Simultaneous identification of 36 mutations in KRAS codons 61 and 146, BRAF, NRAS, and PIK3CA in a single reaction by multiplex assay kit

Hideaki Bando, Takayuki Yoshino, Eiji Shinozaki, Tomohiro Nishina, Kentaro Yamazaki, Kensei Yamaguchi, Satoshi Yuki, Shinya Kajiura, Satoshi Fujii, Takeharu Yamanaka, Katsuya Tsuchihara, Atsushi Ohtsu, Hideaki Bando, Takayuki Yoshino, Eiji Shinozaki, Tomohiro Nishina, Kentaro Yamazaki, Kensei Yamaguchi, Satoshi Yuki, Shinya Kajiura, Satoshi Fujii, Takeharu Yamanaka, Katsuya Tsuchihara, Atsushi Ohtsu

Abstract

Background: Retrospective analyses in the West suggest that mutations in KRAS codons 61 and 146, BRAF, NRAS, and PIK3CA are negative predictive factors for cetuximab treatment in colorectal cancer patients. We developed a novel multiplex kit detecting 36 mutations in KRAS codons 61 and 146, BRAF, NRAS, and PIK3CA using Luminex (xMAP) assay in a single reaction.

Methods: Tumor samples and clinical data from Asian colorectal cancer patients treated with cetuximab were collected. We investigated KRAS, BRAF, NRAS, and PIK3CA mutations using both the multiplex kit and direct sequencing methods, and evaluated the concordance between the 2 methods. Objective response, progression-free survival (PFS), and overall survival (OS) were also evaluated according to mutational status.

Results: In total, 82 of 83 samples (78 surgically resected specimens and 5 biopsy specimens) were analyzed using both methods. All multiplex assays were performed using 50 ng of template DNA. The concordance rate between the methods was 100%. Overall, 49 (59.8%) patients had all wild-type tumors, 21 (25.6%) had tumors harboring KRAS codon 12 or 13 mutations, and 12 (14.6%) had tumors harboring KRAS codon 61, KRAS codon 146, BRAF, NRAS, or PIK3CA mutations. The response rates in these patient groups were 38.8%, 4.8%, and 0%, respectively. Median PFS in these groups was 6.1 months (95% confidence interval (CI): 3.1-9.2), 2.7 months (1.2-4.2), and 1.6 months (1.5-1.7); median OS was 13.8 months (9.2-18.4), 8.2 months (5.7-10.7), and 6.3 months (1.3-11.3), respectively. Statistically significant differences in both PFS and OS were found between patients with all wild-type tumors and those with KRAS codon 61, KRAS codon 146, BRAF, NRAS, or PIK3CA mutations (PFS: 95% CI, 0.11-0.44; P < 0.0001; OS: 95% CI, 0.15-0.61; P < 0.0001).

Conclusions: Our newly developed multiplex kit is practical and feasible for investigation of a range of sample types. Moreover, mutations in KRAS codon 61, KRAS codon 146, BRAF, NRAS, or PIK3CA detected in Asian patients were not predictive of clinical benefits from cetuximab treatment, similar to the result obtained in European studies.

Figures

Figure 1
Figure 1
Associations among KRAS, BRAF, NRAS, and PIK3CA mutations. KRAS codon 12 and 13, KRAS codon 61 and 146, BRAF, and NRAS mutations were mutually exclusive. Only PIK3CA Exon 9 and 20 mutations overlapped KRAS codon 12 and 13 and BRAF mutations.
Figure 2
Figure 2
Kaplan–Meier plots of progression-free survival (PFS) and overall survival (OS) according to KRAS, BRAF, NRAS, and PIK3CA gene status. Figure  2A. PFS: Median PFS values were 6.1 months [95% confidence interval (CI): 3.1–9.2], 2.7 months (1.2–4.2), and 1.6 months (1.5–1.7) among patients with all wild-type tumors (N = 49, blue line), KRAS codon 12 or 13 mutant tumors (N = 21, green line), and KRAS codon 61, KRAS codon 146, BRAF, NRAS, or PIK3CA mutant tumors (N = 12, gray-line), respectively. Differences in PFS values between patients with all wild-type tumors and those with KRAS codon 61, KRAS codon 146, BRAF, NRAS, or PIK3CA mutant tumors were statistically significant (hazard ratio, 0.22; 95% CI, 0.11–0.44; P < 0.0001). Figure  2B. OS: Median OS values were 13.8 months [95% confidence interval (CI): 9.2–18.4], 8.2 months (5.7–10.7), and 6.3 months (1.3–11.3) among patients with all wild-type tumors (N = 49, blue line), with KRAS codon 12 or 13 mutant tumors (N = 21, green line), and with KRAS codon 61, KRAS codon 146, BRAF, NRAS, or PIK3CA mutations (N = 12, gray-line), respectively. Differences in OS values between patients with all wild-type tumors and those with KRAS codon 61, KRAS codon 146, BRAF, NRAS, or PIK3CA mutant tumors were statistically significant (hazard ratio, 0.30; 95% CI, 0.15–0.61; P < 0.0001).

References

    1. Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ, Juan T, Sikorski R, Suggs S, Radinsky R. et al.Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26(10):1626–1634. doi: 10.1200/JCO.2007.14.7116.
    1. Karapetis CS, Khambata-Ford S, Jonker DJ, O'Callaghan CJ, Tu D, Tebbutt NC, Simes RJ, Chalchal H, Shapiro JD, Robitaille S. et al.K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med. 2008;359(17):1757–1765. doi: 10.1056/NEJMoa0804385.
    1. Van Cutsem E, Kohne CH, Hitre E, Zaluski J, Chang Chien CR, Makhson A, D'Haens G, Pinter T, Lim R, Bodoky G. et al.Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 2009;360(14):1408–1417. doi: 10.1056/NEJMoa0805019.
    1. Douillard JY, Siena S, Cassidy J, Tabernero J, Burkes R, Barugel M, Humblet Y, Bodoky G, Cunningham D, Jassem J. et al.Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J Clin Oncol. 2010;28(31):4697–4705. doi: 10.1200/JCO.2009.27.4860.
    1. Peeters M, Price TJ, Cervantes A, Sobrero AF, Ducreux M, Hotko Y, Andre T, Chan E, Lordick F, Punt CJ. et al.Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer. J Clin Oncol. 2010;28(31):4706–4713. doi: 10.1200/JCO.2009.27.6055.
    1. Vaughn CP, Zobell SD, Furtado LV, Baker CL, Samowitz WS. Frequency of KRAS, BRAF, and NRAS mutations in colorectal cancer. Genes Chromosomes Cancer. 2011;50(5):307–312. doi: 10.1002/gcc.20854.
    1. Sobrero AF, Maurel J, Fehrenbacher L, Scheithauer W, Abubakr YA, Lutz MP, Vega-Villegas ME, Eng C, Steinhauer EU, Prausova J. et al.EPIC: phase III trial of cetuximab plus irinotecan after fluoropyrimidine and oxaliplatin failure in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26(14):2311–2319. doi: 10.1200/JCO.2007.13.1193.
    1. De Roock W, Claes B, Bernasconi D, De Schutter J, Biesmans B, Fountzilas G, Kalogeras KT, Kotoula V, Papamichael D, Laurent-Puig P. et al.Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol. 2010;11(8):753–762. doi: 10.1016/S1470-2045(10)70130-3.
    1. Loupakis F, Ruzzo A, Cremolini C, Vincenzi B, Salvatore L, Santini D, Masi G, Stasi I, Canestrari E, Rulli E. et al.KRAS codon 61, 146 and BRAF mutations predict resistance to cetuximab plus irinotecan in KRAS codon 12 and 13 wild-type metastatic colorectal cancer. Br J Cancer. 2009;101(4):715–721. doi: 10.1038/sj.bjc.6605177.
    1. Di Nicolantonio F, Martini M, Molinari F, Sartore-Bianchi A, Arena S, Saletti P, De Dosso S, Mazzucchelli L, Frattini M, Siena S. et al.Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol. 2008;26:5705–5712. doi: 10.1200/JCO.2008.18.0786.
    1. Perrone F, Lampis A, Orsenigo M, Di Bartolomeo M, Gevorgyan A, Losa M, Frattini M, Riva C, Andreola S, Bajetta E. et al.PI3KCA/PTEN deregulation contributes to impaired responses to cetuximab in metastatic colorectal cancer patients. Ann Oncol. 2009;20(1):84–90.
    1. Prenen H, De Schutter J, Jacobs B, De Roock W, Biesmans B, Claes B, Lambrechts D, Van Cutsem E, Tejpar S. PIK3CA mutations are not a major determinant of resistance to the epidermal growth factor receptor inhibitor cetuximab in metastatic colorectal cancer. Clin Cancer Res. 2009;15(9):3184–3188. doi: 10.1158/1078-0432.CCR-08-2961.
    1. Sartore-Bianchi A, Martini M, Molinari F, Veronese S, Nichelatti M, Artale S, Di Nicolantonio F, Saletti P, De Dosso S, Mazzucchelli L. et al.PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies. Cancer Res. 2009;69(5):1851–1857. doi: 10.1158/0008-5472.CAN-08-2466.
    1. Itoh Y, Mizuki N, Shimada T, Azuma F, Itakura M, Kashiwase K, Kikkawa E, Kulski JK, Satake M, Inoko H. High-throughput DNA typing of HLA-A, -B, -C, and -DRB1 loci by a PCR-SSOP-Luminex method in the Japanese population. Immunogenetics. 2005;57(10):717–729. doi: 10.1007/s00251-005-0048-3.
    1. Ando A, Shigenari A, Ota M, Sada M, Kawata H, Azuma F, Kojima-Shibata C, Nakajoh M, Suzuki K, Uenishi H. et al.SLA-DRB1 and -DQB1 genotyping by the PCR-SSOP-Luminex method. Tissue antigens. 2011;78(1):49–55. doi: 10.1111/j.1399-0039.2011.01669.x.
    1. Fukushima Y, Yanaka S, Murakami K, Abe Y, Koshizaka T, Hara H, Samejima C, Kishi Y, Kaneda M, Yoshino T. [High-throughput screening method of KRAS mutations at codons 12 and 13 in formalin-fixed paraffin-embedded tissue specimens of metastatic colorectal cancer] Gan To Kagaku Ryoho. 2011;38(11):1825–1835.
    1. Bando H, Yoshino T, Yuki S, Shinozaki E, Nishina T, Kadowaki S, Yamazaki K, Kajiura S, Tsuchihara K, Fujii S. et al.Clinical outcome of Japanese metastatic colorectal cancer patients harbouring the KRAS p.G13D Mutation treated with cetuximab + Irinotecan. Jpn J Clin Oncol. 2012;42(12):1146–1151. doi: 10.1093/jjco/hys160.
    1. Bando H, Yoshino T, Tsuchihara K, Ogasawara N, Fuse N, Kojima T, Tahara M, Kojima M, Kaneko K, Doi T. et al.KRAS mutations detected by the amplification refractory mutation system-Scorpion assays strongly correlate with therapeutic effect of cetuximab. Br J Cancer. 2011;105(3):403–406. doi: 10.1038/bjc.2011.247.
    1. Lurkin I, Stoehr R, Hurst CD, van Tilborg AA, Knowles MA, Hartmann A, Zwarthoff EC. Two multiplex assays that simultaneously identify 22 possible mutation sites in the KRAS, BRAF, NRAS and PIK3CA genes. PLoS One. 2010;5(1):e8802. doi: 10.1371/journal.pone.0008802.
    1. Ogasawara N, Bando H, Kawamoto Y, Yoshino T, Tsuchihara K, Ohtsu A, Esumi H. Feasibility and robustness of amplification refractory mutation system (ARMS)-based KRAS testing using clinically available formalin-fixed, paraffin-embedded samples of colorectal cancers. Jpn J Clin Oncol. 2011;41(1):52–56. doi: 10.1093/jjco/hyq151.
    1. Prahallad A, Sun C, Huang S, Di Nicolantonio F, Salazar R, Zecchin D, Beijersbergen RL, Bardelli A, Bernards R. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature. 2012;483(7387):100–103.
    1. Liao X, Lochhead P, Nishihara R, Morikawa T, Kuchiba A, Yamauchi M, Imamura Y, Qian ZR, Baba Y, Shima K. et al.Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival. N Engl J Med. 2012;367(17):1596–1606. doi: 10.1056/NEJMoa1207756.

Source: PubMed

3
Se inscrever