Am J Psychiatr. 2001;158(6):899–905.
    1. Smith GS, Reynolds CF, Pollock B, Derbyshire S, Nofzinger E, Dew MA, Houck PR, Milko D, Meltzer CC, Kupfer DJ. Cerebral glucose metabolic response to combined total sleep deprivation and antidepressant treatment in geriatric depression. Am J Psychiatr. 1999;156(5):683–689.
    1. Lawrence NS, Williams AM, Surguladze S, Giampietro V, Brammer MJ, Andrew C, Frangou S, Ecker C, Phillips ML. Subcortical and ventral prefrontal cortical neural responses to facial expressions distinguish patients with bipolar disorder and major depression. Biol Psychiatr. 2004;55(6):578–587.
    1. Meyer JH, Ginovart N, Boovariwala A, Sagrati S, Hussey D, Garcia A, Young T, Praschak-Rieder N, Wilson AA, Houle S. Elevated monoamine oxidase a levels in the brain: An explanation for the monoamine imbalance of major depression. Arch Gen Psychiatr. 2006;63(11):1209–1216.
    1. Meltzer CC, Price JC, Mathis CA, Greer PJ, Cantwell MN, Houck PR, Mulsant BH, Ben-Eliezer D, Lopresti B, DeKosky ST, Reynolds CF. PET imaging of serotonin type 2A receptors in late-life neuropsychiatric disorders. Am J Psychiatr. 1999;156(12):1871–1878.
    1. Meyer JH, Kapur S, Houle S, DaSilva J, Owczarek B, Brown GM, Wilson AA, Kennedy SH. Prefrontal cortex 5-HT2 receptors in depression: An [18 F]setoperone PET imaging study. Am J Psychiatr. 1999;156(7):1029–1034.
    1. D'Haenen HA, Bossuyt A. Dopamine D2 receptors in depression measured with single photon emission computed tomography. Biol Psychiatr. 1994;35(2):128–132.
    1. Brunswick DJ, Amsterdam JD, Mozley PD, Newberg A. Greater availability of brain dopamine transporters in major depression shown by [99 m Tc]TRODAT-1 SPECT imaging. Am J Psychiatr. 2003;160(10):1836–1841.
    1. Parsey RV, Oquendo MA, Zea-Ponce Y, Rodenhiser J, Kegeles LS, Pratap M, Cooper TB, Van Heertum R, Mann JJ, Laruelle M. Dopamine D(2) receptor availability and amphetamine-induced dopamine release in unipolar depression. Biol Psychiatr. 2001;50(5):313–322.
    1. Meyer JH, McNeely HE, Sagrati S, Boovariwala A, Martin K, Verhoeff NP, Wilson AA, Houle S. Elevated putamen D(2) receptor binding potential in major depression with motor retardation: An [11 C]raclopride positron emission tomography study. Am J Psychiatr. 2006;163(9):1594–1602.
    1. Meyer JH, Kruger S, Wilson AA, Christensen BK, Goulding VS, Schaffer A, Minifie C, Houle S, Hussey D, Kennedy SH. Lower dopamine transporter binding potential in striatum during depression. Neuroreport. 2001;12(18):4121–4125.
    1. Ebert D, Feistel H, Loew T, Pirner A. Dopamine and depression–striatal dopamine D2 receptor SPECT before and after antidepressant therapy. Psychopharmacol Berl. 1996;126(1):91–94.
    1. Klimke A, Larisch R, Janz A, Vosberg H, Muller-Gartner HW, Gaebel W. Dopamine D2 receptor binding before and after treatment of major depression measured by [123I]IBZM SPECT. Psychiatr Res. 1999;90(2):91–101.
    1. Perala J, Suvisaari J, Saarni SI, Kuoppasalmi K, Isometsa E, Pirkola S, Partonen T, Tuulio-Henriksson A, Hintikka J, Kieseppa T, Harkanen T, Koskinen S, Lonnqvist J. Lifetime prevalence of psychotic and bipolar I disorders in a general population. Arch Gen Psychiatr. 2007;64(1):19–28.
    1. Gruber J. A review and synthesis of positive emotion and reward disturbance in bipolar disorder. Clin Psychol Psychother. 2011;18(5):356–365.
    1. Johnson SL. Mania and dysregulation in goal pursuit: A review. Clin Psychol Rev. 2005;25(2):241–262.
    1. Gorrindo T, Blair RJ, Budhani S, Dickstein DP, Pine DS, Leibenluft E. Deficits on a probabilistic response-reversal task in patients with pediatric bipolar disorder. Am J Psychiatr. 2005;162(10):1975–1977.
    1. Farmer A, Lam D, Sahakian B, Roiser J, Burke A, O'Neill N, Keating S, Smith GP, McGuffin P. A pilot study of positive mood induction in euthymic bipolar subjects compared with healthy controls. Psychol Med. 2006;36(9):1213–1218.
    1. Meyer B, Johnson S, Winters R. Responsiveness to threat and incentive in bipolar disorder: relations of the BIS/BAS scales with symptoms. J Psychopathol Behav Assess. 2001;23(3):133–143.
    1. Mueller SC, Ng P, Temple V, Hardin MG, Pine DS, Leibenluft E, Ernst M. Perturbed reward processing in pediatric bipolar disorder: An antisaccade study. J Psychopharmacol. 2010;24(12):1779.
    1. Blumberg HP, Martin A, Kaufman J, Leung HC, Skudlarski P, Lacadie C, Fulbright RK, Gore JC, Charney DS, Krystal JH, Peterson BS. Frontostriatal abnormalities in adolescents with bipolar disorder: Preliminary observations from functional MRI. Am J Psychiatr. 2003;160(7):1345–1347.
    1. Cerullo MA, Adler CM, Delbello MP, Strakowski SM. The functional neuroanatomy of bipolar disorder. Int Rev Psychiatr. 2009;21(4):314–322.
    1. Marchand WR, Yurgelun-Todd D. Striatal structure and function in mood disorders: a comprehensive review. Bipolar Disord. 2010;12(8):764–785.
    1. Strakowski SM, Delbello MP, Adler CM. The functional neuroanatomy of bipolar disorder: a review of neuroimaging findings. Mol Psychiatr. 2005;10(1):105–116.
    1. Yurgelun-Todd DA, Ross AJ. Functional magnetic resonance imaging studies in bipolar disorder. CNS Spectr. 2006;11(4):287–297.
    1. Hwang J, Lyoo IK, Dager SR, Friedman SD, Oh JS, Lee JY, Kim SJ, Dunner DL, Renshaw PF. Basal ganglia shape alterations in Bipolar disorder. Am J Psychiatr. 2006;163(2):276–285.
    1. Liu IY, Howe M, Garrett A, Karchemskiy A, Kelley R, Alegria D, Reiss A, Chang K. Striatal volumes in pediatric bipolar patients with and without comorbid ADHD. Psychiatr Res Neuroimaging. 2011;194(1):14–20.
    1. Strakowski SM, Adler CM, DelBello MP. Volumetric MRI studies of mood disorders: do they distinguish unipolar and bipolar disorder? Bipolar Disorder. 2002;4(2):80–88.
    1. Abler B, Greenhouse I, Ongur D, Walter H, Heckers S. Abnormal reward system activation in mania. Neuropsychopharmacology. 2008;33(9):2217–2227.
    1. Jogia J, Dima D, Kumari V, Frangou S. Frontopolar cortical inefficiency may underpin reward and working memory dysfunction in bipolar disorder. World J Biol Psychiatr. 2011. .
    1. Miller R. Striatal dopamine in reward and attention: a system for understanding the symptomatology of acute schizophrenia and mania. Int Rev Neurobiol. 1993;35:161–278.
    1. Suhara T, Nakayama K, Inoue O, Fukuda H, Shimizu M, Mori A, Tateno Y. D1 dopamine receptor binding in mood disorders measured by positron emission tomography. Psychopharmacol Berl. 1992;106(1):14–18.
    1. Amsterdam JD, Newberg AB. A preliminary study of dopamine transporter binding in bipolar and unipolar depressed patients and healthy controls. Neuropsychobiology. 2007;55(3–4):167–170.
    1. Chang TT, Yeh TL, Chiu NT, Chen PS, Huang HY, Yang YK, Lee IH, Lu RB. Higher striatal dopamine transporters in euthymic patients with bipolar disorder: A SPECT study with [Tc] TRODAT-1. Bipolar Disord. 2010;12(1):102–106.
    1. Anand A, Barkay G, Dzemidzic M, Albrecht D, Karne H, Zheng QH, Hutchins GD, Normandin MD, Yoder KK. Striatal dopamine transporter availability in unmedicated bipolar disorder. Bipolar Disord. 2011;13(4):406–413.
    1. Pearlson GD, Wong DF, Tune LE, Ross CA, Chase GA, Links JM, Dannals RF, Wilson AA, Ravert HT, Wagner HN. et vivo D2 dopamine receptor density in psychotic and nonpsychotic patients with bipolar disorder. Arch Gen Psychiatr. 1995;52(6):471–477.
    1. Wong DF, Pearlson GD, Tune LE, Young LT, Meltzer CC, Dannals RF, Ravert HT, Reith J, Kuhar MJ, Gjedde A. Quantification of neuroreceptors in the living human brain: IV. Effect of aging and elevations of D2-like receptors in schizophrenia and bipolar illness. J Cerebr Blood Metabol. 1997;17(3):331–342.
    1. Anand A, Verhoeff P, Seneca N, Zoghbi SS, Seibyl JP, Charney DS, Innis RB. Brain SPECT imaging of amphetamine-induced dopamine release in euthymic bipolar disorder patients. Am J Psychiatr. 2000;157(7):1108–1114.
    1. Yatham LN, Liddle PF, Shiah IS, Lam RW, Ngan E, Scarrow G, Imperial M, Stoessl J, Sossi V, Ruth TJ. PET study of [(18)F]6-fluoro-L-dopa uptake in neuroleptic- and mood-stabilizer-naive first-episode nonpsychotic mania: effects of treatment with divalproex sodium. Am J Psychiatr. 2002;159(5):768–774.
    1. Thase ME, Haight BR, Richard N, Rockett CB, Mitton M, Modell JG, VanMeter S, Harriett AE, Wang Y. Remission rates following antidepressant therapy with bupropion or selective serotonin reuptake inhibitors: A meta-analysis of original data from 7 randomized controlled trials. J Clin Psychiatr. 2005;66(8):974–981.
    1. Dichter GS, Tomarken AJ, Shelton RC, Freid C, Addington S. Effects of Bupropion SR on dimensions of mood. Poster presented at the annual meeting of The American Psychiatric Association, New Orleans, Louisiana; 2001.
    1. Ostow M. Pramipexole for depression. Am J Psychiatr. 2002;159(2):320–321.
    1. Post RM, Gerner RH, Carman JS, Gillin JC, Jimerson DC, Goodwin FK, Bunney WE. Effects of a dopamine agonist piribedil in depressed patients: Relationship of pretreatment homovanillic acid to antidepressant response. Arch Gen Psychiatr. 1978;35(5):609–615.
    1. Moroz G, Magni G, Fava M. Update on "open study of the catechol-O-methyltransferase inhibitor tolcapone in major depressive disorder". J Clin Psychopharmacol. 2000;20(2):285.
    1. Montgomery SA. Dopaminergic deficit and the role of amisulpride in the treatment of mood disorders. Int Clin Psychopharmacol. 2002;17(Suppl 4):discussion S16-17.
    1. Corrigan MH, Denahan AQ, Wright CE, Ragual RJ, Evans DL. Comparison of pramipexole, fluoxetine, and placebo in patients with major depression. Depress Anxiety. 2000;11(2):58–65.
    1. Weihs KL, Settle EC, Batey SR, Houser TL, Donahue RM, Ascher JA. Bupropion sustained release versus paroxetine for the treatment of depression in the elderly. J Clin Psychiatr. 2000;61(3):196–202.
    1. Bodkin JA, Lasser RA, Wines JD, Gardner DM, Baldessarini RJ. Combining serotonin reuptake inhibitors and bupropion in partial responders to antidepressant monotherapy. J Clin Psychiatr. 1997;58(4):137–145.
    1. Jamerson BD, Krishnan KR, Roberts J, Krishen A, Modell JG. Effect of bupropion SR on specific symptom clusters of depression: Analysis of the 31-item Hamilton Rating Scale for depression. Psychopharmacol Bull. 2003;37(2):67–78.
    1. Tomarken AJ, Dichter GS, Freid C, Addington S, Shelton RC. Assessing the effects of Bupropion SR on mood dimensions of depression. J Affect Disord. 2004;78(3):235–241.
    1. Zhou QY, Palmiter RD. Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic. Cell. 1995;83(7):1197–1209.
    1. Szczypka MS, Mandel RJ, Donahue BA, Snyder RO, Leff SE, Palmiter RD. Viral gene delivery selectively restores feeding and prevents lethality of dopamine-deficient mice. Neuron. 1999;22(1):167–178.
    1. Szczypka MS, Rainey MA, Kim DS, Alaynick WA, Marck BT, Matsumoto AM, Palmiter RD. Feeding behavior in dopamine-deficient mice. Proc Natl Acad Sci. 1999;96(21):12138–12143.
    1. Szczypka MS, Kwok K, Brot MD, Marck BT, Matsumoto AM, Donahue BA, Palmiter RD. Dopamine production in the caudate putamen restores feeding in dopamine-deficient mice. Neuron. 2001;30(3):819–828.
    1. Szczypka MS, Rainey MA, Palmiter RD. Dopamine is required for hyperphagia in Lep(ob/ob) mice. Nat Genet. 2000;25(1):102–104.
    1. Kelley AE. Functional specificity of ventral striatal compartments in appetitive behaviors. Ann N Y Acad Sci. 1999;877:71–90.
    1. Koob GF. Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci. 1992;13(5):177–184.
    1. Phillips AG, Atkinson LJ, Blackburn JR, Blaha CD. Increased extracellular dopamine in the nucleus accumbens of the rat elicited by a conditional stimulus for food: an electrochemical study. Can J Physiol Pharmacol. 1993;71(5–6):387–393.
    1. Schultz W, Dickinson A. Neuronal coding of prediction errors. Annu Rev Neurosci. 2000;23:473–500.
    1. Wilson C, Nomikos GG, Collu M, Fibiger HC. Dopaminergic correlates of motivated behavior: importance of drive. J Neurosci. 1995;15(7 Pt 2):5169–5178.
    1. Phillips GD, Robbins TW, Everitt BJ. Bilateral intra-accumbens self-administration of d-amphetamine: antagonism with intra-accumbens SCH-23390 and sulpiride. Psychopharmacol Berl. 1994;114(3):477–485.
    1. Pecina S, Berridge KC. Opioid site in nucleus accumbens shell mediates eating and hedonic 'liking' for food: Map based on microinjection Fos plumes. Brain Res. 2000;863(1–2):71–86.
    1. Stratford TR, Kelley AE. GABA in the nucleus accumbens shell participates in the central regulation of feeding behavior. J Neurosci. 1997;17(11):4434–4440.
    1. White NM. Control of sensorimotor function by dopaminergic nigrostriatal neurons: influence on eating and drinking. Neurosci Biobehav Rev. 1986;10(1):15–36.
    1. Zigmond MJ, Stricker EM. Deficits in feeding behavior after intraventricular injection of 6-hydroxydopamine in rats. Science. 1972;177(4055):1211–1214.
    1. Fairburn CG, Harrison PJ. Eating disorders. Lancet. 2003;361(9355):407–416.
    1. Volkow ND, Wang GJ, Fowler JS, Telang F. Overlapping neuronal circuits in addiction and obesity: evidence of systems pathology. Philosophical Transactions of the Royal Society of London. Ser B Biol Sci. 2008;363(1507):3191–3200.
    1. Hoebel BG, Hernandez L, Schwartz DH, Mark GP, Hunter GA. Microdialysis studies of brain norepinephrine, serotonin, and dopamine release during ingestive behavior. Theoretical and clinical implications. Ann N Y Acad Sci. 1989;575:171–191.
    1. Broft AI, Berner LA, Martinez D, Walsh BT. Bulimia nervosa and evidence for striatal dopamine dysregulation: a conceptual review. Physiol Behav. 2011;104(1):122–127.
    1. Huebner HF. Endorphins, Eating Disorders, and Other Addictive Behaviors. 1. Norton, New York; 1993.
    1. Joos AAB, Saum B, van Elst LT, Perlov E, Glauche V, Hartmann A, Freyer T, Tüscher O, Zeeck A. Amygdala hyperreactivity in restrictive anorexia nervosa. Psychiatr Res Neuroimaging. 2011;191(3):189–195.
    1. Bohon C, Stice E. Reward abnormalities among women with full and subthreshold bulimia nervosa: a functional magnetic resonance imaging study. Int J Eat Disord. 2011;44(7):585–595.
    1. Wagner A, Aizenstein H, Venkatraman VK, Bischoff-Grethe A, Fudge J, May JC, Frank GK, Bailer UF, Fischer L, Putnam K, Kaye WH. Altered striatal response to reward in bulimia nervosa after recovery. Int J Eat Disord. 2010;43(4):289–294.
    1. Frank GK, Wagner A, Achenbach S, McConaha C, Skovira K, Aizenstein H, Carter CS, Kaye WH. Altered brain activity in women recovered from bulimic-type eating disorders after a glucose challenge: a pilot study. Int J Eat Disord. 2006;39(1):76–79.
    1. Uher R, Murphy T, Brammer MJ, Dalgleish T, Phillips ML, Ng VW, Andrew CM, Williams SCR, Campbell IC, Treasure J. Medial prefrontal cortex activity associated with symptom provocation in eating disorders. Am J Psychiatr. 2004;161(7):1238–1246.
    1. Schienle A, Schafer A, Hermann A, Vaitl D. Binge-eating disorder: Reward sensitivity and brain activation to images of food. Biol Psychiatr. 2009;65(8):654–661.
    1. Brooks SJ, Owen G, Uher R, Friederich HC, Giampietro V, Brammer M, Williams SCR, Schiöth HB, Treasure J, Campbell IC. Differential neural responses to food images in women with bulimia versus Anorexia Nervosa. PLoS One. 2011;6(7):e22259.
    1. Davis C, Levitan RD, Kaplan AS, Carter J, Reid C, Curtis C, Patte K, Kennedy JL. Dopamine transporter gene (DAT1) associated with appetite suppression to methylphenidate in a case–control study of binge eating disorder. Neuropsychopharmacology. 2007;32(10):2199–2206.
    1. Kaplan AS, Levitan RD, Yilmaz Z, Davis C, Tharmalingam S, Kennedy JL. A DRD4/BDNF gene-gene interaction associated with maximum BMI in women with bulimia nervosa. Int J Eat Disord. 2008;41(1):22–28.
    1. Nisoli E, Brunani A, Borgomainerio E, Tonello C, Dioni L, Briscini L, Redaelli G, Molinari E, Cavagnini F, Carruba MO. D2 dopamine receptor (DRD2) gene Taq1A polymorphism and the eating-related psychological traits in eating disorders (Anorexia Nervosa and Bulimia) and obesity. Eat Weight Disord. 2007;12(2):91–96.
    1. Tauscher J, Pirker W, Willeit M, de Zwaan M, Bailer U, Neumeister A, Asenbaum S, Lennkh C, Praschak-Rieder N, Brucke T, Kasper S. [123I] beta-CIT and single photon emission computed tomography reveal reduced brain serotonin transporter availability in bulimia nervosa. Biol Psychiatr. 2001;49(4):326–332.
    1. Alexander W. Prozac wins new indication for bulimia nervosa. Drug Topics. 1997;141(6):34.
    1. Jackson CW, Cates M, Lorenz R. Pharmacotherapy of eating disorders. Nutr Clin Pract. 2010;25(2):143–159.
    1. Watson KK, Werling DM, Zucker NL, Platt ML. Altered social reward and attention in anorexia nervosa. Front Psychol. 2010;1:36.
    1. Kringelbach ML, O'Doherty J, Rolls ET, Andrews C. Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. Cerebr Cortex. 2003;13(10):1064–1071.
    1. O'Doherty J, Winston J, Critchley H, Perrett D, Burt DM, Dolan RJ. Beauty in a smile: The role of medial orbitofrontal cortex in facial attractiveness. Neuropsychologia. 2003;41(2):147–155.
    1. Zucker NL, Losh M, Bulik CM, LaBar KS, Piven J, Pelphrey KA. Anorexia nervosa and autism spectrum disorders: guided investigation of social cognitive endophenotypes. Psychol Bull. 2007;133(6):976–1006.
    1. Jappe LM, Frank GKW, Shott ME, Rollin MDH, Pryor T, Hagman JO, Yang TT, Davis E. Heightened sensitivity to reward and punishment in anorexia nervosa. Int J Eat Disord. 2011;44(4):317–324.
    1. Fladung AK, Gron G, Grammer K, Herrnberger B, Schilly E, Grasteit S, Wolf RC, Walter H, von Wietersheim J. A neural signature of anorexia nervosa in the ventral striatal reward system. Am J Psychiatr. 2010;167(2):206–212.
    1. Joos AAB, Saum B, Zeeck A, Perlov E, Glauche V, Hartmann A, Freyer T, Sandholz A, Unterbrink T, van Elst LT, Tüscher O. Frontocingular dysfunction in Bulimia Nervosa when confronted with disease-specific stimuli. Eur Eat Disord Rev. 2011;19(5):447–453.
    1. Wagner A, Aizenstein H, Venkatraman VK, Fudge J, May JC, Mazurkewicz L, Frank GK, Bailer UF, Fischer L, Nguyen V, Carter C, Putnam K, Kaye WH. Altered reward processing in women recovered from anorexia nervosa. Am J Psychiatr. 2007;164(12):1842–1849.
    1. Burger KS, Stice E. Relation of dietary restraint scores to activation of reward-related brain regions in response to food intake, anticipated intake, and food pictures. Neuroimage. 2011;55(1):233–239.
    1. Frank GK, Bailer UF, Henry SE, Drevets W, Meltzer CC, Price JC, Mathis CA, Wagner A, Hoge J, Ziolko S, Barbarich-Marsteller N, Weissfeld L, Kaye WH. Increased dopamine D2/D3 receptor binding after recovery from anorexia nervosa measured by positron emission tomography and [11c]raclopride. Biol Psychiatr. 2005;58(11):908–912.
    1. Bergen AW, Yeager M, Welch RA, Haque K, Ganjei JK, van den Bree MB, Mazzanti C, Nardi I, Fichter MM, Halmi KA, Kaplan AS, Strober M, Treasure J, Woodside DB, Bulik CM, Bacanu SA, Devlin B, Berrettini WH, Goldman D, Kaye WH. Association of multiple DRD2 polymorphisms with anorexia nervosa. Neuropsychopharmacology. 2005;30(9):1703–1710.
    1. Brambilla F, Garcia CS, Fassino S, Daga GA, Favaro A, Santonastaso P, Ramaciotti C, Bondi E, Mellado C, Borriello R, Monteleone P. Olanzapine therapy in anorexia nervosa: Psychobiological effects. Int Clin Psychopharmacol. 2007;22(4):197–204.
    1. Brambilla F, Monteleone P, Maj M. Olanzapine-induced weight gain in anorexia nervosa: Involvement of leptin and ghrelin secretion? Psychoneuroendocrinology. 2007;32(4):402–406.
    1. Mondraty N, Birmingham CL, Touyz S, Sundakov V, Chapman L, Beumont P. Randomized controlled trial of olanzapine in the treatment of cognitions in anorexia nervosa. Aust New Zeal J Psychiatr. 2005;13(1):72–75.
    1. McGrath J, Saha S, Chant D, Welham J. Schizophrenia: A concise overview of incidence, prevalence, and mortality. Epidemiol Rev. 2008;30:67–76.
    1. Blanchard JJ, Mueser KT, Bellack AS. Anhedonia, positive and negative affect, and social functioning in schizophrenia. Schizophr Bull. 1998;24(3):413–424.
    1. Meehl P. Schizotaxia, schizotypy, and schizophrenia. Am Psychol. 1962;17:827–838.
    1. Rado S. Psychoanalysis of Behavior: The Collected Papers of Sandor Rado (Vol. 2) Grune & Stratton, New York; 1962.
    1. Kwapil TR. Social anhedonia as a predictor of the development of schizophrenia-spectrum disorders. J Abnorm Psychol. 1998;107(4):558–565.
    1. Broome MR, Woolley JB, Tabraham P, Johns LC, Bramon E, Murray GK, Pariante C, McGuire PK, Murray RM. What causes the onset of psychosis? Schizophr Res. 2005;79(1):23–34.
    1. Abi-Dargham A, Rodenhiser J, Printz D, Zea-Ponce Y, Gil R, Kegeles LS, Weiss R, Cooper TB, Mann JJ, Van Heertum RL, Gorman JM, Laruelle M. Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci. 2000;97(14):8104–8109.
    1. Stone JM, Morrison PD, Pilowsky LS. Glutamate and dopamine dysregulation in schizophrenia–a synthesis and selective review. J Psychopharmacol. 2007;21(4):440–452.
    1. Ziauddeen H, Murray GK. The relevance of reward pathways for schizophrenia. Curr Opin Psychiatr. 2010;23(2):91–96.
    1. Meltzer HY, Stahl SM. The dopamine hypothesis of schizophrenia: A review. Schizophr Bull. 1976;2(1):19–76.
    1. Creese I, Burt DR, Snyder SH. Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science. 1976;192(4238):481–483.
    1. Allen JA, Roth BL. Strategies to discover unexpected targets for drugs active at G protein-coupled receptors. Annu Rev Pharmacol Toxicol. 2011;51:117–144.
    1. Roth BL, Sheffler DJ, Kroeze WK. Magic shotguns versus magic bullets: Selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov. 2004;3(4):353–359.
    1. Gejman PV, Sanders AR, Kendler KS. Genetics of schizophrenia: new findings and challenges. Annu Rev Genom Hum Genet. 2011;12:121–144.
    1. Allen JA, Yadav PN, Setola V, Farrell M, Roth BL. Schizophrenia risk gene CAV1 is both pro-psychotic and required for atypical antipsychotic drug actions in vivo. Translational Psychiatr. 2011;1:e33.
    1. Brandon NJ, Millar JK, Korth C, Sive H, Singh KK, Sawa A. Understanding the role of DISC1 in psychiatric disease and during normal development. J Neurosci. 2009;29(41):12768–12775.
    1. Marder SR, Roth B, Sullivan PF, Scolnick EM, Nestler EJ, Geyer MA, Welnberger DR, Karayiorgou M, Guidotti A, Gingrich J, Akbarian S, Buchanan RW, Lieberman JA, Conn PJ, Haggarty SJ, Law AJ, Campbell B, Krystal JH, Moghaddam B, Saw A, Caron MG, George SR, Allen JA, Solis M. Advancing drug discovery for schizophrenia. Ann N Y Acad Sci. 2011;1236(1):30–43.
    1. Powell SB, Zhou X, Geyer MA. Prepulse inhibition and genetic mouse models of schizophrenia. Behav Brain Res. 2009;204(2):282–294.
    1. Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR. Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: A decade in review. Psychopharmacol (Berl) 2001;156(2–3):117–154.
    1. Braff DL, Geyer MA, Light GA, Sprock J, Perry W, Cadenhead KS, Swerdlow NR. Impact of prepulse characteristics on the detection of sensorimotor gating deficits in schizophrenia. Schizophr Res. 2001;49(1–2):171–178.
    1. Swerdlow NR, Weber M, Qu Y, Light GA, Braff DL. Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacol Berl. 2008;199(3):331–388.
    1. Ralph-Williams RJ, Lehmann-Masten V, Geyer MA. Dopamine D1 rather than D2 receptor agonists disrupt prepulse inhibition of startle in mice. Neuropsychopharmacology. 2003;28(1):108–118.
    1. Ralph RJ, Varty GB, Kelly MA, Wang YM, Caron MG, Rubinstein M, Grandy DK, Low MJ, Geyer MA. The dopamine D2, but not D3 or D4, receptor subtype is essential for the disruption of prepulse inhibition produced by amphetamine in mice. J Neurosci. 1999;19(11):4627–4633.
    1. Kozikowski AP, Cho SJ, Jensen NH, Allen JA, Svennebring AM, Roth BL. HTS and rational drug design to generate a class of 5-HT(2 C)-selective ligands for possible use in schizophrenia. ChemMedChem. 2010;5(8):1221–1225.
    1. Castagne V, Moser PC, Porsolt RD. Preclinical behavioral models for predicting antipsychotic activity. Adv Pharmacol. 2009;57:381–418.
    1. Giros B, Jaber M, Jones SR, Wightman RM, Caron MG. Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature. 1996;379(6566):606–612.
    1. Gainetdinov RR, Wetsel WC, Jones SR, Levin ED, Jaber M, Caron MG. Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity. Science. 1999;283(5400):397–401.
    1. Barr AM, Lehmann-Masten V, Paulus M, Gainetdinov RR, Caron MG, Geyer MA. The selective serotonin-2A receptor antagonist M100907 reverses behavioral deficits in dopamine transporter knockout mice. Neuropsychopharmacology. 2004;29(2):221–228.
    1. Ralph RJ, Paulus MP, Fumagalli F, Caron MG, Geyer MA. Prepulse inhibition deficits and perseverative motor patterns in dopamine transporter knock-out mice: differential effects of D1 and D2 receptor antagonists. J Neurosci. 2001;21(1):305–313.
    1. Powell SB, Young JW, Ong JC, Caron MG, Geyer MA. Atypical antipsychotics clozapine and quetiapine attenuate prepulse inhibition deficits in dopamine transporter knockout mice. Behav Pharmacol. 2008;19(5–6):562–565.
    1. Yamashita M, Fukushima S, Shen HW, Hall FS, Uhl GR, Numachi Y, Kobayashi H, Sora I. Norepinephrine transporter blockade can normalize the prepulse inhibition deficits found in dopamine transporter knockout mice. Neuropsychopharmacology. 2006;31(10):2132–2139.
    1. Li YC, Kellendonk C, Simpson EH, Kandel ER, Gao WJ. D2 receptor overexpression in the striatum leads to a deficit in inhibitory transmission and dopamine sensitivity in mouse prefrontal cortex. Proc Natl Acad Sci. 2011;108(29):12107–12112.
    1. Kellendonk C. Modeling excess striatal D2 receptors in mice. Progr Brain Res. 2009;179:59–65.
    1. Simpson EH, Kellendonk C, Kandel E. A possible role for the striatum in the pathogenesis of the cognitive symptoms of schizophrenia. Neuron. 2010;65(5):585–596.
    1. Kellendonk C, Simpson EH, Kandel ER. Modeling cognitive endophenotypes of schizophrenia in mice. Trends Neurosci. 2009;32(6):347–358.
    1. Maia TV, Frank MJ. From reinforcement learning models to psychiatric and neurological disorders. Nat Neurosci. 2011;14(2):154–162.
    1. Ward RD, Simpson EH, Kandel ER, Balsam PD. Modeling motivational deficits in mouse models of schizophrenia: Behavior analysis as a guide for neuroscience. Behav Process. 2011;87(1):149–156.
    1. Young JW, Zhou X, Geyer MA. Animal models of schizophrenia. Curr Top Behav Neurosci. 2010;4:391–433.
    1. Trémeau F, Antonius D, Cacioppo JT, Ziwich R, Butler P, Malaspina D, Javitt DC. Anticipated, on-line and remembered positive experience in schizophrenia. Schizophr Res. 2009;122(1–3):199–205.
    1. Earnst KS, Kring AM. Emotional responding in deficit and non-deficit schizophrenia. Psychiatr Res. 1999;88(3):191–207.
    1. Berenbaum H, Oltmanns TF. Emotional experience and expression in schizophrenia and depression. J Abnorm Psychol. 1992;101(1):37–44.
    1. Aghevli MA, Blanchard JJ, Horan WP. The expression and experience of emotion in schizophrenia: A study of social interactions. Psychiatr Res. 2003;119(3):261–270.
    1. Kring AM, Moran EK. Emotional response deficits in schizophrenia: Insights from affective science. Schizophr Bull. 2008;34(5):819–834.
    1. Trémeau F. A review of emotion deficits in schizophrenia. Dialogues Clin Neurosci. 2006;8(1):59–70.
    1. Cohen AS, Minor KS. Emotional experience in patients with schizophrenia revisited: Meta-analysis of laboratory studies. Schizophr Bull. 2008;36(1):143–150.
    1. Kring AM, Kerr SL, Smith DA, Neale JM. Flat affect in schizophrenia does not reflect diminished subjective experience of emotion. J Abnorm Psychol. 1993;102(4):507–517.
    1. Burbridge JA, Barch DM. Anhedonia and the experience of emotion in individuals with schizophrenia. J Abnorm Psychol. 2007;116(1):30–42.
    1. Berlin I, Givry-Steiner L, Lecrubier Y, Puech AJ. Measures of anhedonia and hedonic responses to sucrose in depressive and schizophrenic patients in comparison with healthy subjects. Eur Psychiatr. 1998;13(6):303–309.
    1. Schneider F, Habel U, Reske M, Toni I, Falkai P, Shah NJ. Neural substrates of olfactory processing in schizophrenia patients and their healthy relatives. Psychiatr Res. 2007;155(2):103–112.
    1. Earnst KS, Kring AM, Kadar MA, Salem JE, Shepard DA, Loosen PT. Facial expression in schizophrenia. Biol Psychiatr. 1996;40(6):556–558.
    1. Kring AM, Kerr SL, Earnst KS. Schizophrenic patients show facial reactions to emotional facial expressions. Psychophysiology. 1999;36(2):186–192.
    1. Kring AM, Neale JM. Do schizophrenic patients show a disjunctive relationship among expressive, experiential, and psychophysiological components of emotion? J Abnorm Psychol. 1996;105(2):249–257.
    1. Venables PH, Wing JK. Level of arousal and the subclassification of schizophrenia. Arch Gen Psychiatr. 1962;7:114–119.
    1. Curtis CE, Lebow B, Lake DS, Katsanis J, Iacono WG. Acoustic startle reflex in schizophrenia patients and their first-degree relatives: evidence of normal emotional modulation. Psychophysiology. 1999;36(4):469–475.
    1. Schlenker R, Cohen R, Hopmann G. Affective modulation of the startle reflex in Schizophrenic patients. Eur Arch Psychiatr Clin Neurosci. 1995;245(6):309–318.
    1. Chan RCK, Wang Y, Huang J, Shi Y, Hong X, Ma Z, Li Z, Lai M, Kring AM. Anticipatory and consummatory components of the experience of pleasure in schizophrenia: Cross-cultural validation and extension. Psychiatr Res. 2010;175(1–2):181–183.
    1. Gard DE, Kring AM, Gard MG, Horan WP, Green MF. Anhedonia in schizophrenia: distinctions between anticipatory and consummatory pleasure. Schizophr Res. 2007;93(1–3):253–260.
    1. Loas G, Monestes JL, Ameller A, Bubrovszky M, Yon V, Wallier J, Berthoz S, Corcos M, Thomas P, Gard D, Loas G, Monestes JL, Ameller A, Bubrovszky M, Yon V, Wallier J, Berthoz S, Corcos M, Thomas P, Gard D. Traduction et étude de validation de la version française de l'échelle d'expérience temporelle du plaisir (EETP, Temporal Experience of Pleasure Scale [TEPS], Gard et al., 2006): étude chez 125 étudiants et chez 162 sujets présentant un trouble psychiatrique. Traduction et étude de validation. 2009;167(9):641–648.
    1. Waltz JA, Frank MJ, Wiecki TV, Gold JM. Altered probabilistic learning and response biases in schizophrenia: Behavioral evidence and neurocomputational modeling. Neuropsychology. 2011;25(1):86.
    1. Wynn JK, Horan WP, Kring AM, Simons RF, Green MF. Impaired anticipatory event-related potentials in schizophrenia. Int J Psychophysiol. 2010;77(2):141–149.
    1. Strauss GP, Wilbur RC, Warren KR, August SM, Gold JM. Anticipatory vs. consummatory pleasure: What is the nature of hedonic deficits in schizophrenia? Psychiatr Res. 2011;187(1–2):36–41.
    1. Elliott R, McKenna PJ, Robbins TW, Sahakian BJ. Neuropsychological evidence for frontostriatal dysfunction in schizophrenia. Psychol Med. 1995;25(3):619–630.
    1. Gold JM, Waltz JA, Prentice KJ, Morris SE, Heerey EA. Reward processing in schizophrenia: a deficit in the representation of value. Schizophr Bull. 2008;34(5):835.
    1. Koch K, Schachtzabel C, Wagner G, Schikora J, Schultz C, Reichenbach JR, Sauer H, Schlösser RGM. Altered activation in association with reward-related trial-and-error learning in patients with schizophrenia. Neuroimage. 2010;50(1):223–232.
    1. Strauss MM, Makris N, Aharon I, Vangel MG, Goodman J, Kennedy DN, Gasic GP, Breiter HC. fMRI of sensitization to angry faces. Neuroimage. 2005;26(2):389–413.
    1. Waltz JA, Gold JM. Probabilistic reversal learning impairments in schizophrenia: Further evidence of orbitofrontal dysfunction. Schizophr Res. 2007;93(1–3):296–303.
    1. Somlai Z, Moustafa AA, Kéri S, Myers CE, Gluck MA. General functioning predicts reward and punishment learning in schizophrenia. Schizophr Res. 2011;127(1–3):131–136.
    1. Yarkoni T, Gray JR, Chrastil ER, Barch DM, Green L, Braver TS. Sustained neural activity associated with cognitive control during temporally extended decision making. Brain Res Cognit Brain Res. 2005;23(1):71–84.
    1. Simon JJ, Biller A, Walther S, Roesch-Ely D, Stippich C, Weisbrod M, Kaiser S. Neural correlates of reward processing in schizophrenia–Relationship to apathy and depression. Schizophr Res. 2009;118(1–3):154–161.
    1. Juckel G, Schlagenhauf F, Koslowski M, Filonov D, Wustenberg T, Villringer A, Knutson B, Kienast T, Gallinat J, Wrase J, Heinz A. Dysfunction of ventral striatal reward prediction in schizophrenic patients treated with typical, not atypical, neuroleptics. Psychopharmacol Berl. 2006;187(2):222–228.
    1. Kirsch P, Ronshausen S, Mier D, Gallhofer B. The influence of antipsychotic treatment on brain reward system reactivity in Schizophrenia patients. Pharmacopsychiatry. 2007;40(5):196–198.
    1. Waltz JA, Schweitzer JB, Gold JM, Kurup PK, Ross TJ, Salmeron BJ, Rose EJ, McClure SM, Stein EA. Patients with schizophrenia have a reduced neural response to both unpredictable and predictable primary reinforcers. Neuropsychopharmacology. 2009;34(6):1567–1577.
    1. Waltz JA, Schweitzer JB, Ross TJ, Kurup PK, Salmeron BJ, Rose EJ, Gold JM, Stein EA. Abnormal responses to monetary outcomes in cortex, but not in the basal ganglia, in schizophrenia. Neuropsychopharmacology. 2010;35:2427–2439.
    1. Morris R, Vercammen A, Lenroot R, Moore L, Langton J, Short B, Kulkarni J, Curtis J, O'Donnell M, Weickert C. Disambiguating ventral striatum fMRI-related bold signal during reward prediction in schizophrenia. Mol Psychiatr. 2011;17:280–289.
    1. Juckel G, Schlagenhauf F, Koslowski M, Wustenberg T, Villringer A, Knutson B, Wrase J, Heinz A. Dysfunction of ventral striatal reward prediction in schizophrenia. Neuroimage. 2006;29(2):409–416.
    1. Schlagenhauf F, Juckel G, Koslowski M, Kahnt T, Knutson B, Dembler T, Kienast T, Gallinat J, Wrase J, Heinz A. Reward system activation in schizophrenic patients switched from typical neuroleptics to olanzapine. Psychopharmacol Berl. 2008;196(4):673–684.
    1. Grimm O, Vollstadt-Klein S, Krebs L, Zink M, Smolka MN. Reduced striatal activation during reward anticipation due to appetite-provoking cues in chronic schizophrenia: A fMRI study. Schizophr Res. 2011;134(2–3):151–157.
    1. Kegeles LS, Abi-Dargham A, Frankle WG, Gil R, Cooper TB, Slifstein M, Hwang D-R, Huang Y, Haber SN, Laruelle M. Increased synaptic dopamine function in associative regions of the striatum in schizophrenia. Arch Gen Psychiatr. 2010;67(3):231–239.
    1. Lieberman JA. Understanding the mechanism of action of atypical antipsychotic drugs. A review of compounds in use and development. Br J Psychiatr. 1993;22:7–18. Suppl.
    1. Mailman RB, Murthy V. Third generation antipsychotic drugs: partial agonism or receptor functional selectivity? Curr Pharm Des. 2010;16(5):488–501.
    1. Stahl SM. Dopamine system stabilizers, aripiprazole, and the next generation of antipsychotics, part 1, "Goldilocks" actions at dopamine receptors. J Clin Psychiatr. 2001;62(11):841–842.
    1. Froehlich TE, Lanphear BP, Epstein JN, Barbaresi WJ, Katusic SK, Kahn RS. Prevalence, recognition, and treatment of attention-deficit/hyperactivity disorder in a national sample of US children. Arch Pediatr Adolesc Med. 2007;161(9):857–864.
    1. Kessler RC, Adler L, Barkley R, Biederman J, Conners CK, Demler O, Faraone SV, Greenhill LL, Howes MJ, Secnik K, Spencer T, Ustun TB, Walters EE, Zaslavsky AM. The prevalence and correlates of adult ADHD in the United States: results from the National Comorbidity Survey Replication. Am J Psychiatr. 2006;163(4):716–723.
    1. Visser SN, Lesesne CA, Perou R. National estimates and factors associated with medication treatment for childhood Attention-Deficit/Hyperactivity disorder. Pediatrics. 2007;119(Suppl 1):S99–S106.
    1. Spencer TJ, Biederman J, Mick E. Attention-deficit/hyperactivity disorder: Diagnosis, lifespan, comorbidities, and neurobiology. J Pediatr Psychol. 2007;32(6):631–642.
    1. Biederman J, Faraone SV. Attention-deficit hyperactivity disorder. Lancet. 2005;366(9481):237–248.
    1. Donnelly M, Haby MM, Carter R, Andrews G, Vos T. Cost-effectiveness of dexamphetamine and methylphenidate for the treatment of childhood attention deficit hyperactivity disorder. Aust New Zeal J Psychiatr. 2004;38(8):592–601.
    1. Secnik K, Swensen A, Lage MJ. Comorbidities and costs of adult patients diagnosed with attention-deficit hyperactivity disorder. Pharmacoeconomics. 2005;23(1):93–102.
    1. Taylor E, Chadwick O, Heptinstall E, Danckaerts M. Hyperactivity and conduct problems as risk factors for adolescent development. J Am Acad Adolesc Psychiatr. 1996;35(9):1213–1226.
    1. Sagvolden T, Johansen EB, Aase H, Russell VA. A dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behav Brain Sci. 2005;28(3):397–418.
    1. Tripp G, Wickens JR. Research review: Dopamine transfer deficit: a neurobiological theory of altered reinforcement mechanisms in ADHD. J Child Psychol Psychiatr. 2008;49(7):691–704.
    1. Tripp G, Wickens JR. Neurobiology of ADHD. Neuropharmacology. 2009;57(7–8):579–589.
    1. Gizer IR, Ficks C, Waldman ID. Candidate gene studies of ADHD: a meta-analytic review. Hum Genet. 2009;126(1):51–90.
    1. Khan SA, Faraone SV. The genetics of ADHD: a literature review of 2005. Curr Psychiatr Rep. 2006;8(5):393–397.
    1. Arime Y, Kubo Y, Sora I. Animal models of attention-deficit/hyperactivity disorder. Biol Pharmacol Bull. 2011;34(9):1373–1376.
    1. Gainetdinov RR. Strengths and limitations of genetic models of ADHD. Attention Deficit Hyperactive Disord. 2010;2(1):21–30.
    1. Trinh JV, Nehrenberg DL, Jacobsen JP, Caron MG, Wetsel WC. Differential psychostimulant-induced activation of neural circuits in dopamine transporter knockout and wild type mice. Neuroscience. 2003;118:297–310.
    1. Hironaka N, Ikeda K, Sora I, Uhl GR, Niki H. Food-reinforced operant behavior in dopamine transporter knockout mice: Enhanced resistance to extinction. Ann N Y Acad Sci. 2004;1025:140–145.
    1. Gainetdinov RR, Caron MG. Genetics of childhood disorders: XXIV. ADHD, Part 8: hyperdopaminergic mice as an animal model of ADHD. J Am Acad Child Adolesc Psychiatr. 2001;40:380–382.
    1. Jucaite A, Fernell E, Halldin C, Forssberg H, Farde L. Reduced midbrain dopamine transporter binding in male adolescents with attention-deficit/hyperactivity disorder: Association between striatal dopamine markers and motor hyperactivity. Biol Psychiatr. 2005;57:229–238.
    1. Dougherty DD, Bonab AA, Spencer TJ, Rauch SL, Madras BK, Fischman AJ. Dopamine transporter density in patients with attention deficit hyperactivity disorder. Lancet. 1999;354(9196):2132–2133.
    1. Krause KH, Dresel SH, Krause J, Kung HF, Tatsch K. Increased striatal dopamine transporter in adult patients with attention deficit hyperactivity disorder: Effects of methylphenidate as measured by single photon emission computed tomography. Neurosci Lett. 2000;285(2):107–110.
    1. Russell VA. Overview of animal models of attention deficit hyperactivity disorder (ADHD) Curr Protoc Neurosci. 2011;54
    1. Johansen EB, Killeen PR, Sagvolden T. Behavioral variability, elimination of responses, and delay-of-reinforcement gradients in SHR and WKY rats. Behav Brain Funct. 2007;3:60.
    1. Sagvolden T. Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD) Neurosci Biobehav Rev. 2000;24:31–39.
    1. Sagvolden T, Russell VA, Aase H, Johansen EB, Farshbaf M. Rodent models of attention-deficit/hyperactivity disorder. Biol Psychiatr. 2005;57:1239–1247.
    1. Bull E, Reavill C, Hagan JJ, Overend P, Jones DN. Evaluation of the spontaneously hypertensive rat as a model of attention deficit hyperactivity disorder: acquisition and performance of the DRL-60s test. Behav Brain Res. 2000;109:27–35.
    1. Mill J, Sagvolden T, Asherson P. Sequence analysis of Drd2, Drd4, and Dat1 in SHR and WKY rat strains. Behav Brain Funct. 2005;1:24.
    1. Cook EH, Stein MA, Krasowski MD, Cox NJ, Olkon DM, Kieffer JE, Leventhal BL. Association of attention-deficit disorder and the dopamine transporter gene. Am J Hum Genet. 1995;56:993–998.
    1. Watanabe Y, Fujita M, Ito Y, Okada T, Kusuoka H, Nishimura T. Brain dopamine transporter in spontaneously hypertensive rats. J Nucl Med. 1997;38:470–474.
    1. Leo D, Sorrentino E, Volpicelli F, Eyman M, Greco D, Viggiano D, Di PU, Perrone-Capano C. Altered midbrain dopaminergic neurotransmission during development in an animal model of ADHD. Neurosci Biobehav Rev. 2003;27:661–669.
    1. Johansen EB, Killeen PR, Russell VA, Tripp G, Wickens JR, Tannock R, Williams J, Sagvolden T. Origins of altered reinforcement effects in ADHD. Behav Brain Funct. 2009;5:7.
    1. Luman M, Oosterlaan J, Sergeant JA. The impact of reinforcement contingencies on AD/HD: A review and theoretical appraisal. Clin Psychol Rev. 2005;25(2):183–213.
    1. Drechsler R, Rizzo P, Steinhausen HC. Decision-making on an explicit risk-taking task in preadolescents with attention-deficit/hyperactivity disorder. J Neural Transm. 2008;115(2):201–209.
    1. Sonuga-Barke EJ, Taylor E, Sembi S, Smith J. Hyperactivity and delay aversion–. The effect of delay on choice.I. J Psychol Psychiatr. 1992;33(2):387–398.
    1. Luman M, Oosterlaan J, Hyde C, van Meel CS, Sergeant JA. Heart rate and reinforcement sensitivity in ADHD. J Psychol Psychiatr. 2007;48(9):890–898.
    1. Brennan AR, Arnsten AF. Neuronal mechanisms underlying attention deficit hyperactivity disorder: the influence of arousal on prefrontal cortical function. Ann N Y Acad Sci. 2008;1129:236–245.
    1. Brocki K, Fan J, Fossella J. Placing neuroanatomical models of executive function in a developmental context: Imaging and imaging–genetic strategies. Ann N Y Acad Sci. 2008;1129:246–255.
    1. Prince J. Catecholamine dysfunction in attention-deficit/hyperactivity disorder: An update. J Clin Psychopharmacol. 2008;28(3 Suppl 2):S39.
    1. Wilens TE. Effects of methylphenidate on the catecholaminergic system in attention-deficit/hyperactivity disorder. J Clin Psychopharmacol. 2008;28(3 Suppl 2):S46–S53.
    1. Kollins SH, Lane SD, Shapiro SK. The experimental analysis of childhood psychopathology. Psychol Record. 1997;47(1):25–44.
    1. Bitsakou P, Psychogiou L, Thompson M, Sonuga-Barke EJ. Delay aversion in Attention Deficit/Hyperactivity Disorder: An empirical investigation of the broader phenotype. Neuropsychologia. 2009;47(2):446–456.
    1. Kuntsi J, Oosterlaan J, Stevenson J. Psychological mechanisms in hyperactivity: I. Response inhibition deficit, working memory impairment, delay aversion, or something else? J Child Psychol Psychiatr. 2001;42(2):199–210.
    1. Marco R, Miranda A, Schlotz W, Melia A, Mulligan A, Muller U, Andreou P, Butler L, Christiansen H, Gabriels I, Medad S, Albrecht B, Uebel H, Asherson P, Banaschewski T, Gill M, Kuntsi J, Mulas F, Oades R, Roeyers H, Steinhausen HC, Rothenberger A, Faraone SV, Sonuga-Barke EJ. Delay and reward choice in ADHD: An experimental test of the role of delay aversion. Neuropsychology. 2009;23(3):367–380.
    1. Neef NA, Bicard DF, Endo S. Assessment of impulsivity and the development of self-control in students with attention deficit hyperactivity disorder. J Appl Behav Anal. 2001;34(4):397–408.
    1. Rapport MD, Tucker SB, DuPaul GJ, Merlo M, Stoner G. Hyperactivity and frustration: The influence of control over and size of rewards in delaying gratification. J Abnorm Child Psychol. 1986;14(2):191–204.
    1. Tripp G, Alsop B. Sensitivity to reward delay in children with Attention Deficit Hyperactivity disorder (ADHD) J Child Psychol Psychiatr. 2001;42(5):691–698.
    1. Solanto MV, Abikoff H, Sonuga-Barke E, Schachar R, Logan GD, Wigal T, Hechtman L, Hinshaw S, Turkel E. The ecological validity of delay aversion and response inhibition as measures of impulsivity in AD/HD: A supplement to the NIMH multimodal treatment study of AD/HD. J Abnorm Child Psychol. 2001;29(3):215–228.
    1. Scheres A, Tontsch C, Thoeny AL, Kaczkurkin A. Temporal reward discounting in attention-deficit/hyperactivity disorder: The contribution of symptom domains, reward magnitude, and session length. Biol psychiatr. 2010;67(7):641–648.
    1. Johansen EB, Aase H, Meyer A, Sagvolden T. Attention-deficit/hyperactivity disorder (ADHD) behaviour explained by dysfunctioning reinforcement and extinction processes. Behav Brain Res. 2002;130(1–2):37–45.
    1. Luman M, van Meel CS, Oosterlaan J, Geurts HM. Reward and punishment sensitivity in children with ADHD: validating the sensitivity to punishment and sensitivity to reward questionnaire for children (SPSRQ-C) J Abnorm Child Psychol. 2011;40:1–13.
    1. Drechsler R, Rizzo P, Steinhausen HC. Decision making with uncertain reinforcement in children with attention deficit/hyperactivity disorder (ADHD) Child Neuropsychol. 2010;16(2):145–161.
    1. Demurie E, Roeyers H, Baeyens D, Sonuga Barke E. Common alterations in sensitivity to type but not amount of reward in ADHD and autism spectrum disorders. J Child Psychol Psychiatr. 2011;52:1164–1173.
    1. Rubia K, Overmeyer S, Taylor E, Brammer M, Williams SC, Simmons A, Bullmore ET. Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: A study with functional MRI. Am J Psychiatr. 1999;156(6):891–896.
    1. Vaidya CJ, Austin G, Kirkorian G, Ridlehuber HW, Desmond JE, Glover GH, Gabrieli JD. Selective effects of methylphenidate in attention deficit hyperactivity disorder: A functional magnetic resonance study. Proc Natl Acad Sci. 1998;95(24):14494–14499.
    1. Zang YF, Jin Z, Weng XC, Zhang L, Zeng YW, Yang L, Wang YF, Seidman LJ, Faraone SV. Functional MRI in attention-deficit hyperactivity disorder: Evidence for hypofrontality. Brain Dev. 2005;27(8):544–550.
    1. Carmona S, Hoekzema E, Ramos Quiroga JA, Richarte V, Canals C, Bosch R, Rovira M, Carlos Soliva J, Bulbena A, Tobeña A. Response inhibition and reward anticipation in medication naïve adults with attention deficit/hyperactivity disorder: A within subject case control neuroimaging study. Hum Brain Mapp. 2011. .
    1. Plichta MM, Vasic N, Wolf RC, Lesch K-P, Brummer D, Jacob C, Fallgatter AJ, Grön G. Neural hyporesponsiveness and hyperresponsiveness during immediate and delayed reward processing in adult Attention-Deficit/Hyperactivity Disorder. Biol Psychiatr. 2009;65(1):7–14.
    1. Scheres A, Milham MP, Knutson B, Castellanos FX. Ventral striatal hyporesponsiveness during reward anticipation in attention-deficit/hyperactivity disorder. Biol Psychiatr. 2007;61(5):720–724.
    1. Strohle A, Stoy M, Wrase J, Schwarzer S, Schlagenhauf F, Huss M, Hein J, Nedderhut A, Neumann B, Gregor A, Juckel G, Knutson B, Lehmkuhl U, Bauer M, Heinz A. Reward anticipation and outcomes in adult males with Attention-Deficit/Hyperactivity disorder. Neuroimage. 2008;39(3):966–972.
    1. Cubillo A, Halari R, Smith A, Taylor E, Rubia K. Attention Deficit Hyperactivity Disorder (ADHD) and new evidence for dysfunction in adults with ADHD during motivation and attention. Cortex. 2011;48(2):194–215.
    1. Paloyelis Y, Mehta MA, Kuntsi J, Asherson P. Functional MRI in ADHD: a systematic literature review. Expet Rev Neurotherapy. 2007;7(10):1337–1356.
    1. Stoy M, Schlagenhauf F, Schlochtermeier L, Wrase J, Knutson B, Lehmkuhl U, Huss M, Heinz A, Strohle A. Reward processing in male adults with childhood ADHD–a comparison between drug-naive and methylphenidate-treated subjects. Psychopharmacol Berl. 2011;215(3):467–481.
    1. Hahn T, Heinzel S, Dresler T, Plichta MM, Renner TJ, Markulin F, Jakob PM, Lesch KP, Fallgatter AJ. Association between reward-related activation in the ventral striatum and trait reward sensitivity is moderated by dopamine transporter genotype. Hum Brain Mapp. 2011;32(10):1557–1565.
    1. Stark R, Bauer E, Merz CJ, Zimmermann M, Reuter M, Plichta MM, Kirsch P, Lesch KP, Fallgatter AJ, Vaitl D, Herrmann MJ. ADHD related behaviors are associated with brain activation in the reward system. Neuropsychologia. 2011;49(3):426–434.
    1. Wilbertz G, van Elst LT, Delgado MR, Maier S, Feige B, Philipsen A, Blechert J. Orbitofrontal reward sensitivity and impulsivity in adult attention deficit hyperactivity disorder. Neuroimage. 2011;60(1):353–361.
    1. Ernst M, Zametkin AJ, Matochik JA, Pascualvaca D, Jons PH, Cohen RM. High midbrain [18 F]DOPA accumulation in children with attention deficit hyperactivity disorder. Am J Psychiatr. 1999;156(8):1209–1215.
    1. Volkow N, Wang G, Newcorn J, Kollins S, Wigal T, Telang F, Fowler J, Goldstein R, Klein N, Logan J. Motivation deficit in ADHD is associated with dysfunction of the dopamine reward pathway. Mol Psychiatr. 2010;16:1147–1154.
    1. Madras BK, Miller GM, Fischman AJ. The dopamine transporter and attention-deficit/hyperactivity disorder. Biol Psychiatr. 2005;57(11):1397–1409.
    1. Yano M, Steiner H. Methylphenidate and cocaine: The same effects on gene regulation? Trends Pharmacol Sci. 2007;28(11):588–596.
    1. Heal DJ, Cheetham SC, Smith SL. The neuropharmacology of ADHD drugs in vivo: Insights on efficacy and safety. Neuropharmacology. 2009;57(7–8):608–618.
    1. Conners CK, Casat CD, Gualtieri CT, Weller E, Reader M, Reiss A, Weller RA, Khayrallah M, Ascher J. Bupropion hydrochloride in attention deficit disorder with hyperactivity. J Am Acad Child Adolesc Psychiatr. 1996;35(10):1314–1321.
    1. Kuperman S, Perry PJ, Gaffney GR, Lund BC, Bever-Stille KA, Arndt S, Holman TL, Moser DJ, Paulsen JS. Bupropion SR vs. methylphenidate vs. placebo for attention deficit hyperactivity disorder in adults. Ann Clin Psychiatr. 2001;13(3):129–134.
    1. Ruscio AM, Stein DJ, Chiu WT, Kessler RC. The epidemiology of obsessive-compulsive disorder in the National Comorbidity Survey Replication. Mol Psychiatr. 2010;15(1):53–63.
    1. Cavedini P, Gorini A, Bellodi L. Understanding obsessive-compulsive disorder: Focus on decision making. Neuropsychol Rev. 2006;16(1):3–15.
    1. Denys D, Zohar J, Westenberg HG. The role of dopamine in obsessive-compulsive disorder: Preclinical and clinical evidence. J Clin Psychiatr. 2004;65(Suppl 14):11–17.
    1. Holden C. Psychiatry. Behavioral addictions debut in proposed DSM-V. Science. 2010;327(5968):935.
    1. Geller DA, Biederman J, Faraone S, Agranat A, Cradock K, Hagermoser L, Kim G, Frazier J, Coffey BJ. Developmental aspects of obsessive compulsive disorder: findings in children, adolescents, and adults. J Nerv Ment Dis. 2001;189:471–477.
    1. Yang XW, Lu XH. Molecular and cellular basis of obsessive-compulsive disorder-like behaviors: Emerging view from mouse models. Curr Opin Neurol. 2011;24(2):114–118.
    1. Feusner JD, Hembacher E, Phillips KA. The mouse who couldn't stop washing: Pathologic grooming in animals and humans. CNS Spectr. 2009;14(9):503–513.
    1. Berridge KC, Aldridge JW, Houchard KR, Zhuang X. Sequential super-stereotypy of an instinctive fixed action pattern in hyper-dopaminergic mutant mice: A model of obsessive compulsive disorder and Tourette's. BMC Biol. 2005;3:4.
    1. Welch JM, Lu J, Rodriguiz RM, Trotta NC, Peca J, Ding JD, Feliciano C, Chen M, Adams JP, Luo J, Dudek SM, Weinberg RJ, Calakos N, Wetsel WC, Feng G. Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature. 2007;448(7156):894–900.
    1. Shmelkov SV, Hormigo A, Jing D, Proenca CC, Bath KG, Milde T, Shmelkov E, Kushner JS, Baljevic M, Dincheva I, Murphy AJ, Valenzuela DM, Gale NW, Yancopoulos GD, Ninan I, Lee FS, Rafii S. Slitrk5 deficiency impairs corticostriatal circuitry and leads to obsessive-compulsive-like behaviors in mice. Nat Med. 2010;16(5):598–602.
    1. Nielen MM, den Boer JA, Smid HG. Patients with obsessive-compulsive disorder are impaired in associative learning based on external feedback. Psychol Med. 2009;39(9):1519–1526.
    1. Cavedini P, Riboldi G, D'Annucci A, Belotti P, Cisima M, Bellodi L. Decision-making heterogeneity in obsessive-compulsive disorder: Ventromedial prefrontal cortex function predicts different treatment outcomes. Neuropsychologia. 2002;40(2):205–211.
    1. Saxena S, Brody AL, Schwartz JM, Baxter LR. Neuroimaging and frontal-subcortical circuitry in obsessive-compulsive disorder. Br J Psychiatr. 1998;35:26–37. Suppl.
    1. Fontenelle LF, Oostermeijer S, Harrison BJ, Pantelis C, Yucel M. Obsessive-compulsive disorder, impulse control disorders and drug addiction: common features and potential treatments. Drugs. 2011;71(7):827–840.
    1. Jung WH, Kang DH, Han JY, Jang JH, Gu BM, Choi JS, Jung MH, Choi CH, Kwon JS. Aberrant ventral striatal responses during incentive processing in unmedicated patients with obsessive-compulsive disorder. Acta Psychiatr Scand. 2010;123(5):376–386.
    1. Figee M, Vink M, de Geus F, Vulink N, Veltman DJ, Westenberg H, Denys D. Dysfunctional reward circuitry in obsessive-compulsive disorder. Biol Psychiatr. 2011;69(9):867–874.
    1. Pena-Garijo J, Barros-Loscertales A, Ventura-Campos N, Ruiperez-Rodriguez M, Edo-Villamon S, Avila C. Involvement of the thalamic-cortical-striatal circuit in patients with obsessive-compulsive disorder during an inhibitory control task with reward and punishment contingencies. Rev Neurol. 2011;53(2):77.
    1. Whiteside SP, Port JD, Abramowitz JS. A meta-analysis of functional neuroimaging in obsessive-compulsive disorder. Psychiatr Res. 2004;132(1):69–79.
    1. Menzies L, Chamberlain SR, Laird AR, Thelen SM, Sahakian BJ, Bullmore ET. Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: The orbitofronto-striatal model revisited. Neurosci Biobehav Rev. 2008;32(3):525–549.
    1. Nikolaus S, Antke C, Beu M, Muller HW. Cortical GABA, striatal dopamine and midbrain serotonin as the key players in compulsive and anxiety disorders–results from in vivo imaging studies. Rev Neurosci. 2010;21(2):119–139.
    1. Pallanti S, Quercioli L. Treatment-refractory obsessive-compulsive disorder: Methodological issues, operational definitions and therapeutic lines. Progr Neuropsychopharmacol Biol Psychiatr. 2006;30(3):400–412.
    1. Bystritsky A, Ackerman DL, Rosen RM, Vapnik T, Gorbis E, Maidment KM, Saxena S. Augmentation of serotonin reuptake inhibitors in refractory obsessive-compulsive disorder using adjunctive olanzapine: A placebo-controlled trial. J Clin Psychiatr. 2004;65(4):565–568.
    1. Carey PD, Vythilingum B, Seedat S, Muller JE, van Ameringen M, Stein DJ. Quetiapine augmentation of SRIs in treatment refractory obsessive-compulsive disorder: a double-blind, randomised, placebo-controlled study. BMC Psychiatr. 2005;5:5.
    1. Hollander E, Baldini Rossi N, Sood E, Pallanti S. Risperidone augmentation in treatment-resistant obsessive-compulsive disorder: A double-blind, placebo-controlled study. Int J Neuropsychopharmacol. 2003;6(4):397–401.
    1. Komossa K, Depping AM, Meyer M, Kissling W, Leucht S. Second-generation antipsychotics for obsessive compulsive disorder. Cochrane Database Sys Rev. 2010;12:CD008141.
    1. Denys D, Mantione M, Figee M, van den Munckhof P, Koerselman F, Westenberg H, Bosch A, Schuurman R. Deep brain stimulation of the nucleus accumbens for treatment-refractory obsessive-compulsive disorder. Arch Gen Psychiatr. 2010;67(10):1061–1068.
    1. Huff W, Lenartz D, Schormann M, Lee SH, Kuhn J, Koulousakis A, Mai J, Daumann J, Maarouf M, Klosterkotter J, Sturm V. Unilateral deep brain stimulation of the nucleus accumbens in patients with treatment-resistant obsessive-compulsive disorder: Outcomes after one year. Clin Neurol Neurosurg. 2010;112(2):137–143.
    1. Sturm V, Lenartz D, Koulousakis A, Treuer H, Herholz K, Klein JC, Klosterkotter J. The nucleus accumbens: A target for deep brain stimulation in obsessive-compulsive- and anxiety-disorders. J Chem Neuroanat. 2003;26(4):293–299.
    1. Kogan MD, Blumberg SJ, Schieve LA, Boyle CA, Perrin JM, Ghandour RM, Singh GK, Strickland BB, Trevathan E, van Dyck PC. Prevalence of parent-reported diagnosis of autism spectrum disorder among children in the US. Pediatrics. 2009;124(5):1395–1403.
    1. Moy SS, Nadler JJ, Perez A, Barbaro RP, Johns JM, Magnuson TR, Piven J, Crawley JN. Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Gene Brain Behav. 2004;3(5):287–302.
    1. Moy SS, Nadler JJ, Young NB, Nonneman RJ, Grossman AW, Murphy DL, D'Ercole AJ, Crawley JN, Magnuson TR, Lauder JM. Social approach in genetically engineered mouse lines relevant to autism. Gene Brain Behav. 2009;8(2):129–142.
    1. Smith SE, Zhou YD, Zhang G, Jin Z, Stoppel DC, Anderson MP. Increased gene dosage of Ube3a results in autism traits and decreased glutamate synaptic transmission in mice. Sci Translational Med. 2011;3(103):103ra197–103ra197.
    1. Nair HP, Young LJ. Vasopressin and pair-bond formation: Genes to brain to behavior. Physiol (Bethesda) 2006;21:146–152.
    1. Young KA, Gobrogge KL, Liu Y, Wang Z. The neurobiology of pair bonding: Insights from a socially monogamous rodent. Front Neuroendocrinol. 2010;32(1):53–69.
    1. Bishop SL, Lahvis GP. The autism diagnosis in translation: shared affect in children and mouse models of ASD. Autism Res. 2011;4(5):317–335.
    1. Carter CS, Getz LL. Monogamy and the prairie vole. Sci Am Am. 1993;268(6):100–106.
    1. Curtis JT, Wang Z. Ventral tegmental area involvement in pair bonding in male prairie voles. Physiol Behav. 2005;86(3):338–346.
    1. Aragona BJ, Liu Y, Yu YJ, Curtis JT, Detwiler JM, Insel TR, Wang Z. Nucleus accumbens dopamine differentially mediates the formation and maintenance of monogamous pair bonds. Nat Neurosci. 2006;9(1):133–139.
    1. Gingrich B, Liu Y, Cascio C, Wang Z, Insel TR. Dopamine D2 receptors in the nucleus accumbens are important for social attachment in female prairie voles (Microtus ochrogaster) Behav Neurosci. 2000;114(1):173–183.
    1. Aragona BJ, Wang Z. Opposing regulation of pair bond formation by cAMP signaling within the nucleus accumbens shell. J Neurosci. 2007;27(48):13352–13356.
    1. Curtis JT, Wang Z. Amphetamine effects in microtine rodents: A comparative study using monogamous and promiscuous vole species. Neuroscience. 2007;148(4):857–866.
    1. Hostetler CM, Harkey SL, Krzywosinski TB, Aragona BJ, Bales KL. Neonatal exposure to the D1 agonist SKF38393 inhibits pair bonding in the adult prairie vole. Behav Pharmacol. 2011;22(7):703–710.
    1. Liu H, Dong F, Meng Z, Zhang B, Tan J, Wang Y. Evaluation of Tourette's syndrome by (99 m) Tc-TRODAT-1 SPECT/CT imaging. Ann Nucl Med. 2010;24(7):515–521.
    1. Liu Y, Young KA, Curtis JT, Aragona BJ, Wang Z. Social bonding decreases the rewarding properties of amphetamine through a dopamine D1 receptor-mediated mechanism. J Neurosci. 2011;31(22):7960–7966.
    1. Lim MM, Liu Y, Ryabinin AE, Bai Y, Wang Z, Young LJ. CRF receptors in the nucleus accumbens modulate partner preference in prairie voles. Horm Behav. 2007;51(4):508–515.
    1. Olazabal DE, Young LJ. Oxytocin receptors in the nucleus accumbens facilitate "spontaneous" maternal behavior in adult female prairie voles. Neuroscience. 2006;141(2):559–568.
    1. Young LJ, Lim MM, Gingrich B, Insel TR. Cellular mechanisms of social attachment. Horm Behav. 2001;40(2):133–138.
    1. Insel TR. The challenge of translation in social neuroscience: A review of oxytocin, vasopressin, and affiliative behavior. Neuron. 2010;65(6):768–779.
    1. Hammock EA, Young LJ. Oxytocin, vasopressin and pair bonding: implications for autism. Philosophical Transactions of the Royal Society of London. Ser B Biol Sci. 2006;361(1476):2187–2198.
    1. Dawson G, Meltzoff AN, Osterling J, Rinaldi J, Brown E. Children with autism fail to orient to naturally occurring social stimuli. J Autism Dev Disord. 1998;28(6):479–485.
    1. Dawson G, Webb SJ, McPartland J. Understanding the nature of face processing impairment in autism: Insights from behavioral and electrophysiological studies. Dev Neuropsychol. 2005;27(3):403–424.
    1. Schultz RT. Developmental deficits in social perception in autism: The role of the amygdala and fusiform face area. Int J Dev Neurosci. 2005;23(2–3):125–141.
    1. Kuhl PK, Coffey-Corina S, Padden D, Dawson G. Links between social and linguistic processing of speech in preschool children with autism: Behavioral and electrophysiological measures. Dev Sci. 2005;8:F1–F12.
    1. Schultz RT, Gauthier I, Klin A, Fulbright RK, Anderson AW, Volkmar F, Skudlarski P, Lacadie C, Cohen DJ, Gore JC. Abnormal ventral temporal cortical activity during face discrimination among individuals with autism and Asperger syndrome. Arch Gen Psychiatr. 2000;57(4):331–340.
    1. Klin A, Lin DJ, Gorrindo P, Ramsay G, Jones W. Two-year-olds with autism orient to non-social contingencies rather than biological motion. Nature. 2009;459(7244):257–261.
    1. Klin A, Jones W, Schultz R, Volkmar F, Cohen D. Visual fixation patterns during viewing of naturalistic social situations as predictors of social competence in individuals with autism. Arch Gen Psychiatr. 2002;59(9):809–816.
    1. Chevallier C, Grèzes J, Molesworth C, Berthoz S, Happé F. Brief report: Selective social anhedonia in high functioning autism. J Autism Dev Disord. 2012. .
    1. Sasson N, Tsuchiya N, Hurley R, Couture SM, Penn DL, Adolphs R, Piven J. Orienting to social stimuli differentiates social cognitive impairment in autism and schizophrenia. Neuropsychologia. 2007;45(11):2580–2588.
    1. Sasson N, Turner-Brown L, Holtzclaw T, Lam KS, Bodfish J. Children with autism demonstrate circumscribed attention during passive viewing of complex social and nonsocial picture arrays. Autism Res. 2008;1:31–42.
    1. Sasson NJ, Elison JT, Turner-Brown LM, Dichter GS, Bodfish JW. Brief report: Circumscribed attention in young children with autism. J Autism Dev Disord. 2011;41(2):242–247.
    1. Soderstrom H, Rastam M, Gillberg C. Temperament and character in adults with Asperger syndrome. Autism. 2002;6(3):287–290.
    1. Johnson SA, Yechiam E, Murphy RR, Queller S, Stout JC. Motivational processes and autonomic responsivity in Asperger's disorder: Evidence from the Iowa Gambling Task. J Int Neuropsychol Soc. 2006;12(05):668–676.
    1. Schmitz N, Rubia K, van Amelsvoort T, Daly E, Smith A, Murphy DG. Neural correlates of reward in autism. Br J Psychiatr. 2008;192:19–24.
    1. Scott-Van Zeeland AA, Dapretto M, Ghahremani DG, Poldrack RA, Bookheimer SY. Reward processing in autism. Autism Res. 2010;3(2):53–67.
    1. Garretson HB, Fein D, Waterhouse L. Sustained attention in children with autism. J Autism Dev Disord. 1990;20(1):101–114.
    1. Ingersoll B, Schreibman L, Tran QH. Effect of sensory feedback on immediate object imitation in children with autism. J Autism Dev Disord. 2003;33(6):673–683.
    1. Ozonoff S. Reliability and Validity of the Wisconsin Card Sorting Test in Studies of Autism. Neuropsychology. 1995;9(4):491–500.
    1. Pascualvaca DM, Fantie BD, Papageorgiou M, Mirsky AF. Attentional capacities in children with autism: Is there a general deficit in shifting focus? J Autism Dev Disord. 1998;28(6):467–478.
    1. Dichter GS, Richey JA, Rittenberg AM, Sabatino A, Bodfish JW. Reward circuitry function in autism during face anticipation and outcomes. J Autism Dev Disord. 2012;42(2):147–160.
    1. Kohls G, Schulte-Rüther M, Nehrkorn B, Müller K, Fink GR, Kamp-Becker I, Herpertz-Dahlmann B, Schultz RT, Konrad K. Reward system dysfunction in spectrum disorders. Soc Cognit Affect Neurosci. 2011;41:1523–1533.
    1. Kylliainen A, Wallace S, Coutanche MN, Leppanen JM, Cusack J, Bailey AJ, Hietanen JK. Affective-motivational brain responses to direct gaze in children with autism spectrum disorder. J Child Psychol Psychiatr. 2012;53:790797.
    1. Sutton SK, Burnette CP, Mundy PC, Meyer J, Vaughan A, Sanders C, Yale M. Resting cortical brain activity and social behavior in higher functioning children with autism. J Child Psychol Psychiatr. 2005;46(2):211–222.
    1. Larson MJ, South M, Krauskopf E, Clawson A, Crowley MJ. Feedback and reward processing in high-functioning autism. Psychiatr Res. 2011;187(1–2):198–203.
    1. Lewis MH, Bodfish JW. Repetitive behavior disorders in autism. Ment Retard Dev Disabil Res Rev. 1998;4:80–89.
    1. Dichter GS, Felder JN, Green SR, Rittenberg AM, Sasson NJ, Bodfish JW. Reward circuitry function in autism spectrum disorders. Soc Cognit Affect Neurosci. 2012;7:160–172.
    1. Dawson G, Rogers S, Munson J, Smith M, Winter J, Greenson J, Donaldson A, Varley J. Randomized, controlled trial of an intervention for toddlers with autism: the Early Start Denver Model. Pediatrics. 2010;125(1):e17.
    1. Lovaas OI. Behavioral treatment and normal educational and intellectual functioning in young autistic children. J Consult Clin Psychol. 1987;55(1):3.
    1. Mesibov GB, Shea V. The TEACCH program in the era of evidence-based practice. J Autism Dev Disord. 2010;40(5):570–579.
    1. Kasari C. Assessing change in early intervention programs for children with autism. J Autism Dev Disord. 2002;32(5):447–461.
    1. Sherer MR, Schreibman L. Individual behavioral profiles and predictors of treatment effectiveness for children with autism. J Consult Clin Psychol. 2005;73(3):525.
    1. Smith T, Groen AD, Wynn JW. Randomized trial of intensive early intervention for children with pervasive developmental disorder. Am J Ment Retard. 2000;105(4):269–285.
    1. Spreckley M, Boyd R. Efficacy of applied behavioral intervention in preschool children with autism for improving cognitive, language, and adaptive behavior: A systematic review and meta-analysis. J Pediatr. 2009;154(3):338–344.
    1. McDougle CJ, Posey DJ, Potenza MN. In: Autism Spectrum Disorders. Hollander E, editor. Marcel Dekker, New York; 2003. Neurobiology of serotonin function in autism; pp. 199–220.
    1. Makkonen I, Riikonen R, Kokki H, Airaksinen MM, Kuikka JT. Serotonin and dopamine transporter binding in children with autism determined by SPECT. Dev Med Child Neurol. 2008;50(8):593–597.
    1. Sun X, Yue J, Zheng C. Study of dopamine transporter imaging on the brain of children with autism. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2008;25(2):327–330.
    1. Nakamura K, Sekine Y, Ouchi Y, Tsujii M, Yoshikawa E, Futatsubashi M, Tsuchiya KJ, Sugihara G, Iwata Y, Suzuki K, Matsuzaki H, Suda S, Sugiyama T, Takei N, Mori N. Brain serotonin and dopamine transporter bindings in adults with high-functioning autism. Arch Gen Psychiatr. 2010;67(1):59–68.
    1. Ernst M, Zametkin AJ, Matochik JA, Pascualvaca D, Cohen RM. Low medial prefrontal dopaminergic activity in autistic children. Lancet. 1997;350(9078):638.
    1. Nieminen-von Wendt TS, Metsahonkala L, Kulomaki TA, Aalto S, Autti TH, Vanhala R, Eskola O, Bergman J, Hietala JA, von Wendt LO. Increased presynaptic dopamine function in Asperger syndrome. Neuroreport. 2004;15(5):757–760.
    1. Makkonen I, Kokki H, Kuikka J, Turpeinen U, Riikonen R. Effects of fluoxetine treatment on striatal dopamine transporter binding and cerebrospinal fluid insulin-like growth factor-1 in children with autism. Neuropediatrics. 2011;42:207–209.
    1. Buchsbaum MS, Hollander E, Haznedar MM, Tang C, Spiegel-Cohen J, Wei TC, Solimando A, Buchsbaum BR, Robins D, Bienstock C, Cartwright C, Mosovich S. Effect of fluoxetine on regional cerebral metabolism in autistic spectrum disorders: a pilot study. Int J Neuropsychopharmacol. 2001;4(2):119–125.
    1. Hollander E, Phillips A, Chaplin W, Zagursky K, Novotny S, Wasserman S, Iyengar R. A placebo controlled crossover trial of liquid fluoxetine on repetitive behaviors in childhood and adolescent autism. Neuropsychopharmacology. 2005;30(3):582–589.
    1. McDougle CJ, Naylor ST, Cohen DJ, Volkmar FR, Heninger GR, Price LH. A double-blind, placebo-controlled study of fluvoxamine in adults with autistic disorder. Arch Gen Psychiatr. 1996;53(11):1001–1008.
    1. Namerow LB, Thomas P, Bostic JQ, Prince J, Monuteaux MC. Use of citalopram in pervasive developmental disorders. J Dev Behav Pediatr. 2003;24(2):104–108.
    1. Owley T, Walton L, Salt J, Guter SJ, Winnega M, Leventhal BL, Cook EH. An open-label trial of escitalopram in pervasive developmental disorders. J Am Acad Child Adolesc Psychiatr. 2005;44(4):343–348.
    1. King BH, Hollander E, Sikich L, McCracken JT, Scahill L, Bregman JD, Donnelly CL, Anagnostou E, Dukes K, Sullivan L, Hirtz D, Wagner A, Ritz L. Lack of efficacy of citalopram in children with autism spectrum disorders and high levels of repetitive behavior: Citalopram ineffective in children with autism. Arch Gen Psychiatr. 2009;66(6):583–590.
    1. Aman MG, Hollway JA, McDougle CJ, Scahill L, Tierney E, McCracken JT, Arnold LE, Vitiello B, Ritz L, Gavaletz A. Cognitive effects of risperidone in children with autism and irritable behavior. J Child Adolesc Psychopharmacol. 2008;18(3):227–236.
    1. Aman MG, Lam KSL, Van Bourgondien ME. Medication patterns in patients with autism: Temporal, regional, and demographic influences. J Child Adolesc Psychopharmacol. 2005;15(1):116–126.
    1. Arnold LE, Farmer C, Kraemer HC, Davies M, Witwer A, Chuang S, DiSilvestro R, McDougle CJ, McCracken J, Vitiello B. Moderators, mediators, and other predictors of risperidone response in children with autistic disorder and irritability. J Child Adolesc Psychopharmacol. 2010;20(2):83–93.
    1. Pandina GJ, Bossie CA, Youssef E, Zhu Y, Dunbar F. Risperidone improves behavioral symptoms in children with autism in a randomized, double-blind, placebo-controlled trial. J Autism Dev Disord. 2007;37(2):367–373.
    1. Williams H, Clarke R, Bouras N, Martin J, Holt G. Use of the atypical antipsychotics Olanzapine and Risperidone in adults with intellectual disability. J Intellect Disabil Res. 2000;44(2):164–169.
    1. McCracken JT, McGough J, Shah B, Cronin P, Hong D, Aman MG, Arnold LE, Lindsay R, Nash P, Hollway J. Risperidone in children with autism and serious behavioral problems. New Engl J Med. 2002;347(5):314–321.
    1. McDougle CJ, Stigler KA, Erickson CA, Posey DJ. Atypical antipsychotics in children and adolescents with autistic and other pervasive developmental disorders. J Clin Psychiatr. 2008;69:15.
    1. Nagaraj R, Singhi P, Malhi P. Risperidone in children with autism: Randomized, placebo-controlled, double-blind study. J Child Neurol. 2006;21(6):450.
    1. Owen R, Sikich L, Marcus RN, Corey-Lisle P, Manos G, McQuade RD, Carson WH, Findling RL. Aripiprazole in the treatment of irritability in children and adolescents with autistic disorder. Pediatrics. 2009;124(6):1533.
    1. Marcus RN, Owen R, Manos G, Mankoski R, Kamen L, McQuade RD, Carson WH, Corey-Lisle PK, Aman MG. Aripiprazole in the treatment of irritability in pediatric patients (aged 6–17 years) with Autistic Disorder: Results from a 52-week, open-label study. J Child Adolesc Psychopharmacol. 2011;21(3):229–236.
    1. Akhondzadeh S, Erfani S, Mohammadi M, Tehrani Doost M, Amini H, Gudarzi S, Yasamy M. Cyproheptadine in the treatment of autistic disorder: a double blind placebo controlled trial. J Clin Pharm Ther. 2004;29(2):145–150.
    1. Parikh MS, Kolevzon A, Hollander E. Psychopharmacology of aggression in children and adolescents with autism: A critical review of efficacy and tolerability. J Child Adolesc Psychopharmacol. 2008;18(2):157–178.
    1. Stigler KA, Erickson CA, Mullett JE, Posey DJ, McDougle CJ. Paliperidone for irritability in autistic disorder. J Child Adolesc Psychopharmacol. 2010;20(1):75–78.
    1. Handen BL, Johnson CR, Lubetsky M. Efficacy of methylphenidate among children with autism and symptoms of attention-deficit hyperactivity disorder. J Autism Dev Disord. 2000;30(3):245–255.
    1. Posey DJ, Stigler KA, Erickson CA, McDougle CJ. Antipsychotics in the treatment of autism. J Clin Investig. 2008;118(1):6.
    1. McCracken JT. Safety issues with drug therapies for autism spectrum disorders. J Clin Psychiatr. 2005;66(Suppl 10):32–37.
    1. McNaught KS, Mink JW. Advances in understanding and treatment of Tourette syndrome. Nat Rev Neurol. 2011;7(12):667–676.
    1. Karagiannidis I, Rizzo R, Tarnok Z, Wolanczyk T, Hebebrand J, Nothen MM, Lehmkuhl G, Farkas L, Nagy P, Barta C, Szymanska U, Panteloglou G, Miranda DM, Feng Y, Sandor P, Barr C, Paschou P. Replication of association between a SLITRK1 haplotype and Tourette Syndrome in a large sample of families. Mol Psychiatr. 2011. .
    1. O'Rourke JA, Scharf JM, Yu D, Pauls DL. The genetics of Tourette syndrome: A review. J Psychosom Res. 2009;67(6):533–545.
    1. Katayama K, Yamada K, Ornthanalai VG, Inoue T, Ota M, Murphy NP, Aruga J. Slitrk1-deficient mice display elevated anxiety-like behavior and noradrenergic abnormalities. Mol Psychiatr. 2008;15(2):177–184.
    1. Stillman AA, Krsnik Z, Sun J, Rasin MR, State MW, Sestan N, Louvi A. Developmentally regulated and evolutionarily conserved expression of SLITRK1 in brain circuits implicated in Tourette syndrome. J Comp Neurol. 2009;513(1):21–37.
    1. Singer HS, Butler IJ, Tune LE, Seifert WF, Coyle JT. Dopaminergic dysfunction in Tourette syndrome. Ann Neurol. 1982;12:361–366.
    1. Singer HS, Hahn IH, Moran TH. Abnormal dopamine uptake sites in postmortem striatum from patients with Tourette's syndrome. Ann Neurol. 1991;30(4):558–562.
    1. Wong DF, Brasic JR, Singer HS, Schretlen DJ, Kuwabara H, Zhou Y, Nandi A, Maris MA, Alexander M, Ye W, Rousset O, Kumar A, Szabo Z, Gjedde A, Grace AA. Mechanisms of dopaminergic and serotonergic neurotransmission in Tourette syndrome: Clues from an in vivo neurochemistry study with PET. Neuropsychopharmacology. 2008;33(6):1239–1251.
    1. Grace AA. Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: A hypothesis for the etiology of schizophrenia. Neuroscience. 1991;41(1):1–24.
    1. Palminteri S, Lebreton M, Worbe Y, Hartmann A, Lehéricy S, Vidailhet M, Grabli D, Pessiglione M. Dopamine-dependent reinforcement of motor skill learning: Evidence from Gilles de la Tourette syndrome. Brain. 2011;134(8):2287–2301.
    1. Mazzone L, Yu S, Blair C, Gunter BC, Wang Z, Marsh R, Peterson BS. An fMRI study of frontostriatal circuits during the inhibition of eye blinking in persons with Tourette Syndrome. Am J Psychiatr. 2010;167(3):341–349.
    1. Peterson BS, Skudlarski P, Anderson AW, Zhang H, Gatenby JC, Lacadie CM, Leckman JF, Gore JC. A functional magnetic resonance imaging study of tic suppression in Tourette syndrome. Arch Gen Psychiatr. 1998;55(4):326–333.
    1. Leckman JF, Zhang H, Vitale A, Lahnin F, Lynch K, Bondi C, Kim YS, Peterson BS. Course of tic severity in Tourette syndrome: The first two decades. Pediatrics. 1998;102(1):14–19.
    1. Spessot AL, Plessen KJ, Peterson BS. Neuroimaging of developmental psychopathologies: The importance of self-regulatory and neuroplastic processes in adolescence. Ann N Y Acad Sci. 2004;1021:86–104.
    1. Comings DE, Comings BG, Muhleman D, Dietz G, Shahbahrami B, Tast D, Knell E, Kocsis P, Baumgarten R, Kovacs BW. The dopamine D2 receptor locus as a modifying gene in neuropsychiatric disorders. JAMA. 1991;266(13):1793.
    1. Herzberg I, Valencia-Duarte AV, Kay VA, White DJ, Müller H, Rivas IC, Mesa SC, Cuartas M, García J, Bedoya G, Cornejo W, Ruiz-Linares A, Kremeyer B. Association of DRD2 variants and Gilles de la Tourette syndrome in a family-based sample from a South American population isolate. Psychiatr Genet. 2010;20(4):179–183.
    1. Lee CC, Chou I. Dopamine receptor D2 gene polymorphisms are associated in Taiwanese children with Tourette syndrome. Pediatr Neurol. 2005;33(4):272–276.
    1. Diaz-Anzaldua A, Joober R, Riviere J, Dion Y, Lesperance P, Richer F, Chouinard S, Rouleau G. Tourette syndrome and dopaminergic genes: a family-based association study in the French Canadian founder population. Mol Psychiatr. 2004;9(3):272–277.
    1. Díaz Anzaldúa A, Rivière JB, Dubé MP, Joober R, Saint Onge J, Dion Y, Lespérance P, Richer F, Chouinard S, Rouleau GA. Chromosome 11 q24 region in Tourette syndrome: Association and linkage disequilibrium study in the French Canadian population. Am J Med Genet A. 2005;138(3):225–228.
    1. Gelernter J, Pakstis AJ, Pauls DL, Kurlan R, Gancher ST, Civelli O, Grandy D, Kidd KK. Gilles de la Tourette syndrome is not linked to D2-dopamine receptor. Arch Gen Psychiatr. 1990;47(11):1073.
    1. Gelernter J, Pauls DL, Leckman J, Kidd KK, Kurlan R. D2 dopamine receptor alleles do not influence severity of Tourette's Syndrome: Results from four large kindreds. Arch Neurol. 1994;51(4):397.
    1. Nöthen MM, Hebebrand J, Knapp M, Hebebrand K, Camps A, von Gontard A, Wettke Schäfer R, Lisch S, Cichon S, Poustka F. Association analysis of the dopamine D2 receptor gene in Tourette's syndrome using the haplotype relative risk method. Am J Med Genet. 1994;54(3):249–252.
    1. Wolf SS, Jones DW, Knable MB, Gorey JG, Lee KS, Hyde TM, Coppola R, Weinberger DR. Tourette syndrome: Prediction of phenotypic variation in monozygotic twins by caudate nucleus D2 receptor binding. Science. 1996;273(5279):1225–1227.
    1. Yeh CB, Lee CS, Ma KH, Lee MS, Chang CJ, Huang WS. Phasic dysfunction of dopamine transmission in Tourette's syndrome evaluated with 99mTc TRODAT-1 imaging. Psychiatr Res. 2007;156(1):75–82.
    1. Albin RL, Koeppe RA, Bohnen NI, Nichols TE, Meyer P, Wernette K, Minoshima S, Kilbourn MR, Frey KA. Increased ventral striatal monoaminergic innervation in Tourette syndrome. Neurology. 2003;61(3):310–315.
    1. Liu Y, Aragona BJ, Young KA, Dietz DM, Kabbaj M, Mazei-Robison M, Nestler EJ, Wang Z. Nucleus accumbens dopamine mediates amphetamine-induced impairment of social bonding in a monogamous rodent species. Proc Natl Acad Sci. 2010;107(3):1217–1222.
    1. Muller-Vahl KR, Berding G, Brucke T, Kolbe H, Meyer GJ, Hundeshagen H, Dengler R, Knapp WH, Emrich HM. Dopamine transporter binding in Gilles de la Tourette syndrome. J Neurol. 2000;247(7):514–520.
    1. Serra-Mestres J, Ring HA, Costa DC, Gacinovic S, Walker Z, Lees AJ, Robertson MM, Trimble MR. Dopamine transporter binding in Gilles de la Tourette syndrome: A [123I]FP-CIT/SPECT study. Acta Psychiatr Scand. 2004;109(2):140–146.
    1. Singer HS, Szymanski S, Giuliano J, Yokoi F, Dogan AS, Brasic JR, Zhou Y, Grace AA, Wong DF. Elevated intrasynaptic dopamine release in Tourette's syndrome measured by PET. Am J Psychiatr. 2002;159(8):1329–1336.
    1. Cheon KA, Ryu YH, Namkoong K, Kim CH, Kim JJ, Lee JD. Dopamine transporter density of the basal ganglia assessed with [123I]IPT SPECT in drug-naive children with Tourette's disorder. Psychiatr Res. 2004;130(1):85–95.
    1. Hwang WJ, Yao WJ, Fu YK, Yang AS. [99mTc]TRODAT-1/[123I]IBZM SPECT studies of the dopaminergic system in Tourette syndrome. Psychiatr Res. 2008;162(2):159–166.
    1. Stamenkovic M, Schindler SD, Asenbaum S, Neumeister A, Willeit M, Willinger U, de Zwaan M, Riederer F, Aschauer HN, Kasper S. No change in striatal dopamine re-uptake site density in psychotropic drug naive and in currently treated Tourette's disorder patients: A [(123)I]-beta-CIT SPECt-study. Eur Neuropsychopharmacol. 2001;11(1):69–74.
    1. Yeh CB, Lee CH, Chou YH, Chang CJ, Ma KH, Huang WS. Evaluating dopamine transporter activity with 99mTc-TRODAT-1 SPECT in drug-naive Tourette's adults. Nucl Med Comm. 2006;27(10):779–784.
    1. Fasano A, Bentivoglio AR. Tetrabenazine. Expet Opin Pharmacother. 2009;10(17):2883–2896.
    1. Zheng G, Dwoskin LP, Crooks PA. Vesicular monoamine transporter 2: role as a novel target for drug development. AAPS J. 2006;8(4):E682.
    1. Scahill L, Erenberg G, Berlin CM, Budman C, Coffey BJ, Jankovic J, Kiessling L, King RA, Kurlan R, Lang A, Mink J, Murphy T, Zinner S, Walkup J. Contemporary assessment and pharmacotherapy of Tourette syndrome. NeuroRx. 2006;3(2):192–206.
    1. Rubia K. "Cool" inferior frontostriatal dysfunction in attention-deficit/hyperactivity disorder versus "hot" ventromedial orbitofrontal-limbic dysfunction in conduct disorder: a review. Biol Psychiatr. 2011;69(12):e69.
    1. Canino G, Polanczyk G, Bauermeister JJ, Rohde LA, Frick PJ. Does the prevalence of CD and ODD vary across cultures? Soc Psychiatr Psychiatr Epidemiol. 2010;45(7):695–704.
    1. Banaschewski T, Hollis C, Oosterlaan J, Roeyers H, Rubia K, Willcutt E, Taylor E. Towards an understanding of unique and shared pathways in the psychopathophysiology of ADHD. Dev Sci. 2005;8(2):132–140.
    1. Rubia K, Smith AB, Halari R, Matsukura F, Mohammad M, Taylor E, Brammer MJ. Disorder-specific dissociation of orbitofrontal dysfunction in boys with pure conduct disorder during reward and ventrolateral prefrontal dysfunction in boys with pure ADHD during sustained attention. Am J Psychiatr. 2009;166(1):83–94.
    1. Bjork JM, Chen G, Smith AR, Hommer DW. Incentive-elicited mesolimbic activation and externalizing symptomatology in adolescents. J Child Psychol Psychiatr. 2010;51(7):827–837.
    1. Crowley TJ, Dalwani MS, Mikulich-Gilbertson SK, Du YP, Lejuez CW, Raymond KM, Banich MT. Risky decisions and their consequences: Neural processing by boys with antisocial substance disorder. PLoS One. 2010;5(9):e12835.
    1. de Almeida RM, Ferrari PF, Parmigiani S, Miczek KA. Escalated aggressive behavior: Dopamine, serotonin and GABA. Eur J Pharmacol. 2005;526(1–3):51–64.
    1. Laakso A, Wallius E, Kajander J, Bergman J, Eskola O, Solin O, Ilonen T, Salokangas RK, Syvalahti E, Hietala J. Personality traits and striatal dopamine synthesis capacity in healthy subjects. Am J Psychiatr. 2003;160(5):904–910.
    1. Beaver KM, Wright JP, DeLisi M, Walsh A, Vaughn MG, Boisvert D, Vaske J. A gene x gene interaction between DRD2 and DRD4 is associated with conduct disorder and antisocial behavior in males. Behav Brain Functions. 2007;3:30.
    1. Burt SA, Mikolajewski AJ. Preliminary evidence that specific candidate genes are associated with adolescent-onset antisocial behavior. Aggress Behav. 2008;34(4):437–445.
    1. Lahey BB, Rathouz PJ, Lee SS, Chronis-Tuscano A, Pelham WE, Waldman ID, Cook EH. Interactions between early parenting and a polymorphism of the child's dopamine transporter gene in predicting future child conduct disorder symptoms. J Abnorm Psychol. 2011;120(1):33–45.
    1. Sonuga-Barke EJ, Oades RD, Psychogiou L, Chen W, Franke B, Buitelaar J, Banaschewski T, Ebstein RP, Gil M, Anney R, Miranda A, Roeyers H, Rothenberger A, Sergeant J, Steinhausen HC, Thompson M, Asherson P, Faraone SV. Dopamine and serotonin transporter genotypes moderate sensitivity to maternal expressed emotion: The case of conduct and emotional problems in attention deficit/hyperactivity disorder. J Child Psychol Psychiatr. 2009;50(9):1052–1063.
    1. Farmer CA, Arnold LE, Bukstein OG, Findling RL, Gadow KD, Li X, Butter EM, Aman MG. The Treatment of Severe Child Aggression (TOSCA) Study: Design Challenges. Child Adolesc Psychiatr Ment Health. 2011;5(1):36.
    1. Donovan SJ, Stewart JW, Nunes EV, Quitkin FM, Parides M, Daniel W, Susser E, Klein DF. Divalproex treatment for youth with explosive temper and mood lability: A double-blind, placebo-controlled crossover design. Am J Psychiatr. 2000;157(5):818–820.
    1. Steiner H, Petersen ML, Saxena K, Ford S, Matthews Z. Divalproex sodium for the treatment of conduct disorder: A randomized controlled clinical trial. J Clin Psychiatr. 2003;64(10):1183–1191.
    1. Cheng-Shannon J, McGough JJ, Pataki C, McCracken JT. Second-generation antipsychotic medications in children and adolescents. J Child Adolesc Psychopharmacol. 2004;14(3):372–394.
    1. Findling RL, Aman MG, Eerdekens M, Derivan A, Lyons B. Long-term, open-label study of risperidone in children with severe disruptive behaviors and below-average IQ. Am J Psychiatr. 2004;161(4):677–684.
    1. Findling RL, McNamara NK, Branicky LA, Schluchter MD, Lemon E, Blumer JL. A double-blind pilot study of risperidone in the treatment of conduct disorder. J Am Acad Child Adolesc Psychiatr. 2000;39(4):509–516.
    1. Turgay A, Binder C, Snyder R, Fisman S. Long-term safety and efficacy of risperidone for the treatment of disruptive behavior disorders in children with subaverage IQs. Pediatrics. 2002;110(3):e34.
    1. Aman MG, De Smedt G, Derivan A, Lyons B, Findling RL. Double-blind, placebo-controlled study of risperidone for the treatment of disruptive behaviors in children with subaverage intelligence. Am J Psychiatry. 2002;159(8):1337–1346.
    1. Snyder R, Turgay A, Aman M, Binder C, Fisman S, Carroll A. Effects of risperidone on conduct and disruptive behavior disorders in children with subaverage IQs. J Am Acad Child Adolesc Psychiatr. 2002;41(9):1026–1036.
    1. Holm VA, Cassidy SB, Butler MG, Hanchett JM, Greenswag LR, Whitman BY, Greenberg F. Prader-Willi syndrome: Consensus diagnostic criteria. Pediatrics. 1993;91(2):398–402.
    1. Whittington JE, Holland AJ, Webb T, Butler J, Clarke D, Boer H. Population prevalence and estimated birth incidence and mortality rate for people with Prader-Willi syndrome in one UK Health Region. J Med Genet. 2001;38(11):792–798.
    1. Glenn CC, Driscoll DJ, Yang TP, Nicholls RD. Genomic imprinting: Potential function and mechanisms revealed by the Prader-Willi and Angelman syndromes. Mol Hum Reprod. 1997;3(4):321–332.
    1. Nicholls RD, Knepper JL. Genome organization, function, and imprinting in Prader-Willi and Angelman syndromes. Annu Rev Genom Hum Genet. 2001;2:153–175.
    1. Fieldstone A, Zipf WB, Sarter MF, Berntson GG. Food intake in Prader-Willi syndrome and controls with obesity after administration of a benzodiazepine receptor agonist. Obes Res. 1998;6(1):29–33.
    1. Holland AJ, Treasure J, Coskeran P, Dallow J, Milton N, Hillhouse E. Measurement of excessive appetite and metabolic changes in Prader-Willi syndrome. Int J Obes Relat Metab Disord. 1993;17(9):527–532.
    1. von Deneen KM, Gold MS, Liu Y. Food addiction and cues in Prader-Willi syndrome. J Addiction Med. 2009;3(1):19–25.
    1. Hinton EC, Isles AR, Williams NM, Parkinson JA. Excessive appetitive arousal in Prader–Willi syndrome. Appetite. 2010;54(1):225–228.
    1. Swaab DF. Prader-Willi syndrome and the hypothalamus. Acta Paediatr Suppl. 1997;423:50–54.
    1. Miller JL, James GA, Goldstone AP, Couch JA, He G, Driscoll DJ, Liu Y. Enhanced activation of reward mediating prefrontal regions in response to food stimuli in Prader-Willi syndrome. J Neurol Neurosurg Psychiatr. 2007;78(6):615–619.
    1. Holsen LM, Zarcone JR, Brooks WM, Butler MG, Thompson TI, Ahluwalia JS, Nollen NL, Savage CR. Neural mechanisms underlying hyperphagia in Prader-Willi Syndrome. Obesity. 2006;14(6):1028–1037.
    1. Dimitropoulos A, Schultz R. Food-related neural circuitry in Prader-Willi Syndrome: Response to high-versus low-calorie foods. J Autism Dev Disord. 2008;38(9):1642–1653.
    1. Hinton EC, Holland AJ, Gellatly MS, Soni S, Owen AM. An investigation into food preferences and the neural basis of food-related incentive motivation in Prader-Willi syndrome. J Intellect Disabil Res. 2006;50:633–642.
    1. Shapira NA, Lessig MC, He AG, James GA, Driscoll DJ, Liu Y. Satiety dysfunction in Prader-Willi syndrome demonstrated by fMRI. J Neurol Neurosurg Psychiatr. 2005;76(2):260–262.
    1. Stromme P, Bjornstad PG, Ramstad K. Prevalence estimation of Williams syndrome. J Child Neurol. 2002;17(4):269–271.
    1. Bellugi U, Adolphs R, Cassady C, Chiles M. Towards the neural basis for hypersociability in a genetic syndrome. Neuroreport. 1999;10(8):1653–1657.
    1. Klein-Tasman BP, Mervis CB. Distinctive personality characteristics of 8-, 9-, and 10-year-olds with Williams syndrome. Dev Neuropsychol. 2003;23(1–2):269–290.
    1. Doyle TF, Bellugi U, Korenberg JR, Graham J. "Everybody in the world is my friend" hypersociability in young children with Williams syndrome. Am J Med Genet. 2004;124A(3):263–273.
    1. Einfeld SL, Tonge BJ, Florio T. Behavioral and emotional disturbance in individuals with Williams syndrome. Am J Ment Retard. 1997;102(1):45–53.
    1. Meyer-Lindenberg A, Mervis CB, Berman KF. Neural mechanisms in Williams syndrome: A unique window to genetic influences on cognition and behaviour. Nat Rev Neurosci. 2006;7(5):380–393.
    1. Haas BW, Hoeft F, Searcy YM, Mills D, Bellugi U, Reiss A. Individual differences in social behavior predict amygdala response to fearful facial expressions in Williams syndrome. Neuropsychologia. 2009;48(5):1283–1288.
    1. Mimura M, Hoeft F, Kato M, Kobayashi N, Sheau K, Piggot J, Mills D, Galaburda A, Korenberg JR, Bellugi U. A preliminary study of orbitofrontal activation and hypersociability in Williams Syndrome. J Neurodev Disord. 2010;2(2):93–98.
    1. Pober BR. Williams-Beuren syndrome. New Engl J Med. 2010;362(3):239–252.
    1. Philpot BD, Thompson CE, Franco L, Williams CA. Angelman syndrome: Advancing the research frontier of neurodevelopmental disorders. J Neurodev Disord. 2011;3(1):50–56.
    1. Harting I, Seitz A, Rating D, Sartor K, Zschocke J, Janssen B, Ebinger F, Wolf NI. Abnormal myelination in Angelman syndrome. Eur J Paediatr Neurol. 2009;13(3):271–276.
    1. Didden R, Korzilius H, Sturmey P, Lancioni GE, Curfs LM. Preference for water-related items in Angelman syndrome, Down syndrome and non-specific intellectual disability. J Intellect Dev Disabil. 2008;33(1):59–64.
    1. Pelc K, Cheron G, Dan B. Behavior and neuropsychiatric manifestations in Angelman syndrome. Neuropsychiatr Dis Treat. 2008;4(3):577–584.
    1. Ferdousy F, Bodeen W, Summers K, Doherty O, Wright O, Elsisi N, Hilliard G, O'Donnell JM, Reiter LT. Drosophila Ube3a regulates monoamine synthesis by increasing GTP cyclohydrolase I activity via a non-ubiquitin ligase mechanism. Neurobiol Dis. 2011;41(3):669–677.
    1. Mulherkar SA, Jana NR. Loss of dopaminergic neurons and resulting behavioural deficits in mouse model of Angelman syndrome. Neurobiol Dis. 2010;40(3):586–592.
    1. Chahrour M, Zoghbi HY. The story of Rett syndrome: From clinic to neurobiology. Neuron. 2007;56(3):422–437.
    1. Percy AK. Rett syndrome: exploring the autism link. Arch Neurol. 2011;68(8):985–989.
    1. Hutchinson AN, Deng JV, Aryal DK, Wetsel WC, West AE. Differential regulation of MeCP2 phosphorylation in the CNS by dopamine and serotonin. Neuropsychopharmacology. 2012;37:321–337.
    1. Panayotis N, Ghata A, Villard L, Roux JC. Biogenic amines and their metabolites are differentially affected in the Mecp2-deficient mouse brain. BMC Neurosci. 2011;12:47.
    1. Panayotis N, Pratte M, Borges-Correia A, Ghata A, Villard L, Roux JC. Morphological and functional alterations in the substantia nigra pars compacta of the Mecp2-null mouse. Neurobiol Dis. 2011;41(2):385–397.
    1. Gantz SC, Ford CP, Neve KA, Williams JT. Loss of Mecp2 in substantia nigra dopamine neurons compromises the nigrostriatal pathway. J Neurosci. 2011;31(35):12629–12637.
    1. Dunn HG, Stoessl AJ, Ho HH, MacLeod PM, Poskitt KJ, Doudet DJ, Schulzer M, Blackstock D, Dobko T, Koop B, de Amorim GV. Rett syndrome: Investigation of nine patients, including PET scan. Can J Neurol Sci. 2002;29(4):345–357.
    1. Chiron C, Bulteau C, Loc'h C, Raynaud C, Garreau B, Syrota A, Maziere B. Dopaminergic D2 receptor SPECT imaging in Rett syndrome: Increase of specific binding in striatum. J Nucl Med. 1993;34(10):1717–1721.
    1. Crawford DC, Acuna JM, Sherman SL. FMR1 and the fragile X syndrome: Human genome epidemiology review. Genet Med. 2001;3(5):359–371.
    1. Verkerk AJ, Pieretti M, Sutcliffe JS, Fu YH, Kuhl DP, Pizzuti A, Reiner O, Richards S, Victoria MF, Zhang FP. et al.Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell. 1991;65(5):905–914.
    1. Lightbody AA, Reiss AL. Gene, brain, and behavior relationships in fragile X syndrome: Evidence from neuroimaging studies. Dev Disabil Res Rev. 2009;15(4):343–352.
    1. Bennetto L, Pennington BF, Porter D, Taylor AK, Hagerman RJ. Profile of cognitive functioning in women with the fragile X mutation. Neuropsychology. 2001;15(2):290–299.
    1. Lightbody AA, Hall SS, Reiss AL. Chronological age, but not FMRP levels, predicts neuropsychological performance in girls with Fragile X syndrome. Am J Med Genet. 2006;141(5):468–472.
    1. Roberts JE, Schaaf JM, Skinner M, Wheeler A, Hooper S, Hatton DD, Bailey DB. Academic skills of boys with Fragile X syndrome: Profiles and predictors. Am J Ment Retard. 2005;110(2):107–120.
    1. Bakker CE, Verheij C, Willemsen R, van der Helm R, Oerlemans F, Vermey M, Bygrave A, Hoogeveen AT, Oostra BA. Fmr1 knockout mice: a model to study fragile X mental retardation. The Dutch-Belgian Fragile X Consortium. Cell. 1994;78(1):23–33.
    1. Fulks JL, O'Bryhim BE, Wenzel SK, Fowler SC, Vorontsova E, Pinkston JW, Ortiz AN, Johnson MA. Dopamine release and uptake impairments and behavioral alterations observed in mice that model Fragile X mental retardation syndrome. ACS Chem Neurosci. 2010;1(10):679–690.
    1. Weinshenker D, Warren ST. Neuroscience: fragile dopamine. Nature. 2008;455(7213):607–608.
    1. Wang H, Wu LJ, Kim SS, Lee FJ, Gong B, Toyoda H, Ren M, Shang YZ, Xu H, Liu F, Zhao MG, Zhuo M. FMRP acts as a key messenger for dopamine modulation in the forebrain. Neuron. 2008;59(4):634–647.
    1. Wang H, Kim SS, Zhuo M. Roles of Fragile X mental retardation protein in dopaminergic stimulation-induced synapse-associated protein synthesis and subsequent alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-4-propionate (AMPA) receptor internalization. J Biol Chem. 2010;285(28):21888–21901.
    1. Farzin F, Perry H, Hessl D, Loesch D, Cohen J, Bacalman S, Gane L, Tassone F, Hagerman P, Hagerman R. Autism spectrum disorders and attention-deficit/hyperactivity disorder in boys with the Fragile X premutation. J Dev Behaiv Pediatr. 2006;27(2 Suppl):S137–S144.
    1. Mazzocco MM, Pennington BF, Hagerman RJ. Social cognition skills among females with Fragile X. J Autism Dev Disord. 1994;24(4):473–485.
    1. Smith DV, Hayden BY, Truong TK, Song AW, Platt ML, Huettel SA. Distinct value signals in anterior and posterior ventromedial prefrontal cortex. J Neurosci. 2010;30(7):2490.
    1. Garrett AS, Menon V, MacKenzie K, Reiss AL. Here's looking at you, kid: Neural systems underlying face and gaze processing in Fragile X syndrome. Arch Gen Psychiatr. 2004;61(3):281–288.
    1. Watson C, Hoeft F, Garrett AS, Hall SS, Reiss AL. Aberrant brain activation during gaze processing in boys with Fragile X syndrome. Arch Gen Psychiatr. 2008;65(11):1315–1323.
    1. Holsen LM, Dalton KM, Johnstone T, Davidson RJ. Prefrontal social cognition network dysfunction underlying face encoding and social anxiety in fragile X syndrome. Neuroimage. 2008;43(3):592–604.
    1. Dalton KM, Holsen L, Abbeduto L, Davidson RJ. Brain function and gaze fixation during facial-emotion processing in fragile X and autism. Autism Res. 2008;1(4):231–239.
    1. Ceravolo R, Antonini A, Volterrani D, Rossi C, Goldwurm S, Di Maria E, Kiferle L, Bonuccelli U, Murri L. Dopamine transporter imaging study in parkinsonism occurring in fragile X premutation carriers. Neurology. 2005;65(12):1971–1973.
    1. Berry-Kravis E, Lewin F, Wuu J, Leehey M, Hagerman R, Hagerman P, Goetz CG. Tremor and ataxia in fragile X premutation carriers: Blinded videotape study. Ann Neurol. 2003;53(5):616–623.
    1. Roberts J, Symons F, Johnson AM, Hatton D, Boccia M. Blink rate in boys with fragile X syndrome: Preliminary evidence for altered dopamine function. J Intellect Disabil Res. 2005;49(9):647–656.
    1. Berry-Kravis E, Potanos K. Psychopharmacology in fragile X syndrome–present and future. Ment Retard Dev Disabil Res Rev. 2004;10(1):42–48.
    1. Hagerman RJ. In: Fragile X Syndrome: Diagnosis, Treatment, and Research. 3. Hagerman RJ, Hagerman PJ, editor. The Johns Hopkins University Press, Baltimore; 2002. Medical follow-up and pharmacotherapy; pp. 287–338.
    1. Valdovinos MG, Parsa RA, Alexander ML. Results of a nation-wide survey evaluating psychotropic medication use in Fragile X syndrome. J Dev Phys Disabil. 2009;21:23–37.
    1. Hall SS. Treatments for fragile X syndrome: a closer look at the data. Dev Disabil Res Rev. 2009;15(4):353–360.
    1. Hagerman RJ, Murphy MA, Wittenberger MD. A controlled trial of stimulant medication in children with the fragile X syndrome. Am J Med Genet. 1988;30(1–2):377–392.
    1. Erickson CA, Stigler KA, Posey DJ, McDougle CJ. Aripiprazole in Autism Spectrum Disorders and Fragile X syndrome. Neurotherapeutics. 2010;7(3):258–263.
    1. Erickson CA, Stigler KA, Wink LK, Mullett JE, Kohn A, Posey DJ, McDougle CJ. A prospective open-label study of aripiprazole in Fragile X syndrome. Psychopharmacology. 2011;216:85–90.
    1. World Health Organization. International statistical classification of diseases and related health problems. 10. 2007. Retrieved from .
    1. Robinson TE, Berridge KC. Addiction. Annu Rev Psychol. 2003;54:25–53.
    1. McGinty VB, Hayden BY, Heilbronner SR, Dumont EC, Graves SM, Mirrione MM, du Hoffmann J, Sartor GC, Espana RA, Millan EZ, Difeliceantonio AG, Marchant NJ, Napier TC, Root DH, Borgland SL, Treadway MT, Floresco SB, McGinty JF, Haber S. Emerging, reemerging, and forgotten brain areas of the reward circuit: Notes from the 2010 Motivational Neural Networks conference. Behav Brain Res. 2011;225(1):348–357.
    1. Pecina S, Smith KS, Berridge KC. Hedonic hot spots in the brain. Neuroscientist. 2006;12(6):500–511.
    1. Baxter MG, Murray EA. The amygdala and reward. Nat Rev Neurosci. 2002;3(7):563–573.
    1. Cardinal RN, Parkinson JA, Hall J, Everitt BJ. Emotion and motivation: The role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev. 2002;26(3):321–352.
    1. Volkow ND, Fowler JS, Wang GJ. The addicted human brain: Insights from imaging studies. J Clin Investig. 2003;111(10):1444–1451.
    1. Carlezon WA, Thomas MJ. Biological substrates of reward and aversion: A nucleus accumbens activity hypothesis. Neuropharmacology. 2009;56(Suppl 1):122–132.
    1. Matsumoto M, Hikosaka O. Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature. 2009;459(7248):837–841.
    1. Carver CS, White TL. Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS scales. J Pers Soc Psychol. 1994;67(2):319–333.
    1. Chapman LJ, Chapman JP, Raulin ML. Scales for physical and social anhedonia. J Abnorm Psychol. 1976;85(4):374–382.
    1. Gard DE, Gard MG, Kring AM, John OP. Anticipatory and consummatory components of the experience of pleasure: a scale development study. J Res Pers. 2006;40:1086–1102.
    1. Heerey EA, Robinson BM, McMahon RP, Gold JM. Delay discounting in schizophrenia. Cognit Neuropsychiatry. 2007;12(3):213–221.
    1. Kessler RC. The epidemiology of dual diagnosis. Biol Psychiatr. 2004;56(10):730–737.
    1. Lasser K, Boyd JW, Woolhandler S, Himmelstein DU, McCormick D, Bor DH. Smoking and mental illness: A population-based prevalence study. JAMA. 2000;284(20):2606–2610.
    1. Ziedonis D, Hitsman B, Beckham JC. Tobacco use cessation in psychiatric disorders. Nicotine Tobac Res Nat Inst Ment Health (NIMH) Rep. 2008;10:1691–1715.
    1. Regier DA, Farmer ME, Rae DS, Locke BZ, Keith SJ, Judd LL, Goodwin FK. Comorbidity of mental disorders with alcohol and other drug abuse. Results from the Epidemiologic Catchment Area (ECA) Study. JAMA. 1990;264(19):2511–2518.
    1. Towbin KE, Pradella A, Gorrindo T, Pine DS, Leibenluft E. Autism spectrum traits in children with mood and anxiety disorders. J Child Adoles Psychopharmacol. 2005;15(3):452–464.
    1. Cederlund M, Hagberg B, Gillberg C. Asperger syndrome in adolescent and young adult males. Interview, self- and parent assessment of social, emotional, and cognitive problems. Res Dev Disabil. 2010;31(2):287–298.
    1. Leyfer OT, Folstein SE, Bacalman S, Davis NO, Dinh E, Morgan J, Tager-Flusberg H, Lainhart JE. Comorbid psychiatric disorders in children with autism: Interview development and rates of disorders. J Autism Dev Disord. 2006;36(7):849–861.
    1. Glassman AH. Cigarette smoking: Implications for psychiatric illness. Am J Psychiatr. 1993;150(4):546–553.
    1. Hughes JR, Hatsukami DK, Mitchell JE, Dahlgren LA. Prevalence of smoking among psychiatric outpatients. Am J Psychiatr. 1986;143(8):993–997.
    1. Mueser KT, Drake RE, Wallach MA. Dual diagnosis: a review of etiological theories. Addict Behav. 1998;23(6):717–734.

Source: PubMed

3
Se inscrever