Striatal dopamine deficits predict reductions in striatal functional connectivity in major depression: a concurrent 11C-raclopride positron emission tomography and functional magnetic resonance imaging investigation

J Paul Hamilton, Matthew D Sacchet, Trine Hjørnevik, Frederick T Chin, Bin Shen, Robin Kämpe, Jun Hyung Park, Brian D Knutson, Leanne M Williams, Nicholas Borg, Greg Zaharchuk, M Catalina Camacho, Sean Mackey, Markus Heilig, Wayne C Drevets, Gary H Glover, Sanjiv S Gambhir, Ian H Gotlib, J Paul Hamilton, Matthew D Sacchet, Trine Hjørnevik, Frederick T Chin, Bin Shen, Robin Kämpe, Jun Hyung Park, Brian D Knutson, Leanne M Williams, Nicholas Borg, Greg Zaharchuk, M Catalina Camacho, Sean Mackey, Markus Heilig, Wayne C Drevets, Gary H Glover, Sanjiv S Gambhir, Ian H Gotlib

Abstract

Major depressive disorder (MDD) is characterized by the altered integration of reward histories and reduced responding of the striatum. We have posited that this reduced striatal activation in MDD is due to tonically decreased stimulation of striatal dopamine synapses which results in decremented propagation of information along the cortico-striatal-pallido-thalamic (CSPT) spiral. In the present investigation, we tested predictions of this formulation by conducting concurrent functional magnetic resonance imaging (fMRI) and 11C-raclopride positron emission tomography (PET) in depressed and control (CTL) participants. We scanned 16 depressed and 14 CTL participants with simultaneous fMRI and 11C-raclopride PET. We estimated raclopride binding potential (BPND), voxel-wise, and compared MDD and CTL samples with respect to BPND in the striatum. Using striatal regions that showed significant between-group BPND differences as seeds, we conducted whole-brain functional connectivity analysis using the fMRI data and identified brain regions in each group in which connectivity with striatal seed regions scaled linearly with BPND from these regions. We observed increased BPND in the ventral striatum, bilaterally, and in the right dorsal striatum in the depressed participants. Further, we found that as BPND increased in both the left ventral striatum and right dorsal striatum in MDD, connectivity with the cortical targets of these regions (default-mode network and salience network, respectively) decreased. Deficits in stimulation of striatal dopamine receptors in MDD could account in part for the failure of transfer of information up the CSPT circuit in the pathophysiology of this disorder.

Conflict of interest statement

Wayne Drevets is an employee of Janssen Research & Development, LLC of Johnson & Johnson, and holds equity in Johnson & Johnson. The other authors declare that they have no conflict of interest.

Figures

Fig. 1
Fig. 1
Schematic of the timing of data collection, data modelling, and participant behavior for our concurrent PET-MRI scanning paradigm
Fig. 2
Fig. 2
Statistical map, and corresponding cluster table, showing regions of increased 11C-raclopride binding potential in the depressed relative to the control group
Fig. 3. Left ventral striatal binding potential-by-functional…
Fig. 3. Left ventral striatal binding potential-by-functional connectivity correlation map.
Regions showing statistically significant negative binding potential-by-functional connectivity correlations in the depressed group are shown in blue. These regions are superimposed on a map of the default-mode network (in green) as defined by Yeo and colleagues. For convenience, the left ventral striatal seed region is shown at left.
Fig. 4. Right dorsal striatal binding potential-by-functional…
Fig. 4. Right dorsal striatal binding potential-by-functional connectivity correlation map.
Regions showing statistically significant negative binding potential-by-functional connectivity correlations in the depressed group are shown in blue. These regions are superimposed on a map of the task-positive network (salience and executive networks, in red) as defined by Yeo and colleagues. For convenience, the right dorsal striatal seed region is shown at left

References

    1. Langer O, et al. Precursor synthesis and radiolabelling of the dopamine D-2 receptor ligand C-11 raclopride from C-11 methyl triflate. Journal of Labelled Compounds & Radiopharmaceuticals. 1999;42:1183–1193. doi: 10.1002/(SICI)1099-1344(199912)42:12<1183::AID-JLCR274>;2-Z.
    1. Drysdale AT, et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat. Med. 2017;23:28–38. doi: 10.1038/nm.4246.
    1. Brunoni AR, et al. Repetitive transcranial magnetic stimulation for the acute treatment of major depressive episodes: a systematic review with network meta-analysis. JAMA Psychiatry. 2017;74:143–152. doi: 10.1001/jamapsychiatry.2016.3644.
    1. Chau DT, Fogelman P, Nordanskog P, Drevets WC, Hamilton JP. Distinct neural-functional effects of treatments with selective serotonin reuptake inhibitors, electroconvulsive therapy, and transcranial magnetic stimulation and their relations to regional brain function in major depression: a meta-analysis. Biol. Psychiatry: Cogn. Neurosci. Neuroimaging. 2017;2:318–326.
    1. Yeo BT, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of neurophysiology. 2011;106:1125–1165. doi: 10.1152/jn.00338.2011.
    1. Pizzagalli DA, Iosifescu D, Hallett LA, Ratner KG, Fava M. Reduced hedonic capacity in major depressive disorder: evidence from a probabilistic reward task. J. Psychiatr. Res. 2008;43:76–87. doi: 10.1016/j.jpsychires.2008.03.001.
    1. Pecina M, et al. Striatal dopamine D2/3 receptor-mediated neurotransmission in major depression: implications for anhedonia, anxiety and treatment response. Eur. Neuropsychopharmacol. 2017;27:977–986. doi: 10.1016/j.euroneuro.2017.08.427.
    1. Meyer JH, et al. Elevated putamen D(2) receptor binding potential in major depression with motor retardation: an (11)C raclopride positron emission tomography study. Am. J. Psychiatry. 2006;163:1594–1602. doi: 10.1176/ajp.2006.163.9.1594.
    1. Dhaenen HA, Bossuyt A. Dopamine D(2) receptors in depression measured with single-photon emission computed-tomography. Biol. Psychiatry. 1994;35:128–132. doi: 10.1016/0006-3223(94)91202-5.
    1. Shah PJ, Ogilvie AD, Goodwin GM, Ebmeier KP. Clinical and psychometric correlates of dopamine D-2 binding in depression. Psychol. Med. 1997;27:1247–1256. doi: 10.1017/S0033291797005382.
    1. Montgomery AJ, Stokes P, Kitamura Y, Grasby PM. Extrastriatal D-2 and striatal D-2 receptors in depressive illness: pilot PET studies using C-11 FLB 457 and C-11 raclopride. J. Affect. Disord. 2007;101:113–122. doi: 10.1016/j.jad.2006.11.010.
    1. de Kwaasteniet B. P., et al. Striatal dopamine D-2/3 receptor availability in treatment resistant depression. PLoS ONE9, e113612 (2014).
    1. Hirvonen J, et al. Striatal dopamine D-2 receptors in medication-naive patients with major depressive disorder as assessed with C-11 raclopride PET. Psychopharmacology. 2008;197:581–590. doi: 10.1007/s00213-008-1088-9.
    1. Klimke A, et al. Dopamine D-2 receptor binding before and after treatment of major depression measured by I-123 IBZM SPECT. Psychiatry Res. 1999;90:91–101. doi: 10.1016/S0925-4927(99)00009-8.
    1. Parsey RV, et al. Dopamine D-2 receptor availability and amphetamine-induced dopamine release in unipolar depression. Biol. Psychiatry. 2001;50:313–322. doi: 10.1016/S0006-3223(01)01089-7.
    1. Yang YK, et al. Greater availability of dopamine transporters in patients with major depression—a dual-isotope SPECT study. Psychiatry Res. 2008;162:230–235. doi: 10.1016/j.pscychresns.2007.08.008.
    1. Ebert D, Feistel H, Loew T, Pirner A. Dopamine and depression—striatal dopamine D-2 receptor SPECT before and after antidepressant therapy. Psychopharmacology. 1996;126:91–94. doi: 10.1007/BF02246416.
    1. Delong MR, Crutcher MD, Georgopoulos AP. Relations between movement and single cell discharge in the substantia nigra of the behaving monkey. J. Neurosci. 1983;3:1599–1606. doi: 10.1523/JNEUROSCI.03-08-01599.1983.
    1. Alexander GE, Delong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 1986;9:357–381. doi: 10.1146/annurev.ne.09.030186.002041.
    1. Haber SN, Calzavara R. The cortico-basal ganglia integrative network: the role of the thalamus. Brain Res. Bull. 2009;78:69–74. doi: 10.1016/j.brainresbull.2008.09.013.
    1. Haber SN, Knutson B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology. 2010;35:4–26. doi: 10.1038/npp.2009.129.
    1. Fox MD, et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl Acad. Sci. USA. 2005;102:9673–9678. doi: 10.1073/pnas.0504136102.
    1. Seeley WW, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 2007;27:2349–2356. doi: 10.1523/JNEUROSCI.5587-06.2007.
    1. Yeo BT, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 2011;106:1125–1165. doi: 10.1152/jn.00338.2011.
    1. Pappata S, et al. In vivo detection of striatal dopamine release during reward: a PET study with C-11 raclopride and a single dynamic scan approach. Neuroimage. 2002;16:1015–1027. doi: 10.1006/nimg.2002.1121.
    1. Knutson B, Adams CM, Fong GW, Hommer D. Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J. Neurosci. 2001;21:RC159. doi: 10.1523/JNEUROSCI.21-16-j0002.2001.
    1. Bartra O, McGuire JT, Kable JW. The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. Neuroimage. 2013;76:412–427. doi: 10.1016/j.neuroimage.2013.02.063.
    1. First MB, Williams JBW, Karg RS, Spitzer RL. Structured Clinican Interview for DSM-5, Research Version. Arlington, VA: American Psychiatric Association; 2015.
    1. Steer RA, Ball R, Ranieri WF, Beck AT. Further evidence for the construct validity of the Beck Depression Inventory-II with psychiatric outpatients. Psychol. Rep. 1997;80:443–446. doi: 10.2466/pr0.1997.80.2.443.
    1. Williams JBW. A structured interview guide for the Hamilton depression rating-scale. Arch. Gen. Psychiatry. 1988;45:742–747. doi: 10.1001/archpsyc.1988.01800320058007.
    1. Fydrich T, Dowdall D, Chambless DL. Reliability and validity of the beck anxiety inventory. J. Anxiety Disord. 1992;6:55–61. doi: 10.1016/0887-6185(92)90026-4.
    1. Snaith RP, et al. A scale for the assessment of hedonic tone—the Snaith–Hamilton pleasure scale. Br. J. Psychiatry. 1995;167:99–103. doi: 10.1192/bjp.167.1.99.
    1. Ikoma Y, et al. Error analysis for PET measurement of dopamine D(2) receptor occupancy by antipsychotics with (11)C raclopride and (11)C FLB 457. Neuroimage. 2008;42:1285–1294. doi: 10.1016/j.neuroimage.2008.05.056.
    1. Ichise M, et al. Linearized reference tissue parametric Imaging methods: application to C-11 DASB positron emission tomography studies of the serotonin transporter in human brain. J. Cereb. Blood Flow Metab. 2003;23:1096–1112. doi: 10.1097/.
    1. Pohjalainen T, Rinne JO, Nagren K, Syvalahti E, Hietala J. Sex differences in the striatal dopamine D-2 receptor binding characteristics in vivo. Am. J. Psychiatry. 1998;155:768–773.
    1. Volkow ND, et al. Parallel loss of presynaptic and postsynaptic dopamine markers in normal aging. Ann. Neurol. 1998;44:143–147. doi: 10.1002/ana.410440125.
    1. Volkow ND, et al. Measuring age-related changes in dopamine D-2 receptors with C-11-raclopride and F-18-N-methylspiroperidol. Psychiatry Res. 1996;67:11–16. doi: 10.1016/0925-4927(96)02809-0.
    1. Ishibashi K, et al. Regional analysis of age-related decline in dopamine transporters and dopamine D-2-like receptors in human striatum. Synapse. 2009;63:282–290. doi: 10.1002/syn.20603.
    1. Alpert NM, Badgaiyan RD, Livni E, Fischman AJ. A novel method for noninvasive detection of neuromodulatory changes in specific neurotransmitter systems. Neuroimage. 2003;19:1049–1060. doi: 10.1016/S1053-8119(03)00186-1.
    1. Talairach J, Tournoux P. Co-planar Stereotaxic Atlas of the Human Brain: 3-D Proportional System: An Approach to Cerebral Imaging. New York, NY: (Thieme Medical Publishers; 1988.
    1. Brody AL, et al. Smoking-induced ventral striatum dopamine release. Am. J. Psychiatry. 2004;161:1211–1218. doi: 10.1176/appi.ajp.161.7.1211.
    1. Cox RW, Chen G, Glen D, Reynolds RC, Taylor P. fMRI clustering and false-positive rates. Proc. Natl Acad. Sci. 2017;114:2.
    1. Mayberg HS, et al. Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am. J. Psychiatry. 1999;156:675–682.
    1. Di Martino A, et al. Functional connectivity of human striatum: a resting state fMRI study. Cereb. Cortex. 2008;18:2735–2747. doi: 10.1093/cercor/bhn041.
    1. Glasser MF, et al. A multi-modal parcellation of human cerebral cortex. Nature. 2016;536:171. doi: 10.1038/nature18933.
    1. Power JD, et al. Functional network organization of the human brain. Neuron. 2011;72:665–678. doi: 10.1016/j.neuron.2011.09.006.
    1. Breier A, et al. Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc. Natl Acad. Sci. 1997;94:2569–2574. doi: 10.1073/pnas.94.6.2569.
    1. Shrestha SS, et al. Fluoxetine administered to juvenile monkeys: effects on the serotonin transporter and behavior. Am. J. Psychiatry. 2014;171:323–331. doi: 10.1176/appi.ajp.2013.13020183.
    1. Kapur S, Remington G. Serotonin–dopamine interaction and its relevance to schizophrenia. Am. J. Psychiatry. 1996;153:466–476. doi: 10.1176/ajp.153.4.466.
    1. Kapur S, Zipursky R, Jones C, Remington G, Houle S. Relationship between dopamine D-2 occupancy, clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. Am. J. Psychiatry. 2000;157:514–520. doi: 10.1176/appi.ajp.157.4.514.

Source: PubMed

3
Se inscrever