Microglia and Monocytes/Macrophages Polarization Reveal Novel Therapeutic Mechanism against Stroke

Masato Kanazawa, Itaru Ninomiya, Masahiro Hatakeyama, Tetsuya Takahashi, Takayoshi Shimohata, Masato Kanazawa, Itaru Ninomiya, Masahiro Hatakeyama, Tetsuya Takahashi, Takayoshi Shimohata

Abstract

Stroke is a leading cause of morbidity and mortality worldwide, and consists of two types, ischemic and hemorrhagic. Currently, there is no effective treatment to increase the survival rate or improve the quality of life after ischemic and hemorrhagic stroke in the subacute to chronic phases. Therefore, it is necessary to establish therapeutic strategies to facilitate functional recovery in patients with stroke during both phases. Cell-based therapies, using microglia and monocytes/macrophages preconditioned by optimal stimuli and/or any therapies targeting these cells, might be an ideal therapeutic strategy for managing stroke. Microglia and monocytes/macrophages polarize to the classic pro-inflammatory type (M1-like) or alternative protective type (M2-like) by optimal condition. Cell-based therapies using M2-like microglia and monocytes/macrophages might be protective therapeutic strategies against stroke for three reasons. First, M2-like microglia and monocytes/monocytes secrete protective remodeling factors, thus prompting neuronal network recovery via tissue (including neuronal) and vascular remodeling. Second, these cells could migrate to the injured hemisphere through the blood-brain barrier or choroid-plexus. Third, these cells could mitigate the extent of inflammation-induced injuries by suitable timing of therapeutic intervention. Although future translational studies are required, M2-like microglia and monocytes/macrophages therapies are attractive for managing stroke based on their protective functions.

Keywords: M2-like; macrophage; microglia; monocyte; pleiotropic effects; polarization; protective; stroke.

Conflict of interest statement

Takayoshi Shimohata is an academic adviser of the ShimoJani LLC biotech company. The other authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Figures

Figure 1
Figure 1
Scheme of M1-like or M2-like polarization. The M1-like responses as shown by the upregulation of pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and inducible nitric oxide synthase (iNOS). The M2-like responses as shown by the upregulation of markers such as arginase-1, chitinase-like protein 3 (also known as Ym1), cluster of differentiation (CD)206, CD163 and cytokines, IL-4, IL-10, transforming growth factor (TGF)-β, and growth factors. (a) Microglia and monocytes/macrophages polarize the M1-like state (classic, pro-inflammatory) following stroke, trauma, stimulation of lipopolysaccharide (LPS), interferon (IFN)-γ, TNF-α, or damage-associated molecular pattern (DAMP) through Toll-like receptor 4 (TLR4). The M1-like microglia and monocytes/macrophages would exacerbate inflammation and tissue damage. (b) Microglia and monocytes/macrophages polarize M2-like state (alternative, anti-inflammatory, protective) by protective cytokines and appropriate stimuli such as mild ischemia and drugs. Activation of triggering receptors expressed on myeloid cells 2 (TREM2) stimulates the phagocytic activity. Cell debris (dead cells) also stimulate microglia to polarize into the M2-like state. The M2-like microglia and monocytes/macrophages would suppress inflammation and prompt phagocytosis and tissue recovery. Abbreviations: BDNF, brain-derived neurotrophic factor; PDGF, platelet-derived growth factor; TGF-β, transforming growth factor-β; VEGF, vascular endothelial growth factor.
Figure 2
Figure 2
Dynamic polarized changes of microglia and monocytes/macrophages after stroke. (a) Temporal polarization changing by microglia and monocytes/macrophages after ischemic stroke by cell markers. The M1-like response exhibits an increasing trend in the first 14 days. The M2-like response exhibits a transient increasing trend in the first 1 to 2 days. Subsequently, the M2-like response exhibits a decreasing trend. However, it is unknown whether the M2-like response exhibits an increasing trend over the first 14 days. The balance of evidence supports an M2 to M1-like phenotype switch in the first 2 to 3 days. (b) Temporal polarization changing by microglia and monocytes/macrophages after hemorrhagic stroke. The M1-like response occurs as early as 6 h after hemorrhage, while the M2-like response starts to increase on day 1 after hemorrhage. Although a mixed M1- and M2-like microglial phenotype is evident during days 1 to 3, the balance of evidence supports an M1 to M2 phenotype switch in the first 7 days. The levels of most pro-inflammatory cytokines return to baseline on day 14. Abbreviations: mΦ, macrophage.
Figure 3
Figure 3
Illustration of the therapeutic effects of M2-like microglia and monocytes/macrophages. Abbreviations: BBB, blood-brain barrier.

References

    1. Feigin V.L., Lawes C.M., Bennett D.A., Barker-Collo S.L., Parag V. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: A systematic review. Lancet Neurol. 2009;8:355–369. doi: 10.1016/S1474-4422(09)70025-0.
    1. Goyal M., Menon B.K., van Zwam W.H., Dippel D.W., Mitchell P.J., Demchuk A.M., Dávalos A., Majoie C.B.L.M., van der Lugt A., de Miquel M.A., et al. Endovascular thrombectomy after large-vessel ischaemic stroke: A meta-analysis of individual patient data from five randomised trials. Lancet. 2016;387:1723–1731. doi: 10.1016/S0140-6736(16)00163-X.
    1. Mozaffarian D., Benjamin E.J., Go A.S., Arnett D.K., Blaha M.J., Cushman M., Das S.R., de Ferranti S., Després J.-P., Fullerton H.J., et al. American Heart Association statistics committee; stroke statistics subcommittee. Executive summary: Heart disease and stroke statistics-2016 update: A report from the American Heart Association. Circulation. 2016;133:447–454. doi: 10.1161/CIR.0000000000000366.
    1. Lakhan S.E., Kirchgessner A., Hofer M. Inflammatory mechanisms in ischemic stroke: Therapeutic approaches. J. Transl. Med. 2009;7:97. doi: 10.1186/1479-5876-7-97.
    1. Keep R.F., Hua Y., Xi G. Intracerebral haemorrhage: Mechanisms of injury and therapeutic targets. Lancet Neurol. 2012;11:720–731. doi: 10.1016/S1474-4422(12)70104-7.
    1. Guan J., Hawryluk G.W. Targeting secondary hematoma expansion in spontaneous intracerebral hemorrhage-state of the art. Front. Neurol. 2016;7:187. doi: 10.3389/fneur.2016.00187.
    1. Winstein C.J., Stein J., Arena R., Bates B., Cherney L.R., Cramer S.C., Deruyter F., Eng J.J., Fisher B., Harvey R.L., et al. Guidelines for adult stroke rehabilitation and recovery. Stroke. 2016;47:e98–e169. doi: 10.1161/STR.0000000000000098.
    1. Moskowitz M.A., Lo E.H., Iadecola C. The science of stroke: Mechanisms in search of treatments. Neuron. 2010;67:181–198. doi: 10.1016/j.neuron.2010.07.002.
    1. Liu X., Ye R., Yan T., Yu S.P., Wei L., Xu G., Fan X., Jiang Y., Stetler R.A., Liu F., et al. Cell based therapies for ischemic stroke: From basic science to bedside. Prog. Neurobiol. 2014;115:92–115. doi: 10.1016/j.pneurobio.2013.11.007.
    1. Li Q., Ford M.C., Lavik E.B., Madri J.A. Modeling the neurovascular niche: VEGF- and BDNF-mediated cross-talk between neural stem cells and endothelial cells: An in vitro study. J. Neurosci. Res. 2006;84:1656–1668. doi: 10.1002/jnr.21087.
    1. Moriyama Y., Takagi N., Hashimura K., Itokawa C., Tanonaka K. Intravenous injection of neural progenitor cells facilitates angiogenesis after cerebral ischemia. Brain Behav. 2013;3:43–53. doi: 10.1002/brb3.113.
    1. Ishizaka S., Horie N., Satoh K., Fukuda Y., Nishida N., Nagata I. Intra-arterial cell transplantation provides timing-dependent cell distribution and functional recovery after stroke. Stroke. 2013;44:720–726. doi: 10.1161/STROKEAHA.112.677328.
    1. Andres R.H., Horie N., Slikker W., Keren-Gill H., Zhan K., Sun G., Manley N.C., Pereira M.P., Sheikh L.A., McMillan E.L., et al. Human neural stem cells enhance structural plasticity and axonal transport in the ischaemic brain. Brain. 2011;134:1777–1789. doi: 10.1093/brain/awr094.
    1. Satani N., Savitz S.I. Is immunomodulation a principal mechanism underlying how cell-based therapies enhance stroke recovery? Neurotherapeutics. 2016;13:775–782. doi: 10.1007/s13311-016-0468-9.
    1. Vendrame M., Gemma C., Pennypacker K.R., Bickford P.C., Sanberg C.D., Sanberg P.R., Willing A.E. Cord blood rescues stroke-induced changes in splenocyte phenotype and function. Exp. Neurol. 2016;199:191–200. doi: 10.1016/j.expneurol.2006.03.017.
    1. Seto T., Kono K., Morimoto K., Inoue Y., Shintaku H., Hattori H., Matsuoka O., Yamano T., Tanaka A. Brain magnetic resonance imaging in 23 patients with mucopolysaccharidoses and the effect of bone marrow transplantation. Ann. Neurol. 2001;50:79–92. doi: 10.1002/ana.1098.
    1. Iadecola C., Anrather J. The immunology of stroke: From mechanisms to translation. Nat. Med. 2011;17:796–808. doi: 10.1038/nm.2399.
    1. Stoll G., Jander S., Schroeter M. Inflammation and glial responses in ischemic brain lesions. Prog. Neurobiol. 1998;56:149–171. doi: 10.1016/S0301-0082(98)00034-3.
    1. Mabuchi T., Kitagawa K., Ohtsuki T., Kuwabara K., Yagita Y., Yanagihara T., Hori M., Matsumoto M. Contribution of microglia/macrophages to expansion of infarction and response of oligodendrocytes after focal cerebral ischemia in rats. Stroke. 2000;31:1735–1743. doi: 10.1161/01.STR.31.7.1735.
    1. Hu X., Li P., Guo Y., Wang H., Leak R.K., Chen S., Gao Y., Chen J. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke. 2012;43:3063–3070. doi: 10.1161/STROKEAHA.112.659656.
    1. Perego C., Fumagalli S., De Simoni M.G. Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J. Neuroinflammation. 2011;8:174. doi: 10.1186/1742-2094-8-174.
    1. Lan X., Han X., Li Q., Yang Q.W., Wang J. Modulators of microglial activation and polarization after intracerebral haemorrhage. Nat. Rev. Neurol. 2017;13:420–433. doi: 10.1038/nrneurol.2017.69.
    1. Crain J.M., Nikodemova M., Watters J.J. Microglia express distinct M1 and M2 phenotypic markers in the postnatal and adult central nervous system in male and female mice. J. Neurosci. Res. 2013;91:1143–1151. doi: 10.1002/jnr.23242.
    1. Imai F., Suzuki H., Oda J., Ninomiya T., Ono K., Sano H., Sawada M. Neuroprotective effect of exogenous microglia in global brain ischemia. J. Cereb. Blood Flow Metab. 2007;27:488–500. doi: 10.1038/sj.jcbfm.9600362.
    1. Rosenberg G.A. Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol. 2009;8:205–216. doi: 10.1016/S1474-4422(09)70016-X.
    1. Vivien D., Ali C. Transforming growth factor-beta signalling in brain disorders. Cytokine Growth Factor Rev. 2006;17:121–128. doi: 10.1016/j.cytogfr.2005.09.011.
    1. Stankovic N.D., Teodorczyk M., Ploen R., Zipp F., Schmidt M.H. Microglia-blood vessel interactions: A double-edged sword in brain pathologies. Acta Neuropathol. 2016;131:347–363. doi: 10.1007/s00401-015-1524-y.
    1. Kanazawa M., Miura M., Toriyabe M., Koyama M., Hatakeyama M., Ishikawa M., Nakajima T., Onodera O., Takahashi T., Nishizawa M., et al. Microglia preconditioned by oxygen-glucose deprivation promote functional recovery in ischemic rats. Sci. Rep. 2017;7:42582. doi: 10.1038/srep42582.
    1. Zhao X., Sun G., Zhang J., Strong R., Song W., Gonzales N., Grotta J.C., Aronowski J. Hematoma resolution as a target for intracerebral hemorrhage treatment: Role for peroxisome proliferator-activated receptor γ in microglia/macrophages. Ann. Neurol. 2007;61:352–362. doi: 10.1002/ana.21097.
    1. Zhao H., Garton T., Keep R.F., Hua Y., Xi G. Microglia/macrophage polarization after experimental intracerebral hemorrhage. Transl. Stroke Res. 2015;6:407–409. doi: 10.1007/s12975-015-0428-4.
    1. Kawabori M., Kacimi R., Kauppinen T., Calosing C., Kim J.Y., Hsieh C.L., Nakamura M.C., Yenari M.A. Ttriggering receptor expressed on myeloid cells 2 (TREM2) deficiency attenuates phagocytic activities of microglia and exacerbates ischemic damage in experimental stroke. J. Neurosci. 2015;35:3384–3396. doi: 10.1523/JNEUROSCI.2620-14.2015.
    1. Hughes P.M., Allegrini P.R., Rudin M., Perry V.H., Mir A.K., Wiessner C. Monocyte chemoattractant protein-1 deficiency is protective in a murine stroke model. J. Cereb. Blood Flow Metab. 2002;22:308–317. doi: 10.1097/00004647-200203000-00008.
    1. Neumann H. Microglia: A cellular vehicle for CNS gene therapy. J. Clin. Investig. 2006;116:2857–2860. doi: 10.1172/JCI30230.
    1. Wattananit S., Tornero D., Graubardt N., Memanishvili T., Monni E., Tatarishvili J., Miskinyte G., Ge R., Ahlenius H., Lindvall O., et al. Monocyte-derived macrophages contribute to spontaneous long-term functional recovery after stroke in mice. J. Neurosci. 2016;36:4182–4195. doi: 10.1523/JNEUROSCI.4317-15.2016.
    1. Hambardzumyan D., Gutmann D.H., Kettenmann H. The role of microglia and macrophages in glioma maintenance and progression. Nat. Neurosci. 2016;19:20–27. doi: 10.1038/nn.4185.
    1. Yona S., Kim K.W., Wolf Y., Mildner A., Varol D., Breker M., Strauss-Ayali D., Viukov S., Guilliams M., Misharin A., et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity. 2013;38:79–91. doi: 10.1016/j.immuni.2012.12.001.
    1. Butovsky O., Jedrychowski M.P., Moore C.S., Cialic R., Lanser A.J., Gabriely G., Koeglsperger T., Dake B., Wu P.M., Doykan C.E., et al. Identification of a unique TGF-β-dependent molecular and functional signature in microGlia. Nat. Neurosci. 2014;17:131–143. doi: 10.1038/nn.3599.
    1. Webster C.M., Hokari M., McManus A., Tang X.N., Ma H., Kacimi R., Yenari M.A. Microglial P2Y12 deficiency/inhibition protects against brain ischemia. PLoS ONE. 2013;8:e70927. doi: 10.1371/journal.pone.0070927.
    1. Moore C.S., Ase A.R., Kinsara A., Rao V.T., Michell-Robinson M., Leong S.Y., Butovsky O., Ludwin S.K., Séguéla P., Bar-Or A., et al. P2Y12 expression and function in alternatively activated human microGlia. Neurol. Neuroimmunol. Neuroinflamm. 2015;2:e80. doi: 10.1212/NXI.0000000000000080.
    1. Ginhoux F., Greter M., Leboeuf M., Nandi S., See P., Gokhan S., Merad M., Mehler M.F., Conway S.J., Ng L.G., et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330:841–845. doi: 10.1126/science.1194637.
    1. Yenari M.A., Kauppinen K.M., Swanson R.A. Microglial activation in stroke: Therapeutic targets. Neurotherapeutics. 2010;7:378–391. doi: 10.1016/j.nurt.2010.07.005.
    1. Hammond M.D., Taylor R.A., Mullen M.T., Ai Y., Aguila H.L., Mack M., Kasner S.E., McCullough L.D., Sansing L.H. CCR2+ Ly6C(hi) inflammatory monocyte recruitment exacerbates acute disability following intracerebral hemorrhage. J. Neurosci. 2014;34:3901–3909. doi: 10.1523/JNEUROSCI.4070-13.2014.
    1. Boje K.M., Arora P.K. Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res. 1992;587:250–256. doi: 10.1016/0006-8993(92)91004-X.
    1. Chao C.C., Hu S., Molitor T.W., Shaskan E.G., Peterson P.K. Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J. Immunol. 1992;149:2736–2741.
    1. Lo E.H. Degeneration and repair in central nervous system disease. Nat. Med. 2010;16:1205–1209. doi: 10.1038/nm.2226.
    1. Hanisch U.K., Kettenmann H. Microglia: Active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 2007;10:1387–1394. doi: 10.1038/nn1997.
    1. Hu X., Leak R.K., Shi Y., Suenaga J., Gao Y., Zheng P., Chen J. Microglial and macrophage polarization—new prospects for brain repair. Nat. Rev. Neurol. 2015;11:56–64. doi: 10.1038/nrneurol.2014.207.
    1. Miró-Mur F., Pérez-de-Puig I., Ferrer-Ferrer M., Urra X., Justicia C., Chamorro A., Planas A.M. Immature monocytes recruited to the ischemic mouse brain differentiate into macrophages with features of alternative activation. Brain Behav. Immun. 2016;53:18–33. doi: 10.1016/j.bbi.2015.08.010.
    1. Biber K., Owens T., Boddeke E. What is microglia neurotoxicity (Not)? Glia. 2014;62:841–854. doi: 10.1002/glia.22654.
    1. Chu H.X., Broughton B.R., Kim H.A., Lee S., Drummond G.R., Sobey C.G. Evidence that Ly6C(hi) monocytes are protective in acute ischemic stroke by promoting M2 macrophage polarization. Stroke. 2015;46:1929–1937. doi: 10.1161/STROKEAHA.115.009426.
    1. Xiong X.Y., Liu L., Yang Q.W. Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke. Prog. Neurobiol. 2016;142:23–44. doi: 10.1016/j.pneurobio.2016.05.001.
    1. Ma Y., Wang J., Wang Y., Yang G.Y. The biphasic function of microglia in ischemic stroke. Prog. Neurobiol. 2016 doi: 10.1016/j.pneurobio.2016.01.005.
    1. Kanazawa M., Kawamura K., Takahashi T., Miura M., Tanaka Y., Koyama M., Toriyabe M., Igarashi H., Nakada T., Nishihara M., et al. Multiple therapeutic effects of progranulin on experimental acute ischaemic stroke. Brain. 2015;138:1932–1948. doi: 10.1093/brain/awv079.
    1. Stein M., Keshav S., Harris N., Gordon S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: A marker of alternative immunologic macrophage activation. J. Exp. Med. 1992;176:287–292. doi: 10.1084/jem.176.1.287.
    1. Nathan C.F., Murray H.W., Wiebe M.E., Rubin B.Y. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J. Exp. Med. 1983;158:670–689. doi: 10.1084/jem.158.3.670.
    1. Kobayashi K., Imagama S., Ohgomori T., Hirano K., Uchimura K., Sakamoto K., Hirakawa A., Takeuchi H., Suzumura A., Ishiguro N., et al. Minocycline selectively inhibits M1 polarization of microGlia. Cell Death Dis. 2013;4:e525. doi: 10.1038/cddis.2013.54.
    1. Chen Z., Jalabi W., Shpargel K.B., Farabaugh K.T., Dutta R., Yin X., Kidd G.J., Bergmann C.C., Stohlman S.A., Trapp B.D. Lipopolysaccharide-induced microglial activation and neuroprotection against experimental brain injury is independent of hematogenous TLR4. J. Neurosci. 2012;32:11706–11715. doi: 10.1523/JNEUROSCI.0730-12.2012.
    1. Takahashi K., Rochford C.D., Neumann H. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J. Exp. Med. 2005;201:647–657. doi: 10.1084/jem.20041611.
    1. Sachet M., Liang Y.Y., Oehler R. The immune response to secondary necrotic cells. Apoptosis. 2017;22:1189–1204. doi: 10.1007/s10495-017-1413-z.
    1. Voss J.J.L.P., Ford C.A., Petrova S., Melville L., Paterson M., Pound J.D., Holland P., Giotti B., Freeman T.C., Gregory C.D. Modulation of macrophage antitumor potential by apoptotic lymphoma cells. Cell Death Differ. 2017;24:971–983. doi: 10.1038/cdd.2016.132.
    1. Szulzewsky F., Pelz A., Feng X., Synowitz M., Markovic D., Langmann T., Holtman I.R., Wang X., Eggen B.J., Boddeke H.W., et al. Glioma-associated microglia/macrophages display an expression profile different from M1 and M2 polarization and highly express Gpnmb and Spp1. PLoS ONE. 2015;10:e0116644. doi: 10.1371/journal.pone.0116644.
    1. Sierra A., Gottfried-Blackmore A.C., McEwen B.S., Bulloch K. Microglia derived from aging mice exhibit an altered inflammatory profile. Glia. 2007;55:412–424. doi: 10.1002/glia.20468.
    1. Cordeau P., Jr., Lalancette-Hébert M., Weng Y.C., Kriz J. Estrogen receptors alpha mediates postischemic inflammation in chronically estrogen-deprived mice. Neurobiol. Aging. 2016;40:50–60. doi: 10.1016/j.neurobiolaging.2016.01.002.
    1. Olah M., Amor S., Brouwer N., Vinet J., Eggen B., Biber K., Boddeke H.W. Identification of a microglia phenotype supportive of remyelination. Glia. 2012;60:306–321. doi: 10.1002/glia.21266.
    1. Mosser D.M., Edwards J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 2008;8:958–969. doi: 10.1038/nri2448.
    1. Geloso M.C., Corvino V., Marchese E., Serrano A., Michetti F., D’Ambrosi N. The dual role of microglia in ALS: Mechanisms and therapeutic approaches. Front. Aging Neurosci. 2017;9:242. doi: 10.3389/fnagi.2017.00242.
    1. Chiu I.M., Morimoto E.T., Goodarzi H., Liao J.T., O’Keeffe S., Phatnani H.P., Muratet M., Carroll M.C., Levy S., Tavazoie S., et al. A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model. Cell Rep. 2013;4:385–401. doi: 10.1016/j.celrep.2013.06.018.
    1. Sudduth T.L., Schmitt F.A., Nelson P.T., Wilcock D.M. Neuroinflammatory phenotype in early Alzheimer’s disease. Neurobiol. Aging. 2013;34:1051–1059. doi: 10.1016/j.neurobiolaging.2012.09.012.
    1. Chhor V., Le Charpentier T., Lebon S., Oré M.V., Celador I., Josserand J., Degos V., Jacotot E., Hagberg H., Sävman K., et al. Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro. Brain Behav. Immun. 2013;32:70–85. doi: 10.1016/j.bbi.2013.02.005.
    1. Mittelbronn M. M1/M2 immune polarization concept in microglia: A fair transfer? Neuroimmunol. Neuroinflamm. 2014;1:6–7. doi: 10.4103/2347-8659.135567.
    1. Ransohoff R.M. A polarizing question: Do M1 and M2 microglia exist? Nat. Neurosci. 2016;19:987–991. doi: 10.1038/nn.4338.
    1. Gelderblom M., Leypoldt F., Steinbach K., Behrens D., Choe C.U., Siler D.A., Arumugam T.V., Orthey E., Gerloff C., Tolosa E., et al. Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke. 2009;40:1849–1857. doi: 10.1161/STROKEAHA.108.534503.
    1. Jin R., Yang G., Li G. Inflammatory mechanisms in ischemic stroke: Role of inflammatory cells. J. Leukoc. Biol. 2010;87:779–789. doi: 10.1189/jlb.1109766.
    1. Zhang Z., Lu H., Yang Q., Wu H., Wang J. Microglial polarization and inflammatory mediators after intracerebral hemorrhage. Mol. Neurobiol. 2017;54:1874–1886. doi: 10.1007/s12035-016-9785-6.
    1. Ge R., Tornero D., Hirota M., Monni E., Laterza C., Lindvall O., Kokaia Z. Choroid plexus-cerebrospinal fluid route for monocyte-derived macrophages after stroke. J. Neuroinflammation. 2017;14:153. doi: 10.1186/s12974-017-0909-3.
    1. Ozdinler P.H., Macklis J.D. IGF-I specifically enhances axon outgrowth of corticospinal motor neurons. Nat. Neurosci. 2006;9:1371–1381. doi: 10.1038/nn1789.
    1. Jin Q., Cheng J., Liu Y., Wu J., Wang X., Wei S., Zhou X., Qin Z., Jia J., Zhen X. Improvement of functional recovery by chronic metformin treatment is associated with enhanced alternative activation of microglia/macrophages and increased angiogenesis and neurogenesis following experimental stroke. Brain Behav. Immun. 2014;40:131–142. doi: 10.1016/j.bbi.2014.03.003.
    1. Lim S.H., Park E., You B., Jung Y., Park A.R., Park S.G., Lee J.R. Neuronal synapse formation induced by microglia and interleukin 10. PLoS ONE. 2013;8:e81218. doi: 10.1371/journal.pone.0081218.
    1. Kubota K., Inoue K., Hashimoto R., Kumamoto N., Kosuga A., Tatsumi M., Kamijima K., Kunugi H., Iwata N., Ozaki N., et al. Tumor necrosis factor receptor-associated protein 1 regulates cell adhesion and synaptic morphology via modulation of N-cadherin expression. J. Neurochem. 2009;110:496–508. doi: 10.1111/j.1471-4159.2009.06099.x.
    1. Miyamoto A., Wake H., Ishikawa A.W., Eto K., Shibata K., Murakoshi H., Koizumi S., Koizumi S., Moorhouse A.J., Yoshimura Y., et al. Microglia contact induces synapse formation in developing somatosensory cortex. Nat. Commun. 2016;7:12540. doi: 10.1038/ncomms12540.
    1. Sipe G.O., Lowery R.L., Tremblay M.E., Kelly E.A., Lamantia C.E., Majewska A.K. Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex. Nat. Commun. 2016;7:10905. doi: 10.1038/ncomms10905.
    1. Galtrey C.M., Fawcett J.W. The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain Res. Rev. 2007;54:1–18. doi: 10.1016/j.brainresrev.2006.09.006.
    1. Larsen P.H., Wells J.E., Stallcup W.B., Opdenakker G., Yong V.W. Matrix metalloproteinase-9 facilitates remyelination in part by processing the inhibitory NG2 proteoglycan. J. Neurosci. 2003;23:11127–11135.
    1. del Zoppo G.J., Frankowski H., Gu Y.H., Osada T., Kanazawa M., Milner R., Wang X., Hosomi N., Mabuchi T., Koziol J.A. Microglial cell activation is a source of metalloproteinase generation during hemorrhagic transformation. J. Cereb. Blood Flow Metab. 2012;32:919–932. doi: 10.1038/jcbfm.2012.11.
    1. Gu Y.H., Kanazawa M., Hung S.Y., Wang X., Fukuda S., Koziol J.A., del Zoppo G.J. Cathepsin L acutely alters microvessel integrity within the neurovascular unit during focal cerebral ischemia. J. Cereb. Blood Flow Metab. 2015;35:1888–1900. doi: 10.1038/jcbfm.2015.170.
    1. Lui H., Zhang J., Makinson S.R., Cahill M.K., Kelley K.W., Huang H.Y., Shang Y., Oldham M.C., Martens L.H., Gao F., et al. Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell. 2016;165:921–935. doi: 10.1016/j.cell.2016.04.001.
    1. Boutin H., Murray K., Pradillo J., Maroy R., Smigova A., Gerhard A., Jones P.A., Trigg W. 18F-GE-180: A novel TSPO radiotracer compared to 11C-R-PK11195 in a preclinical model of stroke. Eur. J. Nucl. Med. Mol. Imaging. 2015;42:503–511. doi: 10.1007/s00259-014-2939-8.
    1. Wiart M., Davoust N., Pialat J.B., Desestret V., Moucharrafie S., Cho T.H., Mutin M., Langlois J.B., Beuf O., Honnorat J., et al. MRI monitoring of neuroinflammation in mouse focal ischemia. Stroke. 2007;38:131–137. doi: 10.1161/01.STR.0000252159.05702.00.
    1. Soriano S., Coxon A., Wang Y.F., Frosch M.P., Lipton S.A., Hickey P.R., Mayadas T.N. Mice deficient in Mac-1 (CD11b/CD18) are less susceptible to cerebral ischemia/reperfusion injury. Stroke. 1999;30:134–139. doi: 10.1161/01.STR.30.1.134.
    1. Ahn G.O., Tseng D., Liao C.H., Dorie M.J., Czechowicz A., Brown J.M. Inhibition of Mac-1 (CD11b/CD18) enhances tumor response to radiation by reducing myeloid cell recruitment. Proc. Natl. Acad. Sci. USA. 2010;107:8363–8368. doi: 10.1073/pnas.0911378107.
    1. Lu D.Y., Tang C.H., Yeh W.L., Wong K.L., Lin C.P., Chen Y.H., Lai C.H., Chen Y.F., Leung Y.M., Fu W.M. SDF-1alpha up-regulates interleukin-6 through CXCR4, PI3K/Akt, ERK, and NF-kappaB-dependent pathway in microGlia. Eur. J. Pharmacol. 2009;613:146–154. doi: 10.1016/j.ejphar.2009.03.001.
    1. Hill W.D., Hess D.C., Martin-Studdard A., Carothers J.J., Zheng J., Hale D., Maeda M., Fagan S.C., Carroll J.E., Conway S.J., et al. SDF-1 (CXCL12) is upregulated in the ischemic penumbra following stroke: Association with bone marrow cell homing to injury. J. Neuropathol. Exp. Neurol. 2004;63:84–96. doi: 10.1093/jnen/63.1.84.
    1. Robin A.M., Zhang Z.G., Wang L., Zhang R.L., Katakowski M., Zhang L., Wang Y., Zhang C., Chopp M. Stromal cell-derived factor 1a mediates neural progenitor cell motility after focal cerebral ischemia. J. Cereb. Blood Flow Metab. 2006;26:125–134. doi: 10.1038/sj.jcbfm.9600172.
    1. Liu X., Liu J., Zhao S., Zhang H., Cai W., Cai M., Ji X., Leak R.K., Gao Y., Chen J., et al. Interleukin-4 is essential for microglia/macrophage M2 polarization and long-term recovery after cerebral ischemia. Stroke. 2016;47:498–504. doi: 10.1161/STROKEAHA.115.012079.
    1. Narantuya D., Nagai A., Sheikh A.M., Masuda J., Kobayashi S., Yamaguchi S., Kim S.U. Human microglia transplanted in rat focal ischemia brain induce neuroprotection and behavioral improvement. PLoS ONE. 2010;5:e11746. doi: 10.1371/journal.pone.0011746.
    1. Jiang C., Wang J., Yu L., Ou C., Liu X., Zhao X., Wang J. Comparison of the therapeutic effects of bone marrow mononuclear cells and microglia for permanent cerebral ischemia. Behav. Brain Res. 2013;250:222–229. doi: 10.1016/j.bbr.2013.05.011.
    1. Womble T.A., Green S., Shahaduzzaman M., Grieco J., Sanberg P.R., Pennypacker K.R., Willing A.E. Monocytes are essential for the neuroprotective effect of human cord blood cells following middle cerebral artery occlusion in rat. Mol. Cell Neurosci. 2014;59:76–84. doi: 10.1016/j.mcn.2014.01.004.
    1. Desestret V., Riou A., Chauveau F., Cho T.H., Devillard E., Marinescu M., Ferrera R., Rey C., Chanal M., Angoulvant D., et al. In vitro and in vivo models of cerebral ischemia show discrepancy in therapeutic effects of M2 macrophages. PLoS ONE. 2013;8:e67063. doi: 10.1371/journal.pone.0067063.
    1. Zhao X., Wang H., Sun G., Zhang J., Edwards N.J., Aronowski J. Neuronal interleukin-4 as a modulator of microglial pathways and ischemic brain damage. J. Neurosci. 2015;35:11281–11291. doi: 10.1523/JNEUROSCI.1685-15.2015.
    1. Lively S., Hutchings S., Schlichter L.C. Molecular and cellular responses to interleukin-4 treatment in a rat model of transient ischemia. J. Neuropathol. Exp. Neurol. 2016 doi: 10.1093/jnen/nlw081.
    1. Schmidt A., Strecker J.K., Hucke S., Bruckmann N.M., Herold M., Mack M., Diederich K., Schäbitz W.R., Wiendl H., Klotz L., et al. Targeting different monocyte/macrophage subsets has no impact on outcome in experimental stroke. Stroke. 2017;48:1061–1069. doi: 10.1161/STROKEAHA.116.015577.
    1. Prasad K., Sharma A., Garg A., Mohanty S., Bhatnagar S., Johri S., Singh K.K., Nair V., Sarkar R.S., Gorthi S.P., et al. Intravenous autologous bone marrow mononuclear stem cell therapy for ischemic stroke: A multicentric, randomized trial. Stroke. 2014;45:3618–3624. doi: 10.1161/STROKEAHA.114.007028.
    1. Sharma A., Sane H., Gokulchandran N., Khopkar D., Paranjape A., Sundaram J., Gandhi S., Badhe P. Autologous bone marrow mononuclear cells intrathecal transplantation in chronic stroke. Stroke Res. Treat. 2014;2014:234095. doi: 10.1155/2014/234095.
    1. Chernykh E.R., Shevela E.Y., Starostina N.M., Morozov S.A., Davydova M.N., Menyaeva E.V., Ostanin A.A. Safety and therapeutic potential of M2 macrophages in stroke treatment. Cell Transplant. 2016;25:1461–1471. doi: 10.3727/096368915X690279.
    1. Taguchi A., Sakai C., Soma T., Kasahara Y., Stern D.M., Kajimoto K., Ihara M., Daimon T., Yamahara K., Doi K., et al. Intravenous autologous bone marrow mononuclear cell transplantation for stroke: Phase1/2a clinical trial in a homogeneous group of stroke patients. Stem Cells Dev. 2015:2207–2218. doi: 10.1089/scd.2015.0160.
    1. Friedrich M.A., Martins M.P., Araujo M.D., Klamt C., Vedolin L., Garicochea B., Raupp E.F., Sartori El Ammar J., Machado D.C., Costa J.C., et al. Intra-arterial infusion of autologous bone marrow mononuclear cells in patients with moderate to severe middle cerebral artery acute ischemic stroke. Cell Transplant. 2012;Suppl 1:S13–S21. doi: 10.3727/096368912X612512.
    1. Honmou O., Houkin K., Matsunaga T., Niitsu Y., Ishiai S., Onodera R., Waxman S.G., Kocsis J.D. Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain. 2011;134:1790–1807. doi: 10.1093/brain/awr063.
    1. Fang H., Chen J., Lin S., Wang P., Wang Y., Xiong X., Yang Q. CD36-mediated hematoma absorption following intracerebral hemorrhage: Negative regulation by TLR4 aignaling. J. Immunol. 2014;192:5984–5992. doi: 10.4049/jimmunol.1400054.
    1. McWhorter F.Y., Wang T., Nguyen P., Chung T., Liu W.F. Modulation of macrophage phenotype by cell shape. Proc. Natl. Acad. Sci. USA. 2013;110:17253–17258. doi: 10.1073/pnas.1308887110.
    1. Underhill D.M., Ozinsky A., Hajjar A.M., Stevens A., Wilson C.B., Bassetti M., Aderem A. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature. 1999;401:811–815. doi: 10.1038/35005543.
    1. Boche D., Perry V.H., Nicoll J.A. Review: Activation patterns of microglia and their identification in the human brain. Neuropathol. Appl. Neurobiol. 2013;39:3–18. doi: 10.1111/nan.12011.
    1. Sierra A., Abiega O., Shahraz A., Neumann H. Janus-faced microglia: Beneficial and detrimental consequences of microglial phagocytosis. Front. Cell Neurosci. 2013;7:6. doi: 10.3389/fncel.2013.00006.
    1. Brown G.C., Neher J.J. Microglial phagocytosis of live neurons. Nat. Rev. Neurosci. 2014;5:209–216. doi: 10.1038/nrn3710.
    1. Faustino J.V., Wang X., Johnson C.E., Klibanov A., Derugin N., Wendland M.F., Vexler Z.S. Microglial cells contribute to endogenous brain defenses after acute neonatal focal stroke. J. Neurosci. 2011;31:12992–13001. doi: 10.1523/JNEUROSCI.2102-11.2011.
    1. Ni W., Mao S., Xi G., Keep R.F., Hua Y. Role of erythrocyte CD47 in intracerebral hematoma clearance. Stroke. 2016;47:505–511. doi: 10.1161/STROKEAHA.115.010920.
    1. De Bilbao F., Arsenijevic D., Moll T., Garcia-Gabay I., Vallet P., Langhans W., Giannakopoulos P. In vivo over-expression of interleukin-10 increases resistance to focal brain ischemia in mice. J. Neurochem. 2009;110:12–22. doi: 10.1111/j.1471-4159.2009.06098.x.
    1. Schaer C.A., Schoedon G., Imhof A., Kurrer M.O., Schaer D.J. Constitutive endocytosis of CD163 mediates hemoglobin-heme uptake and determines the noninflammatory and protective transcriptional response of macrophages to hemoglobin. Circ. Res. 2006;99:943–950. doi: 10.1161/01.RES.0000247067.34173.1b.
    1. Fu Y., Hao J., Zhang N., Ren L., Sun N., Li Y.J., Yan Y., Huang D., Yu C., Shi F.D. Fingolimod for the treatment of intracerebral hemorrhage: A 2-arm proof-of-concept study. JAMA Neurol. 2014;71:1092–1101. doi: 10.1001/jamaneurol.2014.1065.
    1. Yu Y., Zhao W., Zhu C., Kong Z., Xu Y., Liu G., Gao X. The clinical effect of deferoxamine mesylate on edema after intracerebral hemorrhage. PLoS ONE. 2015;10:e0122371. doi: 10.1371/journal.pone.0122371.
    1. Shi H., Zheng K., Su Z., Su H., Zhong M., He X., Zhou C., Chen H., Xiong Q., Zhang Y. Sinomenine enhances microglia M2 polarization and attenuates inflammatory injury in intracerebral hemorrhage. J. Neuroimmunol. 2016;299:28–34. doi: 10.1016/j.jneuroim.2016.08.010.
    1. Muffat J., Li Y., Yuan B., Mitalipova M., Omer A., Corcoran S., Bakiasi G., Tsai L.H., Aubourg P., Ransohoff R.M., et al. Efficient derivation of microglia-like cells from human pluripotent stem cells. Nat. Med. 2016;22:1358–1367. doi: 10.1038/nm.4189.
    1. Yang B., Parsha K., Schaar K., Satani N., Xi X., Aronowski J., Savitz S.I. Cryopreservation of bone marrow mononuclear cells alters their viability and subpopulation composition but not their treatment effects in a rodent stroke model. Stem Cells Int. 2016:5876836. doi: 10.1155/2016/5876836.
    1. Ohgidani M., Kato T.A., Kanba S. Introducing directly induced microglia-like (iMG) cells from fresh human monocytes: A novel translational research tool for psychiatric disorders. Front. Cell Neurosci. 2015;9:184. doi: 10.3389/fncel.2015.00184.
    1. Abud E.M., Ramirez R.N., Martinez E.S., Healy L.M., Nguyen C.H.H., Newman S.A., Yeromin A.V., Scarfone V.M., Marsh S.E., Fimbres C., et al. iPSC-derived human microglia-like cells to study neurological diseases. Neuron. 2017;94:278–293. doi: 10.1016/j.neuron.2017.03.042.
    1. Savitz S.I., Cox C.S. Concise review: Cell therapies for stroke and traumatic brain injury: Targeting microGlia. Stem Cells. 2016;34:537–542. doi: 10.1002/stem.2253.

Source: PubMed

3
Se inscrever