Unsupervised exercise and mobility loss in peripheral artery disease: a randomized controlled trial

Mary M McDermott, Jack M Guralnik, Michael H Criqui, Luigi Ferrucci, Kiang Liu, Bonnie Spring, Lu Tian, Kathryn Domanchuk, Melina Kibbe, Lihui Zhao, Donald Lloyd Jones, Yihua Liao, Ying Gao, W Jack Rejeski, Mary M McDermott, Jack M Guralnik, Michael H Criqui, Luigi Ferrucci, Kiang Liu, Bonnie Spring, Lu Tian, Kathryn Domanchuk, Melina Kibbe, Lihui Zhao, Donald Lloyd Jones, Yihua Liao, Ying Gao, W Jack Rejeski

Abstract

Background: Few medical therapies improve lower extremity functioning in people with lower extremity peripheral artery disease (PAD). Among people with PAD, we studied whether a group-mediated cognitive behavioral intervention promoting home-based unsupervised exercise prevented mobility loss and improved functional performance compared to control.

Methods and results: One hundred ninety-four PAD participants were randomized. During months 1 to 6, the intervention group met weekly with other PAD participants and a facilitator. Group support and self-regulatory skills were used to help participants adhere to walking exercise. Ninety-percent of exercise was conducted at or near home. The control group attended weekly lectures. During months 6 to 12, each group received telephone contact only. Primary outcomes have been reported. Here we compare changes in exploratory outcomes of mobility loss (the inability to climb a flight of stairs or walk one-quarter mile without assistance), walking velocity, and the Short Physical Performance Battery. Compared to controls, fewer participants randomized to the intervention experienced mobility loss at 6-month follow-up: 6.3% versus 26.5%, P=0.002, odds ratio=0.19 (95% CI=0.06 to 0.58) and at 12-month follow-up: 5.2% versus 18.5%, P=0.029, odds ratio=0.24 (95% CI=0.06 to 0.97). The intervention improved fast-paced 4-m walking velocity at 6-month follow-up (P=0.005) and the Short Physical Performance Battery at 12-month follow-up (P=0.027), compared to controls.

Conclusions: In exploratory analyses, a group-mediated cognitive behavioral intervention promoting unsupervised walking exercise prevented mobility loss and improved functioning at 6- and 12-month follow-up in PAD patients.

Clinical trial registration: URL: https://ichgcp.net/clinical-trials-registry/NCT00693940" title="See in ClinicalTrials.gov">NCT00693940.

Keywords: exercise; mobility; peripheral artery disease; randomized controlled trial.

© 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

Figures

Figure 1
Figure 1
Overview of study design for the GOALS randomized trial. Adapted with permission from McDermott et al. ABI indicates ankle brachial index; GOALS, Group Oriented Arterial Leg Study; PAD, peripheral artery disease.
Figure 2
Figure 2
Rates of new mobility loss in the exercise and control groups among people with peripheral artery disease. Analyses are limited to people without mobility loss at baseline.
Figure 3
Figure 3
Rates of mobility gain in the exercise and control groups among people with peripheral artery disease. Analyses are limited to people with mobility loss at baseline.
Figure 4
Figure 4
Changes in functional performance in the exercise vs control groups among people with peripheral artery disease.

References

    1. McDermott MM, Guralnik JM, Ferrucci L, Liu K, Liao Y, Criqui MH. Baseline functional performance predicts the rate of mobility loss in persons with peripheral arterial disease. J Am Coll Cardiol. 2007;50:974–982.
    1. McDermott MM, Greenland P, Liu K, Guralnik JM, Celic L, Criqui MH, Chan C, Martin GJ, Schneider J, Pearce WH, Taylor LM, Clark E. The ankle brachial index is associated with leg function and physical activity: the Walking and Leg Circulation Study. Ann Intern Med. 2002;136:873–883.
    1. McDermott MM, Greenland P, Liu K, Guralnik JM, Criqui MH, Dolan NC, Chan C, Celic L, Pearce WH, Schneider JR, Sharma L, Clark E, Gibson D, Martin GJ. Leg symptoms in peripheral arterial disease: associated clinical characteristics and functional impairment. JAMA. 2001;286:1599–1606.
    1. McDermott MM, Liu K, Greenland P, Guralnik JM, Criqui MH, Chan C, Pearce WH, Schneider JR, Ferrucci L, Celic L, Taylor LM, Vonesh E, Martin GJ, Clark E. Functional decline in peripheral arterial disease: associations with the ankle brachial index and leg symptoms. JAMA. 2004;292:453–461.
    1. McDermott MM, Ades P, Guralnik JM, Dyer A, Ferrucci L, Liu K, Nelson M, Lloyd-Jones D, Van Horn L, Garside D, Kibbe M, Domanchuk K, Stein JH, Liao Y, Tao H, Green D, Pearce WH, Schneider JR, McPherson D, Laing ST, McCarthy WJ, Shroff A, Criqui MH. Treadmill exercise and resistance training in patients with peripheral arterial disease with and without intermittent claudication: a randomized controlled trial. JAMA. 2009;301:165–174.
    1. Fakhry F, van de Luijtgaarden KM, Bax L, den Hoed PT, Hunink MG, Rouwet EV, Spronk S. Supervised walking therapy in patients with intermittent claudication. J Vasc Surg. 2012;56:1132–1142.
    1. Regensteiner JG. Exercise rehabilitation for the patient with intermittent claudication: a highly effective yet underutilized treatment. Curr Drug Targets Cardiovasc Haematol Disord. 2004;4:233–239.
    1. Regensteiner JG, Meyer TJ, Krupski WC, Cranford LS, Hiatt WR. Hospital vs home-based exercise rehabilitation for patients with peripheral arterial occlusive disease. Angiology. 1997;48:291–300.
    1. Savage P, Ricci MA, Lynn M, Lynn M, Gardner A, Knight S, Brochu M, Ades P. Effects of home versus supervised exercise for patients with intermittent claudication. J Cardiopulm Rehabil. 2001;21:152–157.
    1. Menard JR, Smith HE, Riebe D, Braun CM, Blissmer B, Patterson RB. Long-term results of peripheral arterial disease rehabilitation. J Vasc Surg. 2004;39:1186–1192.
    1. Bendermacher BL, Willigendael EM, Nicolai SP, Kruidenier LM, Welten RJ, Hendriks E, Prins MH, Teijink JA, de Bie RA. Supervised exercise therapy for intermittent claudication in a community-based setting is as effective as clinic based. J Vasc Surg. 2007;45:1192–1196.
    1. McDermott MM, Liu K, Guralnik JM, Criqui MH, Spring B, Tian L, Domanchuk K, Ferrucci L, Lloyd-Jones D, Kibbe M, Tao H, Zhao L, Liao Y, Rejeski WJ. Home-based walking exercise intervention in peripheral artery disease: a randomized clinical trial. JAMA. 2013;310:57–65.
    1. Gardner AW, Parker DE, Montgomery PS, Scott KJ, Blevins SM. Efficacy of quantified home-based exercise and supervised exercise in patients with intermittent claudication: a randomized controlled trial. Circulation. 2011;123:491–498.
    1. Gardner AW, Parker DE, Montgomery PS, Blevins SM. Step-monitored home exercise improves ambulation, vascular function, and inflammation in symptomatic patients with peripheral artery disease: a randomized controlled trial. J Am Heart Assoc. 2014;3:e001107. doi: .
    1. McDermott MM, Guralnik JM, Criqui MH, Ferrucci L, Zhao L, Liu K, Domanchuk K, Spring B, Tian L, Kibbe M, Liao Y, Lloyd Jones D, Rejeski WJ. Home-based walking exercise in peripheral artery disease: 12-month follow-up of the GOALS randomized trial. J Am Heart Assoc. 2014;3:e000711. doi: .
    1. Guralnik JM, LaCroix AZ, Abbott RD, Berkman LF, Satterfield S, Evans DA, Wallace RB. Maintaining mobility in late life. I. Demographic characteristics and chronic conditions. Am J Epidemiol. 1993;137:847–857.
    1. Lee IM, Buchner DM. The importance of walking to public health. Med Sci Sports Exerc. 2008;40:5508–5518.
    1. Prohaska T, Belansky E, Belza B, Buchner D, Marshall V, McTigue K, Satariano W, Wilcox S. Physical activity, public health, and aging: critical issues and research priorities. J Gerontol B Psychol Sci Soc Sci. 2006;61:5267–5273.
    1. Simonsick EM, Guralnik JM, Volpato S, Balfour J, Fried LP. Just get out the door! Importance of walking outside the home for maintaining mobility: findings from the women's health and aging study. J Am Geriatr Soc. 2005;53:198–203.
    1. Hardy SE, Kang Y, Studenski SA, Degenholtz HB. Ability to walk 1/4 mile predicts subsequent disability, mortality, and health care costs. J Gen Intern Med. 2011;26:130–135.
    1. McDermott MM, Tian L, Liu K, Guralnik JM, Ferrucci L, Tan J, Pearce WH, Schneider JR, Criqui MH. Prognostic value of functional performance for mortality in patients with peripheral artery disease. J Am Coll Cardiol. 2008;51:1482–1489.
    1. Guralnik JM, Ferrucci L, Simonsick E, Salive ME, Wallace RB. Lower extremity function in persons over 70 years as a predictor of subsequent disability. N Engl J Med. 1995;332:556–561.
    1. Legrand D, Vaes B, Matheï C, Adriaensen W, Van Pottelbergh G, Degryse JM. Muscle strength and physical performance as predictors of mortality, hospitalization, and disability in the oldest old. J Am Geriatr Soc. 2014;62:1030–1038.
    1. Volpato S, Cavalieri M, Sioulis F, Guerra G, Maraldi C, Zuliani G, Fellin R, Guralnik JM. Predictive value of the Short Physical Performance Battery following hospitalization in older patients. J Gerontol A Biol Sci Med Sci. 2011;66:89–98.
    1. Guralnik JM, Ferrucci L, Pieper CF, Leveille SG, Markides KS, Ostir GV, Studenski S, Berkman LF, Wallace RB. Lower extremity function and subsequent disability: consistency across studies, predictive models, and value of gait speed alone compared with the Short Physical Performance Battery. J Gerontol A Biol Sci Med Sci. 2000;55:M221–M231.
    1. McDermott MM, Domanchuk K, Liu K, Guralnik JM, Tian L, Criqui MH, Ferrucci L, Kibbe M, Jones DL, Pearce WH, Zhao L, Spring B, Rejeski WJ. The Group Oriented Arterial Leg Study (GOALS) to improve walking performance in peripheral arterial disease. Contemp Clin Trials. 2012;33:1311–1320.
    1. Amirhamzeh MM, Chant JH, Rees JL, Hands LJ, Powell RJ, Campbell WB. A comparative study of treadmill tests and heel raising exercise for peripheral arterial disease. Eur J Vasc Endovasc Surg. 1997;13:301–305.
    1. McPhail IR, Spittell PC, Weston SA, Bailey KR. Intermittent claudication: an objective office-based assessment. J Am Coll Cardiol. 2001;37:1381–1385.
    1. Shadman R, Criqui MH, Bundens WP, Fronek A, Denenberg JO, Gamst AC, McDermott MM. Subclavian artery stenosis: prevalence, risk factors, and association with cardiovascular diseases. J Am Coll Cardiol. 2004;44:618–623.
    1. McDermott MM, Criqui MH, Liu K, Guralnik JM, Greenland P, Martin GJ, Pearce W. Lower ankle/brachial index, as calculated by averaging the dorsalis pedis and posterior tibial arterial pressures, and association with leg functioning in peripheral arterial disease. J Vasc Surg. 2000;32:1164–1171.
    1. Criqui MH, Denenberg JO, Bird CE, Fronek A, Klauber MR, Langer RD. The correlation between symptoms and non-invasive test results in patients referred for peripheral arterial disease testing. Vasc Med. 1996;1:65–71.
    1. Kane RA, Kane RL. Assessing the Elderly: A Practical Guide to Measurement. Lexington, MA: Lexington Books; 1981.
    1. Smith LA, Branch LG, Sher PA, Wetle T, Evans DA, Hebert L, Taylor JO. Short-term variability of measures of physical function in older people. J Am Geriatr Soc. 1990;38:993–998.
    1. Bandura A. Health promotion from the perspective of social cognitive theory. Psychol Health. 1998;13:623–649.
    1. Cartwright DP, Zander AF, editors. Group Dynamics: Research and Theory. 3rd ed. New York, NY: Harper and Row; 1968.
    1. Baumeister RF, Heatherton TF, Tice DM. Losing Control: How and Why People Fail at Self-Regulation. San Diego, CA: Academic Press; 1994.
    1. Satariano WA, Guralnik JM, Jackson RJ, Marottoli RA, Phelan EA, Prohaska TR. Mobility and aging: new directions for public health action. Am J Public Health. 2012;102:1508–1515.
    1. Perera S, Mody SH, Woodman RC, Studenski SA. Meaningful change and responsiveness in common physical performance measures in older adults. J Am Geriatr Soc. 2006;54:743–749.
    1. Kruidenier LM, Nicolai SP, Hendriks EJ, Bollen EC, Prins MH, Teijink JA. Supervised exercise therapy for intermittent claudication in daily practice. J Vasc Surg. 2009;49:363–370.

Source: PubMed

3
Se inscrever