Acute Changes in Inflammatory Biomarker Levels in Recreational Runners Participating in a Marathon or Half-Marathon

Markus Niemelä, Päivikki Kangastupa, Onni Niemelä, Risto Bloigu, Tatu Juvonen, Markus Niemelä, Päivikki Kangastupa, Onni Niemelä, Risto Bloigu, Tatu Juvonen

Abstract

Background: Strenuous physical activity activates the participant's immune responses; however, few studies exist, observing exercise-induced simultaneous changes in mediators of inflammation.

Methods: We examined individual responses in soluble urokinase-type plasminogen activator receptor (suPAR), a marker of immune activation, soluble endocytic receptor for haptoglobin-hemoglobin complexes (CD163), a marker of monocyte-macrophage activation, C-reactive protein (CRP), and pro- and anti-inflammatory cytokines from blood samples drawn at baseline, at 3- and 48-h post-races from recreational runners who successfully completed the marathon (199 ± 8 min, n = 4) or half-marathon (132 ± 4 min, n = 4) run. For comparisons, biomarkers reflecting muscle, heart, kidney, and liver functions were measured.

Results: Significant 3-h post-race increases occurred in levels of suPAR (p < 0.01), CD163 (p < 0.05), white blood cells (p < 0.001), pro-inflammatory cytokines, interleukin-6 (IL-6) (p < 0.001), IL-8 (p < 0.05), and anti-inflammatory cytokine IL-10 (p < 0.05), whereas tumor necrosis factor-α (TNF-α) and transforming growth factor-β (TGF-β) remained relatively stable. Full-marathon running lead to more pronounced increases in suPAR, CD163, IL-8, and IL-10 than half-marathon running. In addition, 3-h post-race increases of all these parameters correlated significantly with changes in serum TNF-α and cortisol. The 48-h levels of serum suPAR and both pro- and anti-inflammatory cytokines had decreased to baseline levels, whereas CRP, a marker of acute phase response, increased in those with the most prominent IL-6 and IL-10 elevations in their preceding samples. The highest suPAR, CRP, IL-6, TNF-α, IL-10, and cortisol levels were noted in the individual with the most severe post-race fatigue.

Conclusions: Prolonged running increases mediators of inflammation in an exercise-dose-dependent manner which should be considered in the assessment of health status of physically active individuals after recent acute bouts of strenuous exercise.

Figures

Fig 1
Fig 1
Individual changes in mediators of inflammation in recreational athletes after running either a marathon or half-marathon race. *p < 0.05, **p < 0.01, and ***p < 0.001 for comparisons between pre- and post-race values of all runners at given time points. §p < 0.05 and §§p < 0.01 for comparisons of changes in values between full- and half-marathon runners. The highest levels of suPAR, CRP, IL-6, TNF-α, and IL-10 were noted from a marathon runner who also suffered from the most severe symptoms of post-race fatigue (case indicated by arrows). CD163 macrophage receptor for haptoglobin-hemoglobin complexes, CRP C-reactive protein, IL interleukin, suPAR soluble urokinase-type plasminogen activator receptor, TGF-β transforming growth factor-β, TNF-α tumor necrosis factor-α, WBC white blood cells (leukocytes)

References

    1. Lavie CJ, O'Keefe JH, Sallis RE. Exercise and the heart—the harm of too little and too much. Curr Sports Med Rep. 2015;14:104–9. doi: 10.1249/JSR.0000000000000134.
    1. O'Donovan G, Blazevich AJ, Boreham C, Cooper AR, Crank H, Ekelund U, et al. The ABC of physical activity for health: a consensus statement from the British Association of Sport and Exercise Sciences. J Sports Sci. 2010;28:573–91. doi: 10.1080/02640411003671212.
    1. Ruiz JR, Morán M, Arenas J, Lucia A. Strenuous endurance exercise improves life expectancy: it's in our genes. Br J Sports Med. 2011;45:159–61. doi: 10.1136/bjsm.2010.075085.
    1. Schnohr P, O'Keefe JH, Marott JL, Lange P, Jensen GB. Dose of jogging and long-term mortality: the Copenhagen city heart study. J Am Coll Cardiol. 2015;65:411–9. doi: 10.1016/j.jacc.2014.11.023.
    1. Fortescue EB, Shin AY, Greenes DS, Mannix RC, Agarwal S, Feldman BJ, et al. Cardiac troponin increases among runners in the Boston Marathon. Ann Emerg Med. 2007;49:137–43.e1. doi: 10.1016/j.annemergmed.2006.09.024.
    1. McCullough PA, Chinnaiyan KM, Gallagher MJ, Colar JM, Geddes T, Gold JM, et al. Changes in renal markers and acute kidney injury after marathon running. Nephrology (Carlton) 2011;16:194–9. doi: 10.1111/j.1440-1797.2010.01354.x.
    1. Neilan TG, Januzzi JL, Lee-Lewandrowski E, Ton-Nu TT, Yoerger DM, Jassal DS, et al. Myocardial injury and ventricular dysfunction related to training levels among nonelite participants in the Boston Marathon. Circulation. 2006;114:2325–33. doi: 10.1161/CIRCULATIONAHA.106.647461.
    1. Bernecker C, Scherr J, Schinner S, Braun S, Scherbaum WA, Halle M. Evidence for an exercise induced increase of TNF-alpha and IL-6 in marathon runners. Scand J Med Sci Sports. 2013;23:207–14. doi: 10.1111/j.1600-0838.2011.01372.x.
    1. Muñoz-Cánoves P, Scheele C, Pedersen BK, Serrano AL. Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword? FEBS J. 2013;280:4131–48. doi: 10.1111/febs.12338.
    1. Ostrowski K, Schjerling P, Pedersen BK. Physical activity and plasma interleukin-6 in humans—effect of intensity of exercise. Eur J Appl Physiol. 2000;83:512–5. doi: 10.1007/s004210000312.
    1. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 2012;8:457–65. doi: 10.1038/nrendo.2012.49.
    1. Tanaka T, Kishimoto T. The biology and medical implications of interleukin-6. Cancer Immunol Res. 2014;2:288–94. doi: 10.1158/2326-6066.CIR-14-0022.
    1. McGinnis GR, Ballmann C, Peters B, Nanayakkara G, Roberts M, Amin R, et al. Interleukin-6 mediates exercise preconditioning against myocardial ischemia reperfusion injury. Am J Physiol Heart Circ Physiol. 2015;308:H1423–33. doi: 10.1152/ajpheart.00850.2014.
    1. Andersen O, Eugen-Olsen J, Kofoed K, Iversen J, Haugaard SB. Soluble urokinase plasminogen activator receptor is a marker of dysmetabolism in HIV-infected patients receiving highly active antiretroviral therapy. J Med Virol. 2008;80:209–16. doi: 10.1002/jmv.21114.
    1. Koch A, Voigt S, Kruschinski C, Sanson E, Dückers H, Horn A, et al. Circulating soluble urokinase plasminogen activator receptor is stably elevated during the first week of treatment in the intensive care unit and predicts mortality in critically ill patients. Crit Care. 2011;15:R63. doi: 10.1186/cc10037.
    1. Thunø M, Macho B, Eugen-Olsen J. suPAR: the molecular crystal ball. Dis Markers. 2009;27:157–72. doi: 10.1155/2009/504294.
    1. Møller HJ. Soluble CD163. Scand J Clin Lab Invest. 2012;72:1–13. doi: 10.3109/00365513.2011.626868.
    1. Buehler PW, Abraham B, Vallelian F, Linnemayr C, Pereira CP, Cipollo JF, et al. Haptoglobin preserves the CD163 hemoglobin scavenger pathway by shielding hemoglobin from peroxidative modification. Blood. 2009;113:2578–86. doi: 10.1182/blood-2008-08-174466.
    1. Casagranda I, Vendramin C, Callegari T, Vidali M, Calabresi A, Ferrandu G, et al. Usefulness of suPAR in the risk stratification of patients with sepsis admitted to the emergency department. Intern Emerg Med. 2015;10:725–30. doi: 10.1007/s11739-015-1268-7.
    1. Eugen-Olsen J, Andersen O, Linneberg A, Ladelund S, Hansen TW, Langkilde A, et al. Circulating soluble urokinase plasminogen activator receptor predicts cancer, cardiovascular disease, diabetes and mortality in the general population. J Intern Med. 2010;268:296–308. doi: 10.1111/j.1365-2796.2010.02252.x.
    1. Eugen-Olsen J. suPAR—a future risk marker in bacteremia. J Intern Med. 2011;270:29–31. doi: 10.1111/j.1365-2796.2011.02372.x.
    1. de Couto G, Liu W, Tseliou E, Sun B, Makkar N, Kanazawa H, et al. Macrophages mediate cardioprotective cellular postconditioning in acute myocardial infarction. J Clin Invest. 2015;125:3147–62. doi: 10.1172/JCI81321.
    1. Ernandez T, Mayadas TN. Immunoregulatory role of TNFalpha in inflammatory kidney diseases. Kidney Int. 2009;76:262–76. doi: 10.1038/ki.2009.142.
    1. Latvala J, Hietala J, Koivisto H, Järvi K, Anttila P, Niemelä O. Immune responses to ethanol metabolites and cytokine profiles differentiate alcoholics with or without liver disease. Am J Gastroenterol. 2005;100:1303–10. doi: 10.1111/j.1572-0241.2005.41509.x.
    1. Vidali M, Hietala J, Occhino G, Ivaldi A, Sutti S, Niemelä O, et al. Immune responses against oxidative stress-derived antigens are associated with increased circulating tumor necrosis factor-alpha in heavy drinkers. Free Radic Biol Med. 2008;45:306–11. doi: 10.1016/j.freeradbiomed.2008.04.012.
    1. Nieman DC. Special feature for the Olympics: effects of exercise on the immune system: exercise effects on systemic immunity. Immunol Cell Biol. 2000;78:496–501. doi: 10.1111/j.1440-1711.2000.t01-5-.x.
    1. Pedersen BK, Toft AD. Effects of exercise on lymphocytes and cytokines. Br J Sports Med. 2000;34:246–251. doi: 10.1136/bjsm.34.4.246.
    1. di Penta A, Moreno B, Reix S, Fernandez-Diez B, Villanueva M, Errea O, et al. Oxidative stress and proinflammatory cytokines contribute to demyelination and axonal damage in a cerebellar culture model of neuroinflammation. PLoS One. 2013;8:e54722. doi: 10.1371/journal.pone.0054722.
    1. Kurra V, Eräranta A, Jolma P, Vehmas TI, Riutta A, Moilanen E, et al. Hyperuricemia, oxidative stress, and carotid artery tone in experimental renal insufficiency. Am J Hypertens. 2009;22:964–70. doi: 10.1038/ajh.2009.109.
    1. Waring WS, Convery A, Mishra V, Shenkin A, Webb DJ, Maxwell SR. Uric acid reduces exercise-induced oxidative stress in healthy adults. Clin Sci (Lond) 2003;105:425–30. doi: 10.1042/CS20030149.
    1. Devries MC, Hamadeh MJ, Glover AW, Raha S, Samjoo IA, Tarnopolsky MA. Endurance training without weight loss lowers systemic, but not muscle, oxidative stress with no effect on inflammation in lean and obese women. Free Radic Biol Med. 2008;45:503–11. doi: 10.1016/j.freeradbiomed.2008.04.039.
    1. Holt SG, Moore KP. Pathogenesis and treatment of renal dysfunction in rhabdomyolysis. Intensive Care Med. 2001;27:803–11. doi: 10.1007/s001340100878.
    1. Huerta-Alardín AL, Varon J, Marik PE. Bench-to-bedside review: rhabdomyolysis—an overview for clinicians. Crit Care. 2005;9:158–69. doi: 10.1186/cc2978.
    1. Lappalainen H, Tiula E, Uotila L, Mänttäri M. Elimination kinetics of myoglobin and creatine kinase in rhabdomyolysis: implications for follow-up. Crit Care Med. 2002;30:2212–5. doi: 10.1097/00003246-200210000-00006.
    1. Lippi G, Schena F, Dipalo M, Montagnana M, Salvagno GL, Aloe R, et al. Troponin I measured with a high sensitivity immunoassay is significantly increased after a half marathon run. Scand J Clin Lab Invest. 2012;72:467–70. doi: 10.3109/00365513.2012.697575.
    1. Mingels A, Jacobs L, Michielsen E, Swaanenburg J, Wodzig W, van Dieijen-Visser M. Reference population and marathon runner sera assessed by highly sensitive cardiac troponin T and commercial cardiac troponin T and I assays. Clin Chem. 2009;55:101–8. doi: 10.1373/clinchem.2008.106427.
    1. Trivax JE, Franklin BA, Goldstein JA, Chinnaiyan KM, Gallagher MJ, de Jong AT, et al. Acute cardiac effects of marathon running. J Appl Physiol (1985) 2010;108:1148–53. doi: 10.1152/japplphysiol.01151.2009.
    1. Dawson EA, Whyte GP, Black MA, Jones H, Hopkins N, Oxborough D, et al. Changes in vascular and cardiac function after prolonged strenuous exercise in humans. J Appl Physiol (1985) 2008;105:1562–8. doi: 10.1152/japplphysiol.90837.2008.
    1. Ruskoaho H, Kinnunen P, Taskinen T, Vuolteenaho O, Leppäluoto J, Takala TE. Regulation of ventricular atrial natriuretic peptide release in hypertrophied rat myocardium. Effects of exercise. Circulation. 1989;80:390–400. doi: 10.1161/01.CIR.80.2.390.

Source: PubMed

3
Se inscrever