Cariogram outcome after 90 days of oral treatment with Streptococcus salivarius M18 in children at high risk for dental caries: results of a randomized, controlled study

Francesco Di Pierro, Alberto Zanvit, Piero Nobili, Paolo Risso, Carlo Fornaini, Francesco Di Pierro, Alberto Zanvit, Piero Nobili, Paolo Risso, Carlo Fornaini

Abstract

Dental caries is the most common chronic disease of childhood. Cariogram is a well-recognized algorithm-based software program based on different caries-related risk factors and intended to aid clinicians in performing more objective and consistent dental caries risk assessments. This type of approach precedes the diagnosis of caries and allows the dentist to identify at-risk patients and then take appropriate preventive measures before caries develop further. One of the etiological factors favoring the development of dental caries is the mutans streptococci. These acidogenic dental plaque inhabitants can be effectively antagonized by the activity of bacteriocins released by the probiotic Streptococcus salivarius M18 (salivarius M18). Moreover, salivarius M18 after colonizing the human oral mucosa produces the enzymes dextranase and urease that are able to counteract plaque formation and saliva acidity, respectively. Seventy-six subjects at high risk of dental caries were randomized and then either treated or not treated for 90 days with an oral formulation containing the oral probiotic salivarius M18 (Carioblis(®)). The results indicate that the use of salivarius M18 increases the chances of avoiding new dental caries development in children, and its application could be proposed as a new tool in the dentist's armory to be adopted in subjects considered at high risk on the basis of their Cariogram outcome.

Keywords: BLIS M18; Streptococcus mutans; Streptococcus sobrinus; bacteriocins; caries prediction; dextranase; plaque; salivary pH; urease.

Figures

Figure 1
Figure 1
Scheme of the study.
Figure 2
Figure 2
Graphical representation of Cariogram values (%) calculated using the average value of the items listed. Abbreviation:Salivarius M18, Streptococcus salivarius M18.

References

    1. Bagramian RA, Garcia-Godoy F, Volpe AR. The global increase in dental caries. A pending public health crisis. Am J Dent. 2009;22:3–8.
    1. Vachirarojpisan T, Shinada K, Kawaguchi Y, Laungwechakan P, Somkote T, Detsomboonrat P. Early childhood caries in children aged 6–19 months. Community Dent Oral Epidemiol. 2004;32(2):133–142.
    1. Selwitz RH, Ismail AI, Pitts NB. Dental caries. Lancet. 2007;369:51–59.
    1. Shah N, Bansal N, Logani A. Recent advances in imaging technologies in dentistry. World J Radiol. 2014;6(10):794–807.
    1. ten Cate JM, Zaura E. The numerous microbial species in oral biofilms: how could antibacterial therapy be effective? Adv Dent Res. 2012;24(2):108–111.
    1. Silva JP, Castilho AL, Saraceni CH, Díaz IE, Paciencia ML, Suffredini IB. Anti-Streptococcal activity of Brazilian Amazon Rain Forest plant extracts presents potential for preventive strategies against dental caries. J Appl Oral Sci. 2014;22(2):91–97.
    1. Brighenti FL, Salvador MJ, Delbem AC, et al. Systematic screening of plant extracts from the Brazilian Pantanal with antimicrobial activity against bacteria with cariogenic relevance. Caries Res. 2014;48(5):353–360.
    1. Wescombe PA, Hale JD, Heng NC, Tagg JR. Developing oral probiotics from Streptococcus salivarius. Future Microbiol. 2012;7(12):1355–1371.
    1. Caglar E, Sandalli N, Twetman S, Kavaloglu S, Ergeneli S, Selvi S. Effect of yogurt with Bifidobacterium DN-173 010 on salivary mutans streptococci and lactobacilli in young adults. Acta Odontol Scand. 2005;63:317–320.
    1. Nase L, Hatakka K, Savilahti E, et al. Effect of long-term consumption of a probiotic bacterium, Lactobacillus rhamnosus GG, in milk on dental caries and caries risk in children. Caries Res. 2001;35:412–420.
    1. Tagg JR. Prevention of streptococcal pharyngitis by anti-Streptococcus pyogenes bacteriocin-like inhibitory substances (BLIS) produced by Streptococcus salivarius. Indian J Med. 2004;119:13–16.
    1. Hyink O, Wescombe PA, Upton M, Ragland N, Burton JP, Tagg JR. Salivaricin A2 and the novel lantibiotic salivaricin B are encoded at adjacent loci on a 190-kilobase transmissible megaplasmid in the oral probiotic strain Streptococcus salivarius K12. Appl Environ Microbiol. 2007;73(4):1107–1113.
    1. Sharma S, Verma KK. Skin and soft tissue infection. Indian J Pediatr. 2001;68(Suppl 3):S46–S50.
    1. Wescombe PA, Burton JP, Cadieux PA, et al. Megaplasmids encode differing combinations of lantibiotics in Streptococcus salivarius. Antonie Van Leeuwenhoek. 2006;90(3):269–280.
    1. van Zon A, van der Heijden GJ, van Dongen TM, Burton MJ, Schilder AG. Antibiotics for otitis media with effusion in children. Cochrane Database Syst Rev. 2012;9:CD009163.
    1. Power DA, Burton JP, Chilcott CN, Dawes PJ, Tagg JR. Preliminary investigations of the colonisation of upper respiratory tract tissues of infants using a paediatric formulation of the oral probiotic Streptococcus salivarius K12. Eur J Clin Microbiol Infect Dis. 2008;27(12):1261–1263.
    1. Horz HP, Meinelt A, Houben B, Conrads G. Distribution and persistence of probiotic Streptococcus salivarius K12 in the human oral cavity as determined by real-time quantitative polymerase chain reaction. Oral Microbiol Immunol. 2007;22(2):126–130.
    1. Burton JP, Wescombe PA, Moore CJ, Chilcott CN, Tagg JR. Safety assessment of the oral cavity probiotic Streptococcus salivarius K12. Appl Environ Microbiol. 2006;72(4):3050–3053.
    1. Burton JP, Cowley S, Simon RR, McKinney J, Wescombe PA, Tagg JR. Evaluation of safety and human tolerance of the oral probiotic Streptococcus salivarius K12: a randomized, placebo-controlled, double-blind study. Food Chem Toxicol. 2011;49(9):2356–2364.
    1. Di Pierro F, Adami T, Rapacioli G, Giardini N, Streitberger C. Clinical evaluation of the oral probiotic Streptococcus salivarius K12 in the prevention of recurrent pharyngitis and/or tonsillitis caused by Streptococcus pyogenes in adults. Expert Opin Biol Ther. 2013;13(3):339–343.
    1. Di Pierro F, Donato G, Fomia F, et al. Preliminary pediatric clinical evaluation of the oral probiotic Streptococcus salivarius K12 in preventing recurrent pharyngitis and/or tonsillitis caused by Streptococcus pyogenes and recurrent acute otitis media. Int J Gen Med. 2012;5:991–997.
    1. Di Pierro F, Colombo M, Zanvit A, Risso P, Rottoli AS. Use of Streptococcus salivarius K12 in the prevention of streptococcal and viral pharyngotonsillitis in children. Drug Healthc Patient Saf. 2014;6:15–20.
    1. Chilcott CN, Tagg JR. Antimicrobial composition. 7226590. United States patent US. 2007
    1. Heng NC, Haji-Ishak NS, Kalyan A, et al. Genome sequence of the bacteriocin producing oral probiotic Streptococcus salivarius strain M18. J Bacteriol. 2011;193:6402–6403.
    1. Chen YY, Clancy KA, Burne RA. Streptococcus salivarius urease: genetic and biochemical characterization and expression in a dental plaque streptococcus. Infect Immun. 1996;64:585–592.
    1. Ohnishi Y, Kubo S, Ono Y, et al. Cloning and sequencing of the gene coding for dextranase from Streptococcus salivarius. Gene. 1995;156:93–96.
    1. Wescombe PA, Upton M, Renault P, et al. Salivaricin 9, a new lantibiotic produced by Streptococcus salivarius. Microbiology. 2011;157:1290–1299.
    1. Burton JP, Wescombe PA, Macklaim JM, et al. Persistence of the oral probiotic Streptococcus salivarius M18 is dose dependent and megaplasmid transfer can augment their bacteriocin production and adhesion characteristics. PLoS One. 2013;8(6):e65991.
    1. Burton JP, Drummond BK, Chilcott CN, et al. Influence of the probiotic Streptococcus salivarius strain M18 on indices of dental health in children: a randomized double-blind, placebo-controlled trial. J Med Microbiol. 2013;62(Pt 6):875–884.
    1. Litty S, Nagarathna D, Merline V. Probiotics in periodontal therapy. Int J Pharm Bio Sci. 2015;6(1):242–250.
    1. Bratthall D, Hänsel PG. Cariogram: a multifactorial risk assessment model for a multifactorial disease. Community Dent Oral Epidemiol. 2005;33:256–264.
    1. Holgerson PL, Twetman S, Stecksèn-Blicks C. Validation of an age-modified caries risk assessment program (Cariogram) in preschool children. Acta Odontol Scand. 2009;67:106–112.
    1. Hänsel Petersson G, Twetman S, Bratthall D. Evaluation of a computer program for caries risk assessment in schoolchildren. Caries Res. 2002;36:327–340.
    1. Campus G, Cagetti MG, Sale S, Carta G, Lingström P. Cariogram validity in schoolchildren: a two-year follow-up study. Caries Res. 2012;46:16–22.
    1. Petersson GH, Isberg PE, Twetman S. Caries risk assessment in school children using a reduced Cariogram model without saliva tests. BMC Oral Health. 2010;19(10):5.
    1. Zukanović A. Caries risk assessment models in caries prediction. Acta Med Acad. 2013;42:198–208.
    1. Alian AY, McNally ME, Fure S, Birkhed D. Assessment of caries risk in elderly patients using the Cariogram model. J Can Dent Assoc. 2006;72:459–463.
    1. Celik EU, Gokay N, Ates M. Efficiency of caries risk assessment in young adults using Cariogram. Eur J Dent. 2012;6:270–279.
    1. Tellez M, Gomez J, Ellwood R, Ismail AI. Evidence on existing caries risk assessment systems: are they predictive of future caries? Community Dent Oral Epidemiol. 2013;41(1):67–78.
    1. Campus G, Cagetti MG, Sacco G, Benedetti G, Strohmenger L, Lingström P. Caries risk profiles in Sardinian schoolchildren using Cariogram. Acta Odontol Scand. 2009;67(3):146–152.
    1. Hänsel Petersson G, Twetman S, Bratthall D. Evaluation of a computer program for caries risk assessment in schoolchildren. Caries Res. 2002;36(5):327–340.
    1. Baehni PC, Guggenheim B. Potential of diagnostic microbiology for treatment and prognosis of dental caries and periodontal diseases. Crit Rev Oral Biol Med. 1996;7(3):259–277.

Source: PubMed

3
Se inscrever