A Narrative Role of Vitamin D and Its Receptor: With Current Evidence on the Gastric Tissues

Shaima Sirajudeen, Iltaf Shah, Asma Al Menhali, Shaima Sirajudeen, Iltaf Shah, Asma Al Menhali

Abstract

Vitamin D is a major steroid hormone that is gaining attention as a therapeutic molecule. Due to the general awareness of its importance for the overall well-being, vitamin D deficiency (VDD) is now recognized as a major health issue. The main reason for VDD is minimal exposure to sunlight. The vitamin D receptor (VDR) is a member of the steroid hormone receptors that induces a cascade of cell signaling to maintain healthy Ca2+ levels that serve to regulate several biological functions. However, the roles of vitamin D and its metabolism in maintaining gastric homeostasis have not yet been completely elucidated. Currently, there is a need to increase the vitamin D status in individuals worldwide as it has been shown to improve musculoskeletal health and reduce the risk of chronic illnesses, including some cancers, autoimmune and infectious diseases, type 2 diabetes mellitus, neurocognitive disorders, and general mortality. The role of vitamin D in gastric homeostasis is crucial and unexplored. This review attempts to elucidate the central role of vitamin D in preserving and maintaining the overall health and homeostasis of the stomach tissue.

Keywords: 1,25-MARRS; 1α,25(OH)2D; cytochrome P450; stomach; vitamin D deficiency; vitamin D epimers.

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
The structure of vitamin D2, vitamin D3, and their precursors. The structural difference between vitamin D2 and D3 is present in their side chains. The side chain of vitamin D3 has a broken ring, while D2 contains a double bond between carbons, 22 and 23, and a methyl group on carbon 24 on the broken ring.
Figure 2
Figure 2
Photobiosynthesis and activation of Vitamin D. 7-dehydrocholesterol in the skin is converted to pre-vitamin D3, upon exposure to sunlight, which contains UVB radiation. Pre-vitamin D3 is converted to vitamin D3 in a heat-dependent process. Vitamin D2 and D3 from the diet are incorporated into chylomicrons and introduced into the circulation. Vitamin D formed in the skin or ingested through diet is stored and released from fat cells. In the serum, vitamin D is circulated while being bound to the vitamin D binding protein, DBP. DBP transports it to the liver where it is converted to 25(OH)D (circulating form) by vitamin D-25-hydroxylase. This form of vitamin D is biologically inactive and is converted in the kidneys to the biologically active form, 1α,25(OH)2D by 25-hydroxyvitamin D-1α- hydroxylase (1α-OHase). The 1α,25(OH)2D binds to the membrane vitamin D receptor (mVDR) or the nuclear vitamin D receptor (nVDR) and elicits specific biological responses.
Figure 3
Figure 3
The roles of endocytic proteins in the delivery of 1α,25(OH)2D in the renal cells. The majority of the circulating 25-hydroxyvitamin D is bound to DBP, which is endocytosed via megalin and cubulin-mediated endocytosis. DBP is degraded, and 25(OH)D is either converted to 1α,25(OH)2D in the mitochondria for CYP27B1-mediated bioactivation or is secreted into circulation where it binds to DBP by CYP24A1-mediated inactivation. Cubilin and megalin then return back to the cell surface and the process gets repeated.
Figure 4
Figure 4
A map of the nVDR gene on chromosome 12q12. Blue boxes: Exon 1 (a to f), maroon boxes: Exons 2 to 9, yellow box: 3′ UTR.
Figure 5
Figure 5
The mechanism of action of membrane VDR and nuclear VDR. On binding of the appropriate ligand to mVDR, cellular signal transduction systems that are linked to the membrane receptor get activated, which in turn, trigger the second messengers, resulting in a rapid response. The 1α,25(OH)2D3 binds to the membrane-associated VDR and activates signaling pathways such as PKA and PKC, following which, polyisoprenyl phosphate (PIPP) levels are elevated, thereby triggering the formation of inositol triphosphate (IP3). These signaling pathways help the entry of extracellular calcium into the cells or prompt the release of calcium from intracellular stores in the endoplasmic recticulum (ER). However, binding of 1α,25(OH)2D to the canonical nVDR causes a genomic response by initiating the transcription of targeted genes. Nemere et al. (2004), reported that 1,25-MARRS have a similar affinity for the ligand as that of the nVDR, but, the membrane-associated protein is 6–10 times more abundant in the cells than the nuclear receptor [107]. 1,25-MARRS is usually found associated with caveolin proteins. The intracellular Ca2+ levels are enhanced on binding of 1α,25(OH)2D to 1,25-MARRS. A study in keratinocytes showed that binding of 1α,25(OH)2D3 to the membrane receptor resulted in elevated metabolism of phosphatidylinositol (PI) to phosphatidylinositol triphosphate (PIP3), resulting in increased levels of IP3 in the cells [108,109]. The rise in IP3 were in accordance with a rise in calcium levels, eliciting a rapid response within 2–5 min [50]. Calcium is released from ER storage pools or through the transmembrane trafficking of calcium through the membrane calcium channels [110].
Figure 6
Figure 6
The regulation of mineral homeostasis by parathyroid hormone (PTH) and 1α,25(OH)2D3. The physiological functions of PTH and 1α,25(OH)2D3 are activated when serum calcium levels drop. The hormones act in conjunction with each other and exert coordinated effects on the kidneys, bones, and intestine to increase Ca2+ levels to normal. There is bone resorption, increased calcitriol formation by the kidneys and decreased calcium excretion from urine, and increased Ca2+ absorption by the intestine. Upon achievement of homeostasis, the process is shut down by a negative feedback loop, which is initiated by calcitonin secreted by the thyroid gland. Thus, the combined effect of PTH and 1α,25(OH)2D3 is necessary to maintain mineral homeostasis.

References

    1. Sahota O. Understanding vitamin D deficiency. Age Ageing. 2014;43:589–591. doi: 10.1093/ageing/afu104.
    1. McKenna M.J., Murray B.F., O’Keane M., Kilbane M.T. Rising trend in vitamin D status from 1993 to 2013: Dual concerns for the future. Endocr. Connect. 2015;4:163–171. doi: 10.1530/EC-15-0037.
    1. Kuchuk N.O., Pluijm S.M.F., Van Schoor N.M., Looman C.W.N., Smit J.H., Lips P. Relationships of Serum 25-Hydroxyvitamin D to Bone Mineral Density and Serum Parathyroid Hormone and Markers of Bone Turnover in Older Persons. J. Clin. Endocrinol. Metab. 2009;94:1244–1250. doi: 10.1210/jc.2008-1832.
    1. Holick M.F. Vitamin D Deficiency. N. Engl. J. Med. 2007;357:266–281. doi: 10.1056/NEJMra070553.
    1. Chan J., Jaceldo-Siegl K., Fraser G.E. Serum 25-hydroxyvitamin D status of vegetarians, partial vegetarians, and nonvegetarians: The Adventist Health Study-21234. Am. J. Clin. Nutr. 2009;89:1686S–1692S. doi: 10.3945/ajcn.2009.26736X.
    1. Looker A.C., Bowman B.A., Hollis B.W., Gillespie C., Allen C., Doughertly C., Gunter E.W., Cogswell M.E., Nesby-O’Dell S., Scanlon K.S. Hypovitaminosis D prevalence and determinants among African American and white women of reproductive age: Third National Health and Nutrition Examination Survey, 1988–1994. Am. J. Clin. Nutr. 2002;76:187–192.
    1. Vitamin D Deficiency: The Ultimate Guide. [(accessed on 21 March 2019)]; Available online:
    1. Van Schoor N., Lips P. Global Overview of Vitamin D Status. Endocrinol. Metab. Clin. N. Am. 2017;46:845–870. doi: 10.1016/j.ecl.2017.07.002.
    1. 90% of UAE Population Vitamin D Deficient, Says DHA Official. [(accessed on 22 March 2019)]; Available online: .
    1. Buyukuslu N., Esin K., Hizli H., Sunal N., Yiğit P., Garipağaoğlu M. Clothing preference affects vitamin D status of young women. Nutr. Res. 2014;34:688–693. doi: 10.1016/j.nutres.2014.07.012.
    1. Vitamin D Deficiency Could Cause Deadly Diseases, Warn UAE Doctors—Khaleej Times. [(accessed on 22 March 2019)]; Available online: .
    1. Dunn P.M. Francis Glisson (1597–1677) and the “Discovery” of Rickets. Arch. Dis. Child. Fetal Neonatal Ed. 1998;78:F154–F155. doi: 10.1136/fn.78.2.F154.
    1. O’Riordan J.L.H., Bijvoet O.L.M. Rickets before the discovery of vitamin D. BoneKEy Rep. 2014;3:3. doi: 10.1038/bonekey.2013.212.
    1. The History of Vitamin D|Ddrops® Blog. [(accessed on 22 March 2019)]; Available online:
    1. McCollum E.V., Simmonds N., Becker J.E., Shipley P.G. Studies on experimental rickets. Nutr. Rev. 1975;33:48–50. doi: 10.1111/j.1753-4887.1975.tb07097.x.
    1. Cantorna M.T., Hayes C.E., DeLuca H.F. 1,25-Dihydroxycholecalciferol Inhibits the Progression of Arthritis in Murine Models of Human Arthritis. J. Nutr. 1998;128:68–72. doi: 10.1093/jn/128.1.68.
    1. Chun R.F., Peercy B.E., Orwoll E.S., Nielson C.M., Adams J.S., Hewison M. Vitamin D and DBP: The free hormone hypothesis revisited. J. Steroid Biochem. Mol. Biol. 2014;144:132–137. doi: 10.1016/j.jsbmb.2013.09.012.
    1. Christakos S., Hewison M., Gardner D.G., Wagner C.L., Sergeev I.N., Rutten E., Pittas A.G., Boland R., Ferrucci L., Bikle D.D. Vitamin D: Beyond bone: Vitamin D: Beyond bone. Ann. N. Y. Acad. Sci. 2013;1287:45–58. doi: 10.1111/nyas.12129.
    1. Hewison M. Vitamin D and the immune system: New perspectives on an old theme. Endocrinol. Metab. Clin. N. Am. 2010;39:365–379. doi: 10.1016/j.ecl.2010.02.010.
    1. Welsh J. Cellular and molecular effects of vitamin D on carcinogenesis. Arch. Biochem. Biophys. 2012;523:107–114. doi: 10.1016/j.abb.2011.10.019.
    1. Mondul A.M., Weinstein S.J., Layne T.M., Albanes D. Vitamin D and Cancer Risk and Mortality: State of the Science, Gaps, and Challenges. Epidemiol. Rev. 2017;39:28–48. doi: 10.1093/epirev/mxx005.
    1. Guillot X., Semerano L., Saidenberg-Kermanac’h N., Falgarone G., Boissier M.-C. Vitamin D and inflammation. Joint Bone Spine. 2010;77:552–557. doi: 10.1016/j.jbspin.2010.09.018.
    1. Wolf M., Shah A., Gutierrez O., Ankers E., Monroy M., Tamez H., Steele D., Chang Y., Camargo C., Tonelli M., et al. Vitamin D levels and early mortality among incident hemodialysis patients. Kidney Int. 2007;72:1004–1013. doi: 10.1038/sj.ki.5002451.
    1. Vimaleswaran K.S., Cavadino A., Berry D.J., Jorde R., Dieffenbach A.K., Lu C., Alves A.C., Heerspink H.J.L., Tikkanen E., Eriksson J., et al. Association of vitamin D status with arterial blood pressure and hypertension risk: A mendelian randomisation study. Lancet Diabetes Endocrinol. 2014;2:719–729. doi: 10.1016/S2213-8587(14)70113-5.
    1. Vanlint S. Vitamin D and Obesity. Nutrients. 2013;5:949–956. doi: 10.3390/nu5030949.
    1. Pilz S., Grübler M., Gaksch M., Schwetz V., Trummer C., Hartaigh B.Ó., Verheyen N., Tomaschitz A., März W. Vitamin D and Mortality. Anticancer Res. 2016;36:1379–1387.
    1. Penckofer S., Kouba J., Wallis D.E., Emanuele M.A. Vitamin D and Diabetes Let the Sunshine in. Diabetes Educ. 2008;34:939–954. doi: 10.1177/0145721708326764.
    1. Jeong H.Y., Park K.M., Lee M.J., Yang D.H., Kim S.H., Lee S.-Y. Vitamin D and Hypertension. Electrolyte Blood Press. 2017;15:1–11. doi: 10.5049/EBP.2017.15.1.1.
    1. Low Vitamin D Levels in Adults|. [(accessed on 31 March 2019)]; Available online: .
    1. Schmidt J.A. Measurement of 25-Hydroxyvitamin D Revisited. Clin. Chem. 2006;52:2304–2305. doi: 10.1373/clinchem.2006.075226.
    1. Terry A.H., Sandrock T., Meikle A.W. Measurement of 25-Hydroxyvitamin D by the Nichols ADVANTAGE, DiaSorin LIAISON, DiaSorin RIA, and Liquid Chromatography-Tandem Mass Spectrometry. Clin. Chem. 2005;51:1565–1566. doi: 10.1373/clinchem.2005.054239.
    1. Shah I., James R., Barker J., Petroczi A., Naughton D.P. Misleading measures in Vitamin D analysis: A novel LC-MS/MS assay to account for epimers and isobars. Nutr. J. 2011;10:46. doi: 10.1186/1475-2891-10-46.
    1. De Koning L., Al-Turkmani M.R., Berg A.H., Shkreta A., Law T., Kellogg M.D. Variation in clinical vitamin D status by DiaSorin Liaison and LC-MS/MS in the presence of elevated 25-OH vitamin D2. Clin. Chim. Acta. 2013;415:54–58. doi: 10.1016/j.cca.2012.09.002.
    1. Vitamin D Deficiency: How Common Is It and What Can I Do about It?|Ddrops® Blog. [(accessed on 22 March 2019)]; Available online:
    1. Nair R., Maseeh A. Vitamin D: The “sunshine” vitamin. J. Pharmacol. Pharmacother. 2012;3:118.
    1. Ross A.C., Taylor C.L., Yaktine A.L., Del Valle H.B., editors. Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium Dietary Reference Intakes for Calcium and Vitamin D. National Academies Press (US); Washington, DC, USA: 2011. The National Academies Collection: Reports Funded by National Institutes of Health.
    1. Jäpelt R.B., Jakobsen J. Vitamin D in plants: A review of occurrence, analysis, and biosynthesis. Front. Plant Sci. 2013;4:136. doi: 10.3389/fpls.2013.00136.
    1. Wierzbicka J., Piotrowska A., Żmijewski M.A. The renaissance of vitamin D. Acta Biochim. Pol. 2014;61:679–686. doi: 10.18388/abp.2014_1830.
    1. Prohormones—A Comprehensive Guide to Prohormones—Updated|Predator Nutrition. [(accessed on 26 March 2019)]; Available online: .
    1. Vitamin D|Hormone Health Network. [(accessed on 26 March 2019)]; Available online: .
    1. Maestro M.A., Molnár F., Mouriño A., Carlberg C. Vitamin D receptor 2016: Novel ligands and structural insights. Expert Opin. Ther. Patents. 2016;26:1291–1306. doi: 10.1080/13543776.2016.1216547.
    1. Seuter S., Ryynänen J., Carlberg C. The ASAP2 gene is a primary target of 1,25-dihydroxyvitamin D3 in human monocytes and macrophages. J. Steroid Biochem. Mol. Boil. 2014;144:12–18. doi: 10.1016/j.jsbmb.2013.08.014.
    1. Norman A.W., Roth J., Orci L. The Vitamin D Endocrine System: Steroid Metabolism, Hormone Receptors, and Biological Response (Calcium Binding Proteins) Endocr. Rev. 1982;3:331–366. doi: 10.1210/edrv-3-4-331.
    1. Menegaz D., Mizwicki M.T., Barrientos-Duran A., Chen N., Henry H.L., Norman A.W. Vitamin D Receptor (VDR) Regulation of Voltage-Gated Chloride Channels by Ligands Preferring a VDR-Alternative Pocket (VDR-AP) Mol. Endocrinol. 2011;25:1289–1300. doi: 10.1210/me.2010-0442.
    1. Jovičić S., Ignjatovic S., Majkić-Singh N. Biochemistry and metabolism of vitamin D/Biohemija i metabolizam vitamina D. J. Med. Biochem. 2012;31:309–315. doi: 10.2478/v10011-012-0028-8.
    1. Wikvall K. Cytochrome P450 enzymes in the bioactivation of vitamin D to its hormonal form (Review) Int. J. Mol. Med. 2001;7:201–209. doi: 10.3892/ijmm.7.2.201.
    1. Jones G., Prosser D.E., Kaufmann M. Cytochrome P450-mediated metabolism of vitamin D. J. Lipid Res. 2014;55:13–31. doi: 10.1194/jlr.R031534.
    1. Hollis B.W. Comparison of equilibrium and disequilibrium assay conditions for ergocalciferol, cholecalciferol and their major metabolites. J. Steroid Biochem. 1984;21:81–86. doi: 10.1016/0022-4731(84)90063-3.
    1. Hewison M. Antibacterial effects of vitamin D. Nat. Rev. Endocrinol. 2011;7:337–345. doi: 10.1038/nrendo.2010.226.
    1. Bikle D. Vitamin D: Production, Metabolism, and Mechanisms of Action. In: Feingold K.R., Anawalt B., Boyce A., Chrousos G., Dungan K., Grossman A., Hershman J.M., Kaltsas G., Koch C., Kopp P., et al., editors. Endotext. , Inc.; South Dartmouth, MA, USA: 2000.
    1. Kamao M., Tatematsu S., Hatakeyama S., Sakaki T., Sawada N., Inouye K., Ozono K., Kubodera N., Reddy G.S., Okano T. C-3 Epimerization of Vitamin D3 Metabolites and Further Metabolism of C-3 Epimers 25-hydroxyvitamin D3 is metabolized to 3-epi-25-hydroxyvitamin D3 and subsequently metabolized through C-1α or C-24 hydroxylation. J. Biol. Chem. 2004;279:15897–15907. doi: 10.1074/jbc.M311473200.
    1. Bailey D., Veljkovic K., Yazdanpanah M., Adeli K. Analytical measurement and clinical relevance of vitamin D3 C3-epimer. Clin. Biochem. 2013;46:190–196. doi: 10.1016/j.clinbiochem.2012.10.037.
    1. Cashman K.D., Hayes A., Galvin K., Merkel J., Jones G., Kaufmann M., Hoofnagle A.N., Carter G.D., Durazo-Arvizu R.A., Sempos C.T. Significance of Serum 24,25-Dihydroxyvitamin D in the Assessment of Vitamin D Status: A Double-edged Sword? Clin. Chem. 2015;61:636–645. doi: 10.1373/clinchem.2014.234955.
    1. Michio I., Kunihisa K., Toru Y., Toshiaki O. A simple and sensitive assay for 25-hydroxyvitamin D, 24,25-dihydroxyvitamin D and 1,25-dihydroxyvitamin D in human serum. Clin. Chim. Acta. 1982;124:63–73. doi: 10.1016/0009-8981(82)90320-5.
    1. Somjen D., Somjen G.J., Weisman Y., Binderman I., Dokoh S., Haussler M.R., Pike J.W., Danan J.L., Mathieu H., Lawson D.E.M., et al. Evidence for 24,25-dihydroxycholecalciferol receptors in long bones of newborn rats. Biochem. J. 1982;204:31–36. doi: 10.1042/bj2040031.
    1. Knutson J.C., Hollis B.W., LeVan L.W., Valliere C., Gould K.G., Bishop C.W. Metabolism of 1 alpha-hydroxyvitamin D2 to activated dihydroxyvitamin D 2 metabolites decreases endogenous 1 alpha, 25-dihydroxyvitamin D 3 in rats and monkeys. Endocrinology. 1995;136:4749–4753. doi: 10.1210/endo.136.11.7588202.
    1. Reddy G.S., Muralidharan K.R., Okamura W.H., Tserng K.Y., McLane J.A. Metabolism of 1alpha,25-dihydroxyvitamin D(3) and its C-3 epimer 1alpha,25-dihydroxy-3-epi-vitamin D(3) in neonatal human keratinocytes. Steroids. 2001;66:441–450. doi: 10.1016/S0039-128X(00)00228-2.
    1. Brown A.J., Ritter C., Slatopolsky E., Muralidharan K.R., Okamura W.H., Reddy G.S. 1Alpha,25-dihydroxy-3-epi-vitamin D3, a natural metabolite of 1alpha,25-dihydroxyvitamin D3, is a potent suppressor of parathyroid hormone secretion. J. Cell. Biochem. 1999;73:106–113. doi: 10.1002/(SICI)1097-4644(19990401)73:1<106::AID-JCB12>;2-Q.
    1. Kaseda R., Hosojima M., Sato H., Saito A. Role of Megalin and Cubilin in the Metabolism of Vitamin D3. Ther. Apher. Dial. 2011;15:14–17. doi: 10.1111/j.1744-9987.2011.00920.x.
    1. Romagnoli E., Pepe J., Piemonte S., Cipriani C., Minisola S. Value and limitations of assessing vitamin D nutritional status and advised levels of vitamin D supplementation. Eur. J. Endocrinol. 2013;169:R59–R69. doi: 10.1530/EJE-13-0435.
    1. Chun R.F., Peercy B.E., Adams J.S., Hewison M. Vitamin D Binding Protein and Monocyte Response to 25-Hydroxy Vitamin D and 1,25-Dihydroxy Vitamin D: Analysis by Mathematical Modeling. Peercy B.E., Adams J.S., editors. PLoS ONE. 2012;7:E30773. doi: 10.1371/journal.pone.0030773.
    1. Heaney R.P., Armas L.A.G., Shary J.R., Bell N.H., Binkley N., Hollis B.W. 25-Hydroxylation of vitamin D3: Relation to circulating vitamin D3 under various input conditions. Am. J. Clin. Nutr. 2008;87:1738–1742. doi: 10.1093/ajcn/87.6.1738.
    1. Nussey S., Whitehead S. Endocrinology: An Integrated Approach. BIOS Scientific Publishers; Oxford, UK: 2001.
    1. Rowling M.J., Taffany D.A., Welsh J., Kemmis C.M. Megalin-Mediated Endocytosis of Vitamin D Binding Protein Correlates with 25-Hydroxycholecalciferol Actions in Human Mammary Cells. J. Nutr. 2006;136:2754–2759. doi: 10.1093/jn/136.11.2754.
    1. Luo W., Karpf A.R., Deeb K.K., Muindi J.R., Morrison C.D., Johnson C.S., Trump D.L. Epigenetic Regulation of Vitamin D 24-Hydroxylase/CYP24A1 in Human Prostate Cancer. Cancer Res. 2010;70:5953–5962. doi: 10.1158/0008-5472.CAN-10-0617.
    1. Mangelsdorf D.J., Thummel C., Beato M., Herrlich P., Schütz G., Umesono K., Blumberg B., Kastner P., Mark M., Chambon P., et al. The nuclear receptor superfamily: The second decade. Cell. 1995;83:835–839. doi: 10.1016/0092-8674(95)90199-X.
    1. Rastinejad F., Huang P., Chandra V., Khorasanizadeh S. Understanding nuclear receptor form and function using structural biology. J. Mol. Endocrinol. 2013;51:T1–T21. doi: 10.1530/JME-13-0173.
    1. Luong K.V.Q., Nguyen L.T.H., Lương K.V.Q., Nguyễn L.T.H. The beneficial role of vitamin D and its analogs in cancer treatment and prevention. Crit. Rev. Oncol. 2010;73:192–201. doi: 10.1016/j.critrevonc.2009.04.008.
    1. Schwartz Z., Sylvia V.L., Larsson D., Nemere I., Casasola D., Dean D.D., Boyan B.D. 1α,25(OH) 2 D 3 Regulates Chondrocyte Matrix Vesicle Protein Kinase C (PKC) Directly via G-protein-dependent Mechanisms and Indirectly via Incorporation of PKC during Matrix Vesicle Biogenesis. J. Boil. Chem. 2002;277:11828–11837. doi: 10.1074/jbc.M110398200.
    1. Zhang C., Tang W., Li Y., Yang F., Dowd D.R., Macdonald P.N. Osteoblast-Specific Transcription Factor Osterix Increases Vitamin D Receptor Gene Expression in Osteoblasts. PLoS ONE. 2011;6:e26504. doi: 10.1371/journal.pone.0026504.
    1. Valdivielso J.M., Fernández E. Vitamin D receptor polymorphisms and diseases. Clin. Chim. Acta. 2006;371:1–12. doi: 10.1016/j.cca.2006.02.016.
    1. Vdr MGI Mouse Gene Detail—MGI:103076—Vitamin D (1,25-Dihydroxyvitamin D3) Receptor. [(accessed on 16 April 2019)]; Available online: .
    1. Garcia-Vallvé S., Palau J. Nuclear receptors, nuclear-receptor factors, and nuclear-receptor-like orphans form a large paralog cluster in Homo sapiens. Mol. Boil. Evol. 1998;15:665–682. doi: 10.1093/oxfordjournals.molbev.a025970.
    1. Kouzmenko A., Ohtake F., Fujiki R., Kato S. Chapter 12—Epigenetic Modifications in Vitamin D Receptor-mediated Transrepression. In: Feldman D., Pike J.W., Adams J.S., editors. Vitamin D. 3rd ed. Academic Press; San Diego, CA, USA: 2011. pp. 227–234.
    1. Wei P., Inamdar N., Vedeckis W.V. Transrepression of c- jun Gene Expression by the Glucocorticoid Receptor Requires Both AP-1 Sites in the c- jun Promoter. Mol. Endocrinol. 1998;12:1322–1333. doi: 10.1210/mend.12.9.0158.
    1. Chen S., Wu J., Hsieh J.C., Whitfield G.K., Jurutka P.W., Haussler M.R., Gardner D.G. Suppression of ANP Gene Transcription by Liganded Vitamin D Receptor. Hypertension. 1998;31:1338–1342. doi: 10.1161/01.HYP.31.6.1338.
    1. Heikkinen S., Väisänen S., Pehkonen P., Seuter S., Benes V., Carlberg C. Nuclear hormone 1α,25-dihydroxyvitamin D3 elicits a genome-wide shift in the locations of VDR chromatin occupancy. Nucleic Acids Res. 2011;39:9181–9193. doi: 10.1093/nar/gkr654.
    1. Meyer M.B., Goetsch P.D., Pike J.W. VDR/RXR and TCF4/β-catenin cistromes in colonic cells of colorectal tumor origin: Impact on c-FOS and c-MYC gene expression. Mol. Endocrinol. 2012;26:37–51. doi: 10.1210/me.2011-1109.
    1. Pike J.W., Meyer M.B. Regulation of Mouse Cyp24a1 Expression via Promoter-Proximal and Downstream-Distal Enhancers Highlights New Concepts of 1,25-Dihydroxyvitamin D3 Action. Arch. Biochem. Biophys. 2012;523:2–8. doi: 10.1016/j.abb.2011.12.003.
    1. Carlberg C., Seuter S., De Mello V.D.F., Schwab U., Voutilainen S., Pulkki K., Nurmi T., Virtanen J., Tuomainen T.-P., Uusitupa M. Primary Vitamin D Target Genes Allow a Categorization of Possible Benefits of Vitamin D3 Supplementation. PLoS ONE. 2013;8:e71042. doi: 10.1371/journal.pone.0071042.
    1. Norman A.W., Mizwicki M.T., Norman D.P.G. Steroid-hormone rapid actions, membrane receptors and a conformational ensemble model. Nat. Rev. Drug Discov. 2004;3:27–41. doi: 10.1038/nrd1283.
    1. Rochel N., Wurtz J.-M., Mitschler A., Klaholz B., Moras D. The Crystal Structure of the Nuclear Receptor for Vitamin D Bound to Its Natural Ligand. Mol. Cell. 2000;5:173–179. doi: 10.1016/S1097-2765(00)80413-X.
    1. Bhattacharjee S., Renganaath K., Mehrotra R., Mehrotra S. Combinatorial Control of Gene Expression. BioMed Res. Int. 2013;2013:1–11. doi: 10.1155/2013/407263.
    1. Uitterlinden A.G., Fang Y., Van Meurs J.B., Pols H.A., Van Leeuwen J.P. Genetics and biology of vitamin D receptor polymorphisms. Gene. 2004;338:143–156. doi: 10.1016/j.gene.2004.05.014.
    1. Huang J., Xie Z.-F. Polymorphisms in the vitamin D receptor gene and multiple sclerosis risk: A meta-analysis of case-control studies. J. Neurol. Sci. 2012;313:79–85. doi: 10.1016/j.jns.2011.09.024.
    1. Hii C.S., Ferrante A. The Non-Genomic Actions of Vitamin D. Nutrients. 2016;8:135. doi: 10.3390/nu8030135.
    1. Chen J., Doroudi M., Cheung J., Grozier A.L., Schwartz Z., Boyan B.D. Plasma membrane Pdia3 and VDR interact to elicit rapid responses to 1α,25(OH)2D3. Cell Signal. 2013;25:2362–2373. doi: 10.1016/j.cellsig.2013.07.020.
    1. Nemere I., Farach-Carson M.C., Rohe B., Sterling T.M., Norman A.W., Boyan B.D., Safford S.E. Ribozyme knockdown functionally links a 1,25(OH)2D3 membrane binding protein (1,25D3-MARRS) and phosphate uptake in intestinal cells. Proc. Natl. Acad. Sci. USA. 2004;101:7392–7397. doi: 10.1073/pnas.0402207101.
    1. Nemere I. Immunochemical studies on the putative plasmalemmal receptor for 1,25-dihydroxyvitamin D3. III. Vitamin D status. Steroids. 2000;65:451–457. doi: 10.1016/S0039-128X(00)00107-0.
    1. Pike J.W., Meyer M.B. The Vitamin D Receptor: New Paradigms for the Regulation of Gene Expression by 1,25-Dihydroxyvitamin D3. Endocrinol. Metab. Clin. N. Am. 2010;39:255–269. doi: 10.1016/j.ecl.2010.02.007.
    1. Larriba M.J., González-Sancho J.M., Bonilla F., Muñoz A. Interaction of vitamin D with membrane-based signaling pathways. Front. Physiol. 2014;5:60. doi: 10.3389/fphys.2014.00060.
    1. Zhao G., Simpson R.U. Interaction between vitamin D receptor with caveolin-3 and regulation by 1,25-dihydroxyvitamin D3 in adult rat cardiomyocytes. J. Steroid Biochem. Mol. Biol. 2010;121:159–163. doi: 10.1016/j.jsbmb.2010.03.055.
    1. Garbi N., Tanaka S., Momburg F., Hämmerling G.J. Impaired assembly of the major histocompatibility complex class I peptide-loading complex in mice deficient in the oxidoreductase ERp57. Nat. Immunol. 2006;7:93–102. doi: 10.1038/ni1288.
    1. Wang Y., Chen J., Lee C.S., Nizkorodov A., Riemenschneider K., Martin D., Hyzy S., Schwartz Z., Boyan B.D. Disruption of Pdia3 gene results in bone abnormality and affects 1alpha,25-dihydroxy-vitamin D3-induced rapid activation of PKC. J. Steroid Biochem. Mol. Biol. 2010;121:257–260. doi: 10.1016/j.jsbmb.2010.05.004.
    1. Nemere I., Garbi N., Hämmerling G.J., Khanal R.C. Intestinal Cell Calcium Uptake and the Targeted Knockout of the 1,25D3-MARRS (Membrane-associated, Rapid Response Steroid-binding) Receptor/PDIA3/Erp57. J. Boil. Chem. 2010;285:31859–31866. doi: 10.1074/jbc.M110.116954.
    1. Boyan B.D., Sylvia V.L., McKinney N., Schwartz Z. Membrane actions of vitamin D metabolites 1α,25(OH)2D3 and 24R,25(OH)2D3 are retained in growth plate cartilage cells from vitamin D receptor knockout mice. J. Cell. Biochem. 2003;90:1207–1223. doi: 10.1002/jcb.10716.
    1. Patel H.H., Murray F., Insel P.A. Caveolae as Organizers of Pharmacologically Relevant Signal Transduction Molecules. Annu. Rev. Pharmacol. Toxicol. 2008;48:359–391. doi: 10.1146/annurev.pharmtox.48.121506.124841.
    1. Bosch M., Marí M., Herms A., Fernández A., Fajardo A., Kassan A., Giralt A., Colell A., Balgoma D., Barbero E., et al. Caveolin-1 deficiency causes cholesterol dependent mitochondrial dysfunction and apoptotic susceptibility. Curr. Boil. 2011;21:681–686. doi: 10.1016/j.cub.2011.03.030.
    1. Mesbah M., Nemere I., Papagerakis P., Nefussi J.-R., Nessmann C., Berdal A., Orestes-Cardoso S., Orestes-Cardoso S. Expression of a 1,25-Dihydroxyvitamin D3 Membrane-Associated Rapid-Response Steroid Binding Protein During Human Tooth and Bone Development and Biomineralization. J. Bone Miner. Res. 2002;17:1588–1596. doi: 10.1359/jbmr.2002.17.9.1588.
    1. Norman A.W. Receptors for 1α,25(OH)2D3: Past, Present, and Future. J. Bone Miner. Res. 1998;13:1360–1369. doi: 10.1359/jbmr.1998.13.9.1360.
    1. Richard C.L., Farach-Carson M.C., Rohe B., Nemere I., Meckling K.A. Involvement of 1,25D3-MARRS (membrane associated, rapid response steroid-binding), a novel vitamin D receptor, in growth inhibition of breast cancer cells. Exp. Cell Res. 2010;316:695–703. doi: 10.1016/j.yexcr.2009.12.015.
    1. Farach-Carson M., Nemere I. Membrane Receptors for Vitamin D Steroid Hormones: Potential NewDrug Targets. Curr. Drug Targets. 2003;4:67–76. doi: 10.2174/1389450033347118.
    1. Sitrin M. Rapid effects of 1,25(OH)2 vitamin D3 on signal transduction systems in colonic cells. Steroids. 1999;64:137–142. doi: 10.1016/S0039-128X(98)00102-0.
    1. Chen A., Davis B.H., Bissonnette M., Scaglione-Sewell B., Brasitus T.A. 1,25-Dihydroxyvitamin D3 Stimulates Activator Protein-1-dependent Caco-2 Cell Differentiation. J. Boil. Chem. 1999;274:35505–35513. doi: 10.1074/jbc.274.50.35505.
    1. Doroudi M., Boyan B.D., Schwartz Z. Rapid 1α,25(OH)2D3 membrane-mediated activation of Ca2+/calmodulin-dependent protein kinase II in growth plate chondrocytes requires Pdia3, PLAA and caveolae. Connect. Tissue Res. 2014;55:125–128. doi: 10.3109/03008207.2014.923882.
    1. Rohe B., Safford S.E., Nemere I., Farach-Carson M.C. Identification and characterization of 1,25D3-membrane-associated rapid response, steroid (1,25D3-MARRS)-binding protein in rat IEC-6 cells. Steroids. 2005;70:458–463. doi: 10.1016/j.steroids.2005.02.016.
    1. Nemere I., Safford S.E., Rohe B., DeSouza M.M., Farach-Carson M.C. Identification and characterization of 1,25D3-membrane-associated rapid response, steroid (1,25D3-MARRS) binding protein. J. Steroid Biochem. Mol. Boil. 2004;89:281–285. doi: 10.1016/j.jsbmb.2004.03.031.
    1. Pillai S., Bikle D.D., Su M.J., Ratnam A., Abe J. 1,25-Dihydroxyvitamin D3 upregulates the phosphatidylinositol signaling pathway in human keratinocytes by increasing phospholipase C levels. J. Clin. Investig. 1995;96:602–609. doi: 10.1172/JCI118075.
    1. Alkon D., Rasmussen H. A spatial-temporal model of cell activation. Science. 1988;239:998–1005. doi: 10.1126/science.2830669.
    1. Sato K., Imaki T., Toraya S., Demura H., Tanaka M., Kasajima T., Takeuchi A., Kobayashi T. Increased 1,25-(OH)2D2 Concentration in a Patient with Malignancy-Associated Hypercalcemia Receiving Intravenous Hyperalimentation Inadvertently Supplemented with Vitamin D2. Intern. Med. 1993;32:886–890. doi: 10.2169/internalmedicine.32.886.
    1. Boyan B.D., Wang L., Wong K.L., Jo H., Schwartz Z. Plasma membrane requirements for 1alpha,25(OH)2D3 dependent PKC signaling in chondrocytes and osteoblasts. Steroids. 2006;71:286–290. doi: 10.1016/j.steroids.2005.09.018.
    1. Schwartz Z., Shaked D., Hardin R., Gruwell S., Dean D., Sylvia V., Boyan B., Dean D. 1α,25(OH)2D3 causes a rapid increase in phosphatidylinositol-specific PLC-β activity via phospholipase A2-dependent production of lysophospholipid. Steroids. 2003;68:423–437. doi: 10.1016/S0039-128X(03)00044-8.
    1. Peehl D.M., Skowronski R.J., Leung G.K., Wong S.T., Stamey T.A., Feldman D. Antiproliferative effects of 1,25-dihydroxyvitamin D3 on primary cultures of human prostatic cells. Cancer Res. 1994;54:805–810.
    1. Lin R., Nagai Y., Sladek R., Bastien Y., Ho J., Petrecca K., Sotiropoulou G., Diamandis E.P., Hudson T.J., White J.H. Expression Profiling in Squamous Carcinoma Cells Reveals Pleiotropic Effects of Vitamin D3 Analog EB1089 Signaling on Cell Proliferation, Differentiation, and Immune System Regulation. Mol. Endocrinol. 2002;16:1243–1256. doi: 10.1210/mend.16.6.0874.
    1. Bao B.-Y., Yao J., Lee Y.-F. 1alpha, 25-dihydroxyvitamin D3 suppresses interleukin-8-mediated prostate cancer cell angiogenesis. Carcinogenesis. 2006;27:1883–1893. doi: 10.1093/carcin/bgl041.
    1. Hilliard G.M., Cook R.G., Weigel N.L., Pike J.W. 1,25-Dihydroxyvitamin D3 modulates phosphorylation of serine 205 in the human vitamin D receptor: Site-directed mutagenesis of this residue promotes alternative phosphorylation. Biochemistry. 1994;33:4300–4311. doi: 10.1021/bi00180a026.
    1. Wu W., Beilhartz G., Roy Y., Richard C.L., Curtin M., Brown L., Cadieux D., Coppolino M., Farach-Carson M.C., Nemere I., et al. Nuclear translocation of the 1,25D3-MARRS (membrane associated rapid response to steroids) receptor protein and NFkappaB in differentiating NB4 leukemia cells. Exp. Cell Res. 2010;316:1101–1108. doi: 10.1016/j.yexcr.2010.01.010.
    1. Barletta F., Freedman L.P., Christakos S. Enhancement of VDR-Mediated Transcription by Phosphorylation: Correlation with Increased Interaction between the VDR and DRIP205, a Subunit of the VDR-Interacting Protein Coactivator Complex. Mol. Endocrinol. 2002;16:301–314. doi: 10.1210/mend.16.2.0764.
    1. Norman A.W. Vitamin D Receptor: New Assignments for an Already Busy Receptor. Endocrinology. 2006;147:5542–5548. doi: 10.1210/en.2006-0946.
    1. Deeb K.K., Trump D.L., Johnson C.S. Vitamin D signalling pathways in cancer: Potential for anticancer therapeutics. Nat. Rev. Cancer. 2007;7:684–700. doi: 10.1038/nrc2196.
    1. Nussey S., Whitehead S. The Parathyroid Glands and Vitamin D. BIOS Scientific Publishers; Didcott, UK: 2001.
    1. Tanaka Y., DeLuca H. Bone mineral mobilization activity of 1,25-dihydroxycholecalciferol, a metabolite of vitamin D. Arch. Biochem. Biophys. 1971;146:574–578. doi: 10.1016/0003-9861(71)90163-9.
    1. Parathyroid Hormone|You and Your Hormones from the Society for Endocrinology. [(accessed on 8 April 2019)]; Available online:
    1. Garabedian M., Holick M., DeLuca H.F., Boyle I.T. Control of 25-Hydroxycholecalciferol Metabolism by Parathyroid Glands. Proc. Natl. Acad. Sci. USA. 1972;69:1673–1676. doi: 10.1073/pnas.69.7.1673.
    1. Brenza H.L., DeLuca H.F. Regulation of 25-Hydroxyvitamin D3 1α-Hydroxylase Gene Expression by Parathyroid Hormone and 1,25-Dihydroxyvitamin D3. Arch. Biochem. Biophys. 2000;381:143–152. doi: 10.1006/abbi.2000.1970.
    1. Chambers T.J., Magnus C.J. Calcitonin alters behaviour of isolated osteoclasts. J. Pathol. 1982;136:27–39. doi: 10.1002/path.1711360104.
    1. Shinki T., Ueno Y., DeLuca H.F., Suda T. Calcitonin is a major regulator for the expression of renal 25-hydroxyvitamin D3-1α-hydroxylase gene in normocalcemic rats. Proc. Natl. Acad. Sci. USA. 1999;96:8253–8258. doi: 10.1073/pnas.96.14.8253.
    1. Genetics Home Reference CYP24A1 Gene. [(accessed on 8 April 2019)]; Available online: .
    1. Vuolo L., Di Somma C., Faggiano A., Colao A. Vitamin D and cancer. Front. Endocrinol. 2012;3:58. doi: 10.3389/fendo.2012.00058.
    1. Gross M., Kost S.B., Ennis B., Stumpf W., Kumar R. Effect of 1,25-dihydroxyvitamin D3 on mouse mammary tumor (GR) cells: Evidence for receptors, cellular uptake, inhibition of growth and alteration in morphology at physiologic concentrations of hormone. J. Bone Miner. Res. 1986;1:457–467. doi: 10.1002/jbmr.5650010510.
    1. Narvaez C.J., Matthews D., LaPorta E., Simmons K.M., Beaudin S., Welsh J. The impact of vitamin D in breast cancer: Genomics, pathways, metabolism. Front. Physiol. 2014;5:5. doi: 10.3389/fphys.2014.00213.
    1. Fleet J.C. Molecular Actions of Vitamin D Contributing to Cancer Prevention. Mol. Asp. Med. 2008;29:388–396. doi: 10.1016/j.mam.2008.07.003.
    1. Skowronski R.J., Peehl D.M., Feldman D. Vitamin D and prostate cancer: 1,25 dihydroxyvitamin D3 receptors and actions in human prostate cancer cell lines. Endocrinology. 1993;132:1952–1960. doi: 10.1210/endo.132.5.7682937.
    1. Basit S. Vitamin D in health and disease: A literature review. Br. J. Biomed. Sci. 2013;70:161–172. doi: 10.1080/09674845.2013.11669951.
    1. Mahendra A., Karishma, Choudhury B.K., Sharma T., Bansal N., Bansal R., Gupta S. Vitamin D and gastrointestinal cancer. J. Lab. Physicians. 2018;10:1–5.
    1. Leigh-Clare J.L. A note on the vitamin D content of the stomach oil of the australasian petrel (aestralata lessoni) Biochem. J. 1927;21:725–727. doi: 10.1042/bj0210725.
    1. Selye H., Bois P. On the role of corticoids in conditioning the gastric mucosa to certain toxic actions of ergocalciferol. Br. J. Nutr. 1957;11:18–22. doi: 10.1079/BJN19570006.
    1. Stumpf W., Sar M., Reid F., Tanaka Y., DeLuca H. Target cells for 1,25-dihydroxyvitamin D3 in intestinal tract, stomach, kidney, skin, pituitary, and parathyroid. Science. 1979;206:1188–1190. doi: 10.1126/science.505004.
    1. Kirui N.A., Weisbrode S.E., Kindig O.R. The role of dietary calcium on the development of soft tissue mineralization due to 1,25-dihydroxyvitamin D3 intoxication in rats. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 1981;37:251–263. doi: 10.1007/BF02892574.
    1. Selking Ö., Borch K., Johansson H., Ljunghall S., Wide L. Evaluation of Parathyroid Function in Patients with Hypergastrinaemia and Pernicious Anaemia. Upsala J. Med Sci. 1982;87:215–222. doi: 10.3109/03009738209178426.
    1. Kurose T., Seino Y., Ishida H., Tsuji K., Fukumoto H., Koh G., Takeda J., Kitano N., Inagaki N., Tsuda K., et al. Effect of vitamin D on gastrin and gastric somatostatin secretion from the isolated perfused rat stomach. Life Sci. 1988;42:1995–2001. doi: 10.1016/0024-3205(88)90499-7.
    1. Axelson J., Persson P., Gagnemo-Persson R., Hakanson R. Importance of the stomach in maintaining calcium homoeostasis in the rat. Gut. 1991;32:1298–1302. doi: 10.1136/gut.32.11.1298.
    1. Holick M., Holick M. Noncalcemic actions of 1,25-dihydroxyvitamin D3 and clinical applications. Bone. 1995;17:S107–S111. doi: 10.1016/8756-3282(95)00195-J.
    1. Stumpf W.E. Vitamin D sites and mechanisms of action: A histochemical perspective. Reflections on the utility of autoradiography and cytopharmacology for drug targeting. Histochem. Cell Boil. 1995;104:417–427. doi: 10.1007/BF01464331.
    1. Ikezaki S., Nishikawa A., Furukawa F., Tanakamura Z., Kim H.C., Mori H., Takahashi M. Chemopreventive effects of 24R,25-dihydroxyvitamin D3, a vitamin D3 derivative, on glandular stomach carcinogenesis induced in rats by N-methyl-N’-nitro-N-nitrosoguanidine and sodium chloride. Cancer Res. 1996;56:2767–2770.
    1. Gagnemo-Persson R., Persson P., Bryngelsson T., Green B., Håkanson R. Rat stomach ECL-cell histidine decarboxylase activity is suppressed by ergocalciferol but unaffected by parathyroid hormone and calcitonin. Regul. Pept. 1999;79:131–139. doi: 10.1016/S0167-0115(98)00158-X.
    1. Stumpf W.E. Vitamin D and the digestive system. Eur. J. Drug Metab. Pharmacokinet. 2008;33:85–100. doi: 10.1007/BF03191025.
    1. Häkkinen I., Lindgren I. The localization of tetracycline in the metastatic calcifications in the stomach of rat induced by overdosage of dihydrotachysterol and vitamin D3. Acta Pathol. Microbiol. Scand. 2009;59:428–434. doi: 10.1111/j.1699-0463.1963.tb01242.x.
    1. Sahin H.H., Cumbul A., Uslu Ü., Yilmaz Z., Ercan F., Alican I. The effect of 1,25 dihydroxyvitamin D3 on HCl/Ethanol-induced gastric injury in rats. Tissue Cell. 2018;51:68–76. doi: 10.1016/j.tice.2018.03.003.
    1. Paterson C.R., Woods C.G. Search for osteomalacia in 1228 patients after gastrectomy and other operations on the stomach. Lancet. 1965;2:1085–1088.
    1. Kimura K., Nozawa Y., Kitamura S., Takahashi H., Ota M., Norimatsu H., Wada H. An autopsy case of hypervitaminosis D. Pathol. Int. 1967;17:377–386. doi: 10.1111/j.1440-1827.1967.tb00028.x.
    1. Lawrence W. Nutritional consequences of surgical resection of the gastrointestinal tract for cancer. Cancer Res. 1977;37:2379–2386.
    1. Giovannucci E., Liu Y., Willett W.C. Cancer Incidence and Mortality and Vitamin D in Black and White Male Health Professionals. Cancer Epidemiol. Biomark. Prev. 2006;15:2467–2472. doi: 10.1158/1055-9965.EPI-06-0357.
    1. Chen W., Dawsey S.M., Qiao Y.-L., Mark S.D., Dong Z.-W., Taylor P.R., Zhao P., Abnet C.C. Prospective study of serum 25(OH)-vitamin D concentration and risk of oesophageal and gastric cancers. Br. J. Cancer. 2007;97:123–128. doi: 10.1038/sj.bjc.6603834.
    1. Pan L., Matloob A.F., Du J., Pan H., Dong Z., Zhao J., Feng Y., Zhong Y., Huang B., Lu J. Vitamin D stimulates apoptosis in gastric cancer cells in synergy with trichostatin A/sodium butyrate-induced and 5-aza-2′-deoxycytidine-induced PTEN upregulation. FEBS J. 2010;277:989–999. doi: 10.1111/j.1742-4658.2009.07542.x.
    1. Antico A., Tozzoli R., Giavarina D., Tonutti E., Bizzaro N. Hypovitaminosis D as predisposing factor for atrophic type A gastritis: A case-control study and review of the literature on the interaction of Vitamin D with the immune system. Clin. Rev. Allergy Immunol. 2012;42:355–364. doi: 10.1007/s12016-011-8255-1.
    1. Park M.R., Lee J.H., Park M.S., Hwang J.E., Shim H.J., Cho S.H., Chung I.-J., Bae W.K. Suppressive Effect of 19-nor-1α-25-Dihydroxyvitamin D2 on Gastric Cancer Cells and Peritoneal Metastasis Model. J. Korean Med. Sci. 2012;27:1037–1043. doi: 10.3346/jkms.2012.27.9.1037.
    1. Kopic S., Geibel J.P. Gastric Acid, Calcium Absorption, and Their Impact on Bone Health. Physiol. Rev. 2013;93:189–268. doi: 10.1152/physrev.00015.2012.
    1. Guo L., Chen W., Zhu H., Chen Y., Wan X., Yang N., Xu S., Yu C., Chen L. Helicobacter pylori induces increased expression of the vitamin D receptor in immune responses. Helicobacter. 2014;19:37–47. doi: 10.1111/hel.12102.
    1. Wen Y., Da M., Zhang Y., Peng L., Yao J., Duan Y. Alterations in vitamin D signaling pathway in gastric cancer progression: A study of vitamin D receptor expression in human normal, premalignant, and malignant gastric tissue. Int. J. Clin. Exp. Pathol. 2015;8:13176–13184.
    1. Bashir M., Prietl B., Tauschmann M., Mautner S.I., Kump P.K., Treiber G., Wurm P., Gorkiewicz G., Högenauer C., Pieber T.R. Effects of high doses of vitamin D3 on mucosa-associated gut microbiome vary between regions of the human gastrointestinal tract. Eur. J. Nutr. 2016;55:1479–1489. doi: 10.1007/s00394-015-0966-2.
    1. Vyas N., Companioni R.C., Tiba M., AlKhawam H., Catalano C., Sogomonian R., Baum J., Walfish A. Association between serum vitamin D levels and gastric cancer: A retrospective chart analysis. World J. Gastrointest. Oncol. 2016;8:688–694. doi: 10.4251/wjgo.v8.i9.688.
    1. Du C., Yang S., Zhao X., Dong H. Pathogenic roles of alterations in vitamin D and vitamin D receptor in gastric tumorigenesis. Oncotarget. 2017;8:29474–29486. doi: 10.18632/oncotarget.15298.
    1. Yıldırım O., Yildirim T., Seçkin Y., Osanmaz P., Bilgic Y., Mete R. The influence of vitamin D deficiency on eradication rates of Helicobacter pylori. Adv. Clin. Exp. Med. 2017;26:1377–1381. doi: 10.17219/acem/65430.
    1. El Shahawy M.S., Hemida M.H., El Metwaly I., Shady Z.M. The effect of vitamin D deficiency on eradication rates of Helicobacter pylori infection. JGH Open. 2018;2:270–275. doi: 10.1002/jgh3.12081.
    1. Fletcher J., Cooper S.C., Ghosh S., Hewison M. The Role of Vitamin D in Inflammatory Bowel Disease: Mechanism to Management. Nutrients. 2019;11:1019. doi: 10.3390/nu11051019.
    1. Clark I., Smith M.R. Effects of hypervitaminosis A and D on skeletal metabolism. J. Boil. Chem. 1964;239:1266–1271.
    1. DeWind L.T. Hypervitaminosis D with Osteosclerosis. Arch. Dis. Child. 1961;36:373–380. doi: 10.1136/adc.36.188.373.
    1. Compston J. Vitamin D. Molecular Biology, Physiology and Clinical Applications. Gut. 2000;46:584. doi: 10.1136/gut.46.4.582c.
    1. Albrechtsson E., Jonsson T., Möller S., Höglund M., Ohlsson B., Axelson J. Vitamin D receptor is expressed in pancreatic cancer cells and a vitamin D3 analogue decreases cell number. Pancreatology. 2003;3:41–46. doi: 10.1159/000069149.
    1. Hewison M. Vitamin D and the intracrinology of innate immunity. Mol. Cell. Endocrinol. 2010;321:103–111. doi: 10.1016/j.mce.2010.02.013.
    1. Sandgren M.E., Brönnegård M., DeLuca H.F. Tissue distribution of the 1,25-dihydroxyvitamin D3 receptor in the male rat. Biochem. Biophys. Res. Commun. 1991;181:611–616. doi: 10.1016/0006-291X(91)91234-4.
    1. Nilas L., Christiansen C., Christiansen J. Regulation of vitamin D and calcium metabolism after gastrectomy. Gut. 1985;26:252–257. doi: 10.1136/gut.26.3.252.
    1. Chakhtoura M.T., Nakhoul N.F., Akl E.A., Safadi B.Y., Mantzoros C.S., Fuleihan G.E.-H. Vitamin D supplementation for obese adults undergoing bariatric surgery. Cochrane Database Syst. Rev. 2015 doi: 10.1002/14651858.CD011800.
    1. Carrasco F., Basfi-Fer K., Rojas P., Valencia A., Csendes A., Codoceo J., Inostroza J., Ruz M. Changes in Bone Mineral Density After Sleeve Gastrectomy or Gastric Bypass: Relationships with Variations in Vitamin D, Ghrelin, and Adiponectin Levels. Obes. Surg. 2014;24:877–884. doi: 10.1007/s11695-014-1179-0.
    1. Eddy R.L. Metabolic bone disease after gastrectomy. Am. J. Med. 1971;50:442–449. doi: 10.1016/0002-9343(71)90333-0.
    1. Zittel T.T., Zeeb B., Maier G.W., Kaiser G.W., Zwirner M., Liebich H., Starlinger M., Becker H.D. High prevalence of bone disorders after gastrectomy. Am. J. Surg. 1997;174:431–438. doi: 10.1016/S0002-9610(97)00123-2.
    1. Rino Y., Oshima T., Yoshikawa T. Changes in fat-soluble vitamin levels after gastrectomy for gastric cancer. Surg. Today. 2017;47:145–150. doi: 10.1007/s00595-016-1341-5.
    1. Schubert M.L., Peura D.A. Control of Gastric Acid Secretion in Health and Disease. Gastroenterology. 2008;134:1842–1860. doi: 10.1053/j.gastro.2008.05.021.
    1. Feng J., Petersen C.D., Coy D.H., Jiang J.-K., Thomas C.J., Pollak M.R., Wank S.A. Calcium-sensing receptor is a physiologic multimodal chemosensor regulating gastric G-cell growth and gastrin secretion. Proc. Natl. Acad. Sci. USA. 2010;107:17791–17796. doi: 10.1073/pnas.1009078107.
    1. Kantham L., Quinn S.J., Egbuna O.I., Baxi K., Butters R., Pang J.L., Pollak M.R., Goltzman D., Brown E.M. The calcium-sensing receptor (CaSR) defends against hypercalcemia independently of its regulation of parathyroid hormone secretion. Am. J. Physiol. Metab. 2009;297:E915–E923. doi: 10.1152/ajpendo.00315.2009.
    1. Christiansen J., Rehfeld J.F., Stadil F. The effect of calcium on gastric acid and gastrin secretion in antrectomized subjects. Gut. 1974;15:622–625. doi: 10.1136/gut.15.8.622.
    1. Harris S.S. Vitamin D and African Americans. J. Nutr. 2006;136:1126–1129. doi: 10.1093/jn/136.4.1126.
    1. Dixon M.F. Pathology of Gastritis and Peptic Ulceration. In: Mobley H.L., Mendz G.L., Hazell S.L., editors. Helicobacter Pylori: Physiology and Genetics. ASM Press; Washington, DC, USA: 2001.
    1. Waterhouse M., Hope B., Krause L., Morrison M., Protani M.M., Zakrzewski M., Neale R.E. Vitamin D and the gut microbiome: A systematic review of in vivo studies. Eur. J. Nutr. 2018:1–16. doi: 10.1007/s00394-018-1842-7.
    1. Gigek C.O., Chen E.S., Calcagno D.Q., Wisnieski F., Burbano R.R., Smith M.A.C. Epigenetic mechanisms in gastric cancer. Epigenomics. 2012;4:279–294. doi: 10.2217/epi.12.22.
    1. De Ruijter A.J., Van Gennip A.H., Caron H.N., Kemp S., Van Kuilenburg A.B. Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochem. J. 2003;370:737–749. doi: 10.1042/bj20021321.
    1. Meshorer E., Misteli T. Chromatin in pluripotent embryonic stem cells and differentiation. Nat. Rev. Mol. Cell Boil. 2006;7:540–546. doi: 10.1038/nrm1938.
    1. Dokmanovic M., Clarke C., Marks P.A. Histone Deacetylase Inhibitors: Overview and Perspectives. Mol. Cancer Res. 2007;5:981–989. doi: 10.1158/1541-7786.MCR-07-0324.
    1. Jones P.A. The Role of DNA Methylation in Mammalian Epigenetics. Science. 2001;293:1068–1070. doi: 10.1126/science.1063852.
    1. Gowher H., Jeltsch A. Mechanism of inhibition of DNA methyltransferases by cytidine analogs in cancer therapy. Cancer Boil. Ther. 2004;3:1062–1068. doi: 10.4161/cbt.3.11.1308.

Source: PubMed

3
Se inscrever