Allogeneic mesenchymal stem cells as induction therapy are safe and feasible in renal allografts: pilot results of a multicenter randomized controlled trial

Qipeng Sun, Zhengyu Huang, Fei Han, Ming Zhao, Ronghua Cao, Daqiang Zhao, Liangqing Hong, Ning Na, Heng Li, Bin Miao, Jianmin Hu, Fanhang Meng, Yanwen Peng, Qiquan Sun, Qipeng Sun, Zhengyu Huang, Fei Han, Ming Zhao, Ronghua Cao, Daqiang Zhao, Liangqing Hong, Ning Na, Heng Li, Bin Miao, Jianmin Hu, Fanhang Meng, Yanwen Peng, Qiquan Sun

Abstract

Background: Kidneys from deceased donors are being used to meet the growing need for grafts. However, delayed graft function (DGF) and acute rejection incidences are high, leading to adverse effects on graft outcomes. Optimal induction intervention should include both renal structure injury repair and immune response suppression. Mesenchymal stem cells (MSCs) with potent anti-inflammatory, regenerative, and immune-modulatory properties are considered a candidate to prevent DGF and acute rejection in renal transplantation. Thus, this prospective multicenter paired study aimed to assess the clinical value of allogeneic MSCs as induction therapy to prevent both DGF and acute rejection in deceased donor renal transplantation.

Methods: Forty-two renal allograft recipients were recruited and divided into trial and control groups. The trial group (21 cases) received 2 × 106/kg human umbilical-cord-derived MSCs (UC-MSCs) via the peripheral vein before renal transplantation, and 5 × 106 cells via the renal artery during the surgical procedure. All recipients received standard induction therapy. Incidences of DGF and biopsy-proven acute rejection were recorded postoperatively and severe postoperative complications were assessed. Graft and recipient survivals were also evaluated.

Results: Treatment with UC-MSCs achieved comparable graft and recipient survivals with non-MSC treatment (P = 0.97 and 0.15, respectively). No increase in postoperative complications, including DGF and acute rejection, were observed (incidence of DGF: 9.5% in the MSC group versus 33.3% in the non-MSC group, P = 0.13; Incidence of acute rejection: 14.3% versus 4.8%, P = 0.61). Equal postoperative estimated glomerular filtration rates were found between the two groups (P = 0.88). All patients tolerated the MSCs infusion without adverse clinical effects. Additionally, a multiprobe fluorescence in situ hybridization assay revealed that UC-MSCs administered via the renal artery were absent from the recipient's biopsy sample.

Conclusions: Umbilical-cord-derived MSCs can be used as clinically feasible and safe induction therapy. Adequate timing and frequency of UC-MSCs administration may have a significant effect on graft and recipient outcomes. Trial registration NCT02490020 . Registered on June 29 2015.

Keywords: Acute rejection; DGF; Delayed graft function; MSC; Mesenchymal stem cell; Renal transplantation.

Figures

Fig. 1
Fig. 1
Study design and protocol for UC-MSCs administration in renal transplantation to prevent DGF and acute rejection
Fig. 2
Fig. 2
The eGFR curves at different time points during the follow-up period in UC-MSCs and non-MSC groups. No significant difference in eGFR changes postoperatively between the two groups was found (P = 0.88)
Fig. 3
Fig. 3
Kaplan–Meier survival estimates after renal transplantation in recipients of kidneys with or without UC-MSCs. a Graft survival in the MSC group was comparable to that in the non-MSC group (P = 0.97). b A similar analysis revealed no significant difference in recipient survival between the two groups (P = 0.15)
Fig. 4
Fig. 4
Detection of UC-MSCs in a recipient’s biopsy sample by a multiprobe FISH assay. No UC-MSCs with chromosomes “XY” were found in a female recipient’s biopsy sample. A The female recipient’s biopsy sample showed two red signals representing chromosomes “XX”. Original magnification of FISH images, oil objective (×100). B The FISH assay showed one red and one green signals representing chromosomes “XY” in a control male recipient’s biopsy sample. Original magnification of FISH images, oil objective (×100)

References

    1. Tonelli M, Wiebe N, Knoll G, Bello A, Browne S, Jadhav D, et al. Systematic review: kidney transplantation compared with dialysis in clinically relevant outcomes. Am J Transplant. 2011;11:2093–2109. doi: 10.1111/j.1600-6143.2011.03686.x.
    1. Bendorf A, Kelly PJ, Kerridge IH, McCaughan GW, Myerson B, Stewart C, et al. An international comparison of the effect of policy shifts to organ donation following cardiocirculatory death (DCD) on donation rates after brain death (DBD) and transplantation rates. PLoS ONE. 2013;8:e62010. doi: 10.1371/journal.pone.0062010.
    1. Summers DM, Johnson RJ, Allen J, Fuggle SV, Collett D, Watson CJ, et al. Analysis of factors that affect outcome after transplantation of kidneys donated after cardiac death in the UK: a cohort study. Lancet. 2010;376:1303–1311. doi: 10.1016/S0140-6736(10)60827-6.
    1. Snoeijs MG, Winkens B, Heemskerk MB, Hoitsma AJ, Christiaans MH, Buurman WA, et al. Kidney transplantation from donors after cardiac death: a 25-year experience. Transplantation. 2010;90:1106–1112. doi: 10.1097/TP.0b013e3181f83b0b.
    1. Bellingham JM, Santhanakrishnan C, Neidlinger N, Wai P, Kim J, Niederhaus S, et al. Donation after cardiac death: a 29-year experience. Surgery. 2011;150:692–702. doi: 10.1016/j.surg.2011.07.057.
    1. Barlow AD, Metcalfe MS, Johari Y, et al. Case-matched comparison of long-term results of non-heart beating and heart-beating donor renal transplants. Br J Surg. 2009;96:685–691. doi: 10.1002/bjs.6607.
    1. Damman J, Daha MR, van Son WJ, Leuvenink HG, Ploeg RJ, Seelen MA. Crosstalk between complement and Toll-like receptor activation in relation to donor brain death and renal ischemia–reperfusion injury. Am J Transplant. 2011;11:660–669. doi: 10.1111/j.1600-6143.2011.03475.x.
    1. Rosenberg ME. Cell-based therapies in kidney disease. Kidney Int Suppl. 2011;2013(3):364–367.
    1. Franquesa M, Herrero E, Torras J, Ripoll E, Flaquer M, Gomà M, et al. Mesenchymal stem cell therapy prevents interstitial fibrosis and tubular atrophy in a rat kidney allograft model. Stem Cells Dev. 2012;21:3125–3135. doi: 10.1089/scd.2012.0096.
    1. Hoogduijn MJ, Popp FC, Grohnert A, Crop MJ, van Rhijn M, Rowshani AT, et al. Advancement of mesenchymal stem cell therapy in solid organ transplantation (MISOT) Transplantation. 2010;90:124–126. doi: 10.1097/TP.0b013e3181ea4240.
    1. Perico N, Casiraghi F, Introna M, Gotti E, Todeschini M, Cavinato RA, et al. Autologous mesenchymal stromal cells and kidney transplantation: a pilot study of safety and clinical feasibility. Clin J Am Soc Nephrol. 2011;6:412–422. doi: 10.2215/CJN.04950610.
    1. Tan J, Wu W, Xu X, Liao L, Zheng F, Messinger S, et al. Induction therapy with autologous mesenchymal stem cells in living related kidney transplants: a randomized controlled trial. JAMA. 2012;307:1169–1177. doi: 10.1001/jama.2012.316.
    1. Reinders ME, de Fijter JW, Roelofs H, Bajema IM, de Vries DK, Schaapherder AF, et al. Autologous bone marrow-derived mesenchymal stromal cells for the treatment of allograft rejection after renal transplantation: results of a phase I study. Stem Cells Transl Med. 2013;2:107–111. doi: 10.5966/sctm.2012-0114.
    1. Casiraghi F, Perico N, Cortinovis M, Remuzzi G. Mesenchymal stromal cells in renal transplantation: opportunities and challenges. Nat Rev Nephrol. 2016;12:241–253. doi: 10.1038/nrneph.2016.7.
    1. World Health Organization. Operational guidelines for ethics committees that review biomedical research. 2000. . Accessed 16 June 2017.
    1. World Health Organization WHO guiding principles on human cell, tissue and organ transplantation. Transplantation. 2010;90:229–233.
    1. Declaration of Istanbul Custodian Group. Declaration of Istanbul. 2014. . Accessed 16 June 2017.
    1. Chinese Society of Organ Transplantation, Chinese Medical Association National guidelines for donation after cardiac death in China. Hepatobiliary Pancreat Dis Int. 2013;12:234–238. doi: 10.1016/S1499-3872(13)60038-7.
    1. Deng Y, Yi S, Wang G, Cheng J, Zhang Y, Chen W, et al. Umbilical cord-derived mesenchymal stem cells instruct dendritic cells to acquire tolerogenic phenotypes through the IL-6-mediated upregulation of SOCS1. Stem Cells Dev. 2014;23:2080–2092. doi: 10.1089/scd.2013.0559.
    1. Kumar BV, Mohan T. Retrospective comparison of estimated GFR using 2006 MDRD, 2009 CKD-EPI and Cockcroft-Gault with 24 hour urine creatinine clearance. J Clin Diagn Res. 2017;11:09–12.
    1. Mallon DH, Summers DM, Bradley JA, Pettigrew GJ. Defining delayed graft function after renal transplantation: simplest is best. Transplantation. 2013;96:885–889. doi: 10.1097/TP.0b013e3182a19348.
    1. Haas M. The revised (2013) Banff classification for antibody-mediated rejection of renal allografts: update, difficulties, and future considerations. Am J Transplant. 2016;16:1352–1357. doi: 10.1111/ajt.13661.
    1. Zhou HP, Yi DH, Yu SQ, Sun GC, Cui Q, Zhu HL, et al. Administration of donor-derived mesenchymal stem cells can prolong the survival of rat cardiac allograft. Transplant Proc. 2006;38:3046–3051. doi: 10.1016/j.transproceed.2006.10.002.
    1. Casiraghi F, Azzollini N, Todeschini M, Cavinato RA, Cassis P, Solini S, et al. Localization of mesenchymal stromal cells dictates their immune or proinflammatory effects in kidney transplantation. Am J Transplant. 2012;12:2373–2383. doi: 10.1111/j.1600-6143.2012.04115.x.
    1. Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet. 2008;371:1579–1586. doi: 10.1016/S0140-6736(08)60690-X.
    1. Reinders ME, Dreyer GJ, Bank JR, Roelofs H, Heidt S, Roelen DL, et al. Safety of allogeneic bone marrow derived mesenchymal stromal cell therapy in renal transplant recipients: the neptune study. J Transl Med. 2015;13:344. doi: 10.1186/s12967-015-0700-0.
    1. Herrera M, Mirotsou M. Stem cells: potential and challenges for kidney repair. Am J Physiol Renal Physiol. 2014;306:F12–F23. doi: 10.1152/ajprenal.00238.2013.
    1. Chen C, Hou J. Mesenchymal stem cell-based therapy in kidney transplantation. Stem Cell Res Ther. 2016;7:16. doi: 10.1186/s13287-016-0283-6.
    1. Furlani D, Ugurlucan M, Ong L, Bieback K, Pittermann E, Westien I, et al. Is the intravascular administration of mesenchymal stem cells safe? Mesenchymal stem cells and intravital microscopy. Microvasc Res. 2009;77:370–376. doi: 10.1016/j.mvr.2009.02.001.
    1. Franquesa M, Hoogduijn MJ, Reinders ME, Eggenhofer E, Engela AU, Mensah FK, et al. Mesenchymal stem cells in solid organ transplantation (MiSOT) fourth meeting: lessons learned from first clinical trials. Transplantation. 2013;96:234–238. doi: 10.1097/TP.0b013e318298f9fa.
    1. Casiraghi F, Remuzzi G, Abbate M, Perico N, et al. Multipotent mesenchymal stromal cell therapy and risk of malignancies. Stem Cell Rev. 2013;9:65–79. doi: 10.1007/s12015-011-9345-4.
    1. Reinders MEJ, van Kooten C, Rabelink TJ, de Fijter JW. Mesenchymal stromal cell therapy for solid organ transplantation. Transplantation. 2018;102:35–43. doi: 10.1097/TP.0000000000001879.
    1. Wang LQ, Lin ZZ, Zhang HX, Shao B, Xiao L, Jiang HG, et al. Timing and dose regimens of marrow mesenchymal stem cell transplantation affect the outcomes and neuroinflammatory response after ischemic stroke. CNS Neurosci Ther. 2014;20:317–326. doi: 10.1111/cns.12216.
    1. Zhang S, Sun A, Xu D, Yao K, Huang Z, Jin H, et al. Impact of timing on efficacy and safety of intracoronary autologous bone marrow stem cells transplantation in acute myocardial infarction: a pooled subgroup analysis of randomized controlled trials. Clin Cardiol. 2009;32:458–466. doi: 10.1002/clc.20575.
    1. Lange C, Tögel F, Ittrich H, Clayton F, Nolte-Ernsting C, Zander AR, et al. Administered mesenchymal stem cells enhance recovery from ischemia/reperfusion-induced acute renal failure in rats. Kidney Int. 2005;68:1613–1617. doi: 10.1111/j.1523-1755.2005.00573.x.
    1. Behr L, Hekmati M, Fromont G, Borenstein N, Noel LH, Lelievre-Pegorier M, et al. Intra renal arterial injection of autologous mesenchymal stem cells in an ovine model in the postischemic kidney. Nephron Physiol. 2007;107:65–76. doi: 10.1159/000109821.
    1. Wang Y, He J, Pei X, Zhao W. Systematic review and meta-analysis of mesenchymal stem/stromal cells therapy for impaired renal function in small animal models. Nephrology (Carlton) 2013;18:201–208. doi: 10.1111/nep.12018.
    1. Ko IK, Kean TJ, Dennis JE. Targeting mesenchymal stem cells to activated endothelial cells. Biomaterials. 2009;30:3702–3710. doi: 10.1016/j.biomaterials.2009.03.038.
    1. Bruno S, Grange C, Collino F, Deregibus MC, Cantaluppi V, Biancone L, et al. Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury. PLoS ONE. 2012;7:e33115. doi: 10.1371/journal.pone.0033115.

Source: PubMed

3
Se inscrever