In-line Filtration Decreases Systemic Inflammatory Response Syndrome, Renal and Hematologic Dysfunction in Pediatric Cardiac Intensive Care Patients

Michael Sasse, Friederike Dziuba, Thomas Jack, Harald Köditz, Torsten Kaussen, Harald Bertram, Philipp Beerbaum, Martin Boehne, Michael Sasse, Friederike Dziuba, Thomas Jack, Harald Köditz, Torsten Kaussen, Harald Bertram, Philipp Beerbaum, Martin Boehne

Abstract

Cardiac surgery with cardiopulmonary bypass (CPB) frequently leads to systemic inflammatory response syndrome (SIRS) with concomitant organ malfunction. Infused particles may exacerbate inflammatory syndromes since they activate the coagulation cascade and alter inflammatory response or microvascular perfusion. In a randomized, controlled, prospective trial, we have previously shown that particle-retentive in-line filtration prevented major complications in critically ill children. Now, we investigated the effect of in-line filtration on major complications in the subgroup of cardiac patients. Children admitted to tertiary pediatric intensive care unit were randomized to either control or filter group obtaining in-line filtration throughout complete infusion therapy. Risk differences and 95 % confidence intervals (CI) of several complications such as SIRS, sepsis, mortality, various organ failure and dysfunction were compared between both groups using the Wald method. 305 children (n = 150 control, n = 155 filter group) with cardiac diseases were finally analyzed. The majority was admitted after cardiac surgery with CPB. Risk of SIRS (-11.3 %; 95 % CI -21.8 to -0.5 %), renal (-10.0 %; 95 % CI -17.0 to -3.0 %) and hematologic (-8.1 %; 95 % CI -14.2 to -0.2 %) dysfunction were significantly decreased within the filter group. No risk differences were demonstrated for occurrence of sepsis, any other organ failure or dysfunctions between both groups. Infused particles might aggravate a systemic hypercoagulability and inflammation with subsequent organ malfunction in pediatric cardiac intensive care patients. Particle-retentive in-line filtration might be effective in preventing SIRS and maintaining renal and hematologic function. In-line filtration offers a novel therapeutic option to decrease morbidity in cardiac intensive care.

Figures

Fig. 1
Fig. 1
Incidence of endpoints in control (blue columns) and filter group (yellow columns). Figure presents incidence of endpoints between control (blue columns) and filter group (yellow columns). Upper panel shows incidence of systemic inflammatory response syndrome (SIRS), sepsis, organ failure (circulation, lung, kidney and liver) and mortality. Lower panel displays occurrence of different organ dysfunctions (cardiovascular, hematologic, hepatic, neurologic, renal and respiratory). SIRS, renal and hematologic dysfunction were significantly reduced in the filter group (asterisk). If the 95 % CI did not embrace zero, a statistically significant difference between both groups was considered

References

    1. Abu-Omar Y, Ratnatunga C. Cardiopulmonary bypass and renal injury. Perfusion. 2006;21:209–213. doi: 10.1191/0267659106pf870oa.
    1. Agras PI, Derbent M, Ozcay F, Baskin E, Turkoglu S, Aldemir D, Tokel K, Saatci U. Effect of congenital heart disease on renal function in childhood. Nephron Physiol. 2005;99:p10–p15. doi: 10.1159/000081797.
    1. Akcan-Arikan A, Zappitelli M, Loftis LL, Washburn KK, Jefferson LS, Goldstein SL. Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int. 2007;71:1028–1035. doi: 10.1038/sj.ki.5002231.
    1. Apostolakis E, Filos KS, Koletsis E, Dougenis D. Lung dysfunction following cardiopulmonary bypass. J Card Surg. 2010;25:47–55. doi: 10.1111/j.1540-8191.2009.00823.x.
    1. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, Legall JR, Morris A, Spragg R. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149:818–824. doi: 10.1164/ajrccm.149.3.7509706.
    1. Bical OM, Fromes Y, Gaillard D, Fischer M, Ponzio O, Deleuze P, Gerhardt MF, Trivin F. Comparison of the inflammatory response between miniaturized and standard CPB circuits in aortic valve surgery. Eur J Cardiothorac Surg. 2006;29:699–702. doi: 10.1016/j.ejcts.2006.01.053.
    1. Boehne M, Jack T, Koditz H, Seidemann K, Schmidt F, Abura M, Bertram H, Sasse M. In-line filtration minimizes organ dysfunction: new aspects from a prospective, randomized, controlled trial. BMC Pediatr. 2013;13:21. doi: 10.1186/1471-2431-13-21.
    1. Bonding Andreasen J, Hvas AM, Ravn HB. Marked changes in platelet count and function following pediatric congenital heart surgery. Paediatr Anaesth. 2014;24:386–392. doi: 10.1111/pan.12347.
    1. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RMH, Sibbald WJ, Abrams JH, Bernard GR, Biondi JW, Calvin JE, Demling R, Fahey PJ, Fisher CJ, Franklin C, Gorelick KJ, Kelley MA, Maki DG, Marshall JC, Merrill WW, Pribble JP, Rackow EC, Rodell TC, Sheagren JN, Silver M, Sprung CL, Straube RC, Tobin MJ, Trenholme GM, Wagner DP, Webb CD, Wherry JC, Wiedemann HP, Wortel CH. American-College of Chest Physicians Society of Critical Care Medicine Consensus Conference—definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med. 1992;20:864–874. doi: 10.1097/00003246-199206000-00025.
    1. Day JR, Taylor KM. The systemic inflammatory response syndrome and cardiopulmonary bypass. Int J Surg. 2005;3:129–140. doi: 10.1016/j.ijsu.2005.04.002.
    1. De Backer D, Dubois MJ, Schmartz D, Koch M, Ducart A, Barvais L, Vincent JL. Microcirculatory alterations in cardiac surgery: effects of cardiopulmonary bypass and anesthesia. Ann Thoracic Surg. 2009;88:1396–1403. doi: 10.1016/j.athoracsur.2009.07.002.
    1. De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJ, Geertsma RE. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials. 2008;29:1912–1919. doi: 10.1016/j.biomaterials.2007.12.037.
    1. den Uil CA, Klijn E, Lagrand WK, Brugts JJ, Ince C, Spronk PE, Simoons ML. The microcirculation in health and critical disease. Prog Cardiovasc Dis. 2008;51:161–170. doi: 10.1016/j.pcad.2008.07.002.
    1. Eaton MP, Iannoli EM. Coagulation considerations for infants and children undergoing cardiopulmonary bypass. Paediatr Anaesth. 2011;21:31–42. doi: 10.1111/j.1460-9592.2010.03467.x.
    1. Eyjolfsson A, Plaza I, Bronden B, Johnsson P, Dencker M, Bjursten H. Cardiorespiratory effects of venous lipid micro embolization in an experimental model of mediastinal shed blood reinfusion. J Cardiothorac Surg. 2009;4:48. doi: 10.1186/1749-8090-4-48.
    1. Gebara BM (2005) Values for systolic blood pressure. Pediat Crit Care Med 6(4):500; author reply 500–501
    1. Goldstein B, Giroir B, Randolph A, International Consensus Conference on Pediatric S International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med. 2005;6:2–8. doi: 10.1097/01.PCC.0000149131.72248.E6.
    1. Haase M, Haase-Fielitz A, Bellomo R. Cardiopulmonary bypass, hemolysis, free iron, acute kidney injury and the impact of bicarbonate. Contrib Nephrol. 2010;165:28–32. doi: 10.1159/000313741.
    1. Jack T, Brent BE, Boehne M, Muller M, Sewald K, Braun A, Wessel A, Sasse M. Analysis of particulate contaminations of infusion solutions in a pediatric intensive care unit. Intensive Care Med. 2010;36:707–711. doi: 10.1007/s00134-010-1775-y.
    1. Jack T, Boehne M, Brent BE, Hoy L, Koditz H, Wessel A, Sasse M. In-line filtration reduces severe complications and length of stay on pediatric intensive care unit: a prospective, randomized, controlled trial. Intensive Care Med. 2012;38:1008–1016. doi: 10.1007/s00134-012-2539-7.
    1. Jaggers J, Lawson JH. Coagulopathy and inflammation in neonatal heart surgery: mechanisms and strategies. Ann Thoracic Surg. 2006;81:S2360–S2366. doi: 10.1016/j.athoracsur.2006.02.072.
    1. Jenkins KJ, Gauvreau K, Newburger JW, Spray TL, Moller JH, Iezzoni LI. Consensus-based method for risk adjustment for surgery for congenital heart disease. J Thorac Cardiovasc Surg. 2002;123:110–118. doi: 10.1067/mtc.2002.119064.
    1. Koch-Institut KfKuIbR (2002) Prävention Gefäßkatheter-assoziierter Infektionen. Bundesgesundheitsbl-Gesundheitsforsch-Gesundheitsschutz 45:907–924
    1. Lehr HA, Brunner J, Rangoonwala R, Kirkpatrick CJ. Particulate matter contamination of intravenous antibiotics aggravates loss of functional capillary density in postischemic striated muscle. Am J Respir Crit Care Med. 2002;165:514–520. doi: 10.1164/ajrccm.165.4.2108033.
    1. Levi M, van der Poll T, Schultz M. Systemic versus localized coagulation activation contributing to organ failure in critically ill patients. Semin Immunopathol. 2012;34:167–179. doi: 10.1007/s00281-011-0283-7.
    1. Li S, Krawczeski CD, Zappitelli M, Devarajan P, Thiessen-Philbrook H, Coca SG, Kim RW, Parikh CR. Incidence, risk factors, and outcomes of acute kidney injury after pediatric cardiac surgery: a prospective multicenter study. Crit Care Med. 2011;39:1493–1499. doi: 10.1097/CCM.0b013e31821201d3.
    1. Napolitano LM, Ferrer T, McCarter RJ, Jr, Scalea TM. Systemic inflammatory response syndrome score at admission independently predicts mortality and length of stay in trauma patients. J Trauma. 2000;49:647–652. doi: 10.1097/00005373-200010000-00011.
    1. Rangel-Frausto MS, Pittet D, Costigan M, Hwang T, Davis CS, Wenzel RP. The natural history of the systemic inflammatory response syndrome (SIRS). A prospective study. JAMA. 1995;273:117–123. doi: 10.1001/jama.1995.03520260039030.
    1. Schaefer SC, Bison PA, Rangoonwala R, Kirkpatrick CJ, Lehr HA. 0.2 µm in-line filters prevent capillary obstruction by particulate contaminants of generic antibiotic preparations in postischemic muscle. Chemother J. 2008;17:172–178.
    1. Schroder F. Compatibility problems in intensive care medicine. Infusionsther Transfusionsmed. 1994;21:52–58.
    1. Soares LC, Ribas D, Spring R, Silva JM, Miyague NI. Clinical profile of systemic inflammatory response after pediatric cardiac surgery with cardiopulmonary bypass. Arq Bras Cardiol. 2010;94:127–133. doi: 10.1590/S0066-782X2010000100019.
    1. Squires RH, Jr, Shneider BL, Bucuvalas J, Alonso E, Sokol RJ, Narkewicz MR, Dhawan A, Rosenthal P, Rodriguez-Baez N, Murray KF, Horslen S, Martin MG, Lopez MJ, Soriano H, McGuire BM, Jonas MM, Yazigi N, Shepherd RW, Schwarz K, Lobritto S, Thomas DW, Lavine JE, Karpen S, Ng V, Kelly D, Simonds N, Hynan LS. Acute liver failure in children: the first 348 patients in the pediatric acute liver failure study group. J Pediatr. 2006;148:652–658. doi: 10.1016/j.jpeds.2005.12.051.
    1. Trzeciak S, Rivers EP. Clinical manifestations of disordered microcirculatory perfusion in severe sepsis. Crit Care. 2005;9(Suppl 4):S20–S26. doi: 10.1186/cc3744.
    1. Walpot H, Franke RP, Burchard WG, Agternkamp C, Muller FG, Mittermayer C, Kalff G. Particulate contamination of infusion solutions and drug additives in the framework of long-term intensive therapy. 2. An animal model. Der Anaesthesist. 1989;38:617–621.
    1. Walpot H, Franke RP, Burchard WG, Agternkamp C, Muller FG, Mittermayer C, Kalff G. Particulate contamination of infusion solutions and drug additives within the scope of long-term intensive therapy. 1. Energy dispersion electron images in the scanning electron microscope-REM/EDX. Der Anaesthesist. 1989;38:544–548.

Source: PubMed

3
Se inscrever