Multiple Sclerosis Disease-Modifying Therapy and the COVID-19 Pandemic: Implications on the Risk of Infection and Future Vaccination

Crystal Zheng, Indrani Kar, Claire Kaori Chen, Crystal Sau, Sophia Woodson, Alessandro Serra, Hesham Abboud, Crystal Zheng, Indrani Kar, Claire Kaori Chen, Crystal Sau, Sophia Woodson, Alessandro Serra, Hesham Abboud

Abstract

The coronavirus 2019 (COVID-19) pandemic is expected to linger. Decisions regarding initiation or continuation of disease-modifying therapy for multiple sclerosis have to consider the potential relevance to the pandemic. Understanding the mechanism of action and the possible idiosyncratic effects of each therapeutic agent on the immune system is imperative during this special time. The infectious side-effect profile as well as the route and frequency of administration of each therapeutic agent should be carefully considered when selecting a new treatment or deciding on risk mitigation strategies for existing therapy. More importantly, the impact of each agent on the future severe acute respiratory syndrome coronavirus type-2 (SARS-CoV-2) vaccine should be carefully considered in treatment decisions. Moreover, some multiple sclerosis therapies may have beneficial antiviral effects against SARS-CoV-2 while others may have beneficial immune-modulating effects against the cytokine storm and hyperinflammatory phase of the disease. Conventional injectables have a favorable immune profile without an increased exposure risk and therefore may be suitable for mild multiple sclerosis during the pandemic. However, moderate and highly active multiple sclerosis will continue to require treatment with oral or intravenous high-potency agents but a number of risk mitigation strategies may have to be implemented. Immune-modulating therapies such as the fumerates, sphinogosine-1P modulators, and natalizumab may be anecdotally preferred over cell-depleting immunosuppressants during the pandemic from the immune profile standpoint. Within the cell-depleting agents, selective (ocrelizumab) or preferential (cladribine) depletion of B cells may be relatively safer than non-selective depletion of lymphocytes and innate immune cells (alemtuzumab). Patients who develop severe iatrogenic or idiosyncratic lymphopenia should be advised to maintain social distancing even in areas where lockdown has been removed or ameliorated. Patients with iatrogenic hypogammaglobulinemia may require prophylactic intravenous immunoglobulin therapy in certain situations. When the future SARS-CoV-2 vaccine becomes available, patients with multiple sclerosis should be advised that certain therapies may interfere with mounting a protective immune response to the vaccine and that serological confirmation of a response may be required after vaccination. They should also be aware that most multiple sclerosis therapies are incompatible with live vaccines if a live SARS-CoV-2 vaccine is developed. In this article, we review and compare disease-modifying therapies in terms of their effect on the immune system, published infection rates, potential impact on SARS-CoV-2 susceptibility, and vaccine-related implications. We propose risk mitigation strategies and practical approaches to disease-modifying therapy during the COVID-19 pandemic.

Conflict of interest statement

CZ, IK, CKC, and CS report no financial disclosures. SW is a consultant and a speaker for Biogen, Novartis, and Sanofi-Genzyme. AS is a consultant and speaker for Biogen and is supported in part by Career Development Award #IK2RX001180 from the US Department of Veterans Affairs, Rehabilitation Research and Development Service. HA received research grants from Novartis and Genentech to conduct clinical trials. He received consulting fees from Biogen, Genentech, Alexion, and Viela Bio. He also received speaker honoraria from Biogen, Genentech, Celgene, Sanofi-Genzyme, Alexion, and Viela Bio.

Figures

Fig. 1
Fig. 1
Proposed practical approach to disease-modifying therapy (DMT) selection and risk mitigation during the coronavirus disease 2019 (COVID-19) pandemic. −ve negative, +ve positive, ALC absolute lymphocyte count, CD19 cluster of differentiation 19, DMF dimethyl fumarate, DRF diroximel fumarate, GA glatiramer acetate, Ig immunoglobulin, IVIG intravenous immunoglobulins, JCV John Cunningham virus, MS multiple sclerosis

References

    1. World Health Organization. Novel coronavirus situation report: 99. 28 April 2020. . Accessed 28 Apr 2020.
    1. Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020;38:1–9.
    1. CDC. Coronavirus disease 2019 (COVID-19). . Accessed 15 Apr 2020.
    1. MSIF. Global COVID-19 advice for people with MS. . Accessed 20 Mar 2020.
    1. National Multiple Sclerosis Society. . Accessed 20 Mar 2020.
    1. Sigrist CJ, Bridge A, Le Mercier P. A potential role for integrins in host cell entry by SARS-CoV-2. Antivir Res. 2020;177:104759. doi: 10.1016/j.antiviral.2020.104759.
    1. Cheng C, Xiaorong Z, Zhenyu J, et al. Research progress on the mechanism of cytokine storm induced by new coronavirus pneumonia and related immunotherapy. Zhonghua Shao Shang Za Zhi. 2020;36:E005.
    1. Vabret N, Britton GJ, Gruber C, et al. Immunology of COVID-19: current state of the science. Immunity. 2020;52(6):910–941. doi: 10.1016/j.immuni.2020.05.002.
    1. Diao B, Wang C, Tan Y, et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19) Front Immunol. 2020;11:827. doi: 10.3389/fimmu.2020.00827.
    1. Ju B, Zhang Q, Ge J, et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature. 2020 doi: 10.1038/s41586-020-2380-z.
    1. Soresina A, Moratto D, Chiarini M, et al. Two X-linked agammaglobulinemia patients develop pneumonia as COVID-19 manifestation but recover. Pediatr Allergy Immunol. 2020 doi: 10.1111/pai.13263.
    1. Quinti I, Lougaris V, Milito C, et al. A possible role for B cells in COVID-19? Lesson from patients with agammaglobulinemia. J Allergy Clin Immunol. 2020;146(1):211–213.e4. doi: 10.1016/j.jaci.2020.04.013.
    1. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–1034. doi: 10.1016/S0140-6736(20)30628-0.
    1. Pedersen SF, Ho YC. SARS-CoV-2: a storm is raging. J Clin Investig. 2020;130(5):2202–2205. doi: 10.1172/JCI137647.
    1. Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020 doi: 10.1093/cid/ciaa248.
    1. Wu D, Yang XO. TH17 responses in cytokine storm of COVID-19: an emerging target of JAK2 inhibitor Fedratinib. J Microbiol Immunol Infect. 2020;53(3):368–370. doi: 10.1016/j.jmii.2020.03.005.
    1. Zhou Y, Fu B, Zheng X, Wang D, Zhao C, Qi Y, et al. Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients. Natl Sci Rev. 2020 doi: 10.1093/nsr/nwaa041.
    1. Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Investig. 2020;130(5):2620–2629. doi: 10.1172/JCI137244.
    1. Thanh Le T, Andreadakis Z, Kumar A, et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discov. 2020 doi: 10.1038/d41573-020-00073-5.
    1. Jackson LA, Anderson EJ, Rouphael NG, et al. An mRNA vaccine against SARS-CoV-2: preliminary report. N Engl J Med. 2020 doi: 10.1056/nejmoa2022483.
    1. Kieseier BC. The mechanism of action of interferon-β in relapsing multiple sclerosis. CNS Drugs. 2011;25(6):491–502. doi: 10.2165/11591110-000000000-00000.
    1. Avonex (interferon beta-1a) [prescribing information]. Cambridge (MA): Biogen Idec Inc.; February 2012. . Accessed 28 July 2020.
    1. Betaseron (interferon beta-1b) [prescribing information]. Whippany (NJ): Bayer Healthcare Pharmaceuticals Inc.; April 2016. . Accessed 28 July 2020.
    1. Winkelmann A, Loebermann M, Reisinger EC, et al. Multiple sclerosis treatment and infectious issues: update 2013. Clin Exp Immunol. 2014;175(3):425–438. doi: 10.1111/cei.12226.
    1. Hung IF, Lung KC, Tso EY, et al. Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet. 2020;395(10238):1695–1704. doi: 10.1016/S0140-6736(20)31042-4.
    1. Schwid SR, Decker MD, Lopez-Bresnahan M, Rebif-Influenza Vaccine Study Investigators Immune response to influenza vaccine is maintained in patients with multiple sclerosis receiving interferon beta-1a. Neurology. 2005;65(12):1964–1966. doi: 10.1212/01.wnl.0000188901.12700.e0.
    1. Cohen JA, Barkhof F, Comi G, et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med. 2010;362:402–415. doi: 10.1056/NEJMoa0907839.
    1. Hauser SL, Bar-Or A, Comi G, et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. 2017;376(3):221–234. doi: 10.1056/NEJMoa1601277.
    1. Cross AH, Naismith RT. Established and novel disease-modifying treatments in multiple sclerosis. J Intern Med. 2014;275(4):350–363. doi: 10.1111/joim.12203.
    1. Copaxome (glatiramer acetate) [prescribing information]. 11 March 2014. Oakland Park (KS): Teva Neuroscience Inc.; January 2018. . Accessed 28 July 2020.
    1. Pellegrino P, Carnovale C, Perrone V, et al. Efficacy of vaccination against influenza in patients with multiple sclerosis: the role of concomitant therapies. Vaccine. 2014;32(37):4730–4735. doi: 10.1016/j.vaccine.2014.06.068.
    1. Metze C, Winkelmann A, Loebermann M, et al. Immunogenicity and predictors of response to a single dose trivalent seasonal influenza vaccine in multiple sclerosis patients receiving disease-modifying therapies. CNS Neurosci Ther. 2019;25(2):245–254. doi: 10.1111/cns.13034.
    1. Olberg HK, Eide GE, Cox RJ, et al. Antibody response to seasonal influenza vaccination in patients with multiple sclerosis receiving immunomodulatory therapy. Eur J Neurol. 2018;25(3):527–534. doi: 10.1111/ene.13537.
    1. Fox RJ, Miller DH, Phillips JT, et al. Placebo controlled, phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med. 2012;367:1087–1097. doi: 10.1056/NEJMoa1206328.
    1. Paolicelli D, Manni A, Iaffaldano A, Trojano M. Efficacy and safety of oral therapies for relapsing-remitting multiple sclerosis. CNS Drugs. 2020;34(1):65–92. doi: 10.1007/s40263-019-00691-7.
    1. Aubagio (teriflunomide) [prescribing information]. Cambridge (MA): Genzyme Corporation; September 2012. . Accessed 28 July 2020.
    1. Gilli F, Li L, Royce DB, et al. Treatment of Theiler’s virus-induced demyelinating disease with teriflunomide. J Neurovirol. 2017;23(6):825–838. doi: 10.1007/s13365-017-0570-8.
    1. Bowen JD, Brink J, Brown TR, et al. COVID-19 in MS: initial observations from the Pacific Northwest. Neurol Neuroimmunol Neuroinflamm. 2020;7(5):e783. doi: 10.1212/NXI.0000000000000783.
    1. Maghzi AH, Houtchens MK, Preziosa P, et al. COVID-19 in teriflunomide-treated patients with multiple sclerosis. J Neurol. 2020 doi: 10.1007/s00415-020-09944-8.
    1. Möhn N, Saker F, Bonda V, et al. Mild COVID-19 symptoms despite treatment with teriflunomide and high-dose methylprednisolone due to multiple sclerosis relapse. J Neurol. 2020 doi: 10.1007/s00415-020-09921-1.
    1. Luca B, Tommaso G, Bavaro DF, et al. Seroconversion and indolent course of COVID-19 in patients with multiple sclerosis treated with fingolimod and teriflunomide. J Neurol Sci. 2020;416:117011. doi: 10.1016/j.jns.2020.117011.
    1. Nesbitt C, Rath L, Yeh WZ, et al. MSCOVID19: using social media to achieve rapid dissemination of health information. Mult Scler Relat Disord. 2020;45:102338. doi: 10.1016/j.msard.2020.102338.
    1. Bar-Or A, Freedman MS, Kremenchutzky M, et al. Teriflunomide effect on immune response to influenza vaccine in patients with multiple sclerosis. Neurology. 2013;81(6):552–558. doi: 10.1212/WNL.0b013e31829e6fbf.
    1. O’Connor P, Wolinsky JS, Confavreux C, et al. Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N Engl J Med. 2011;365(14):1293–1303. doi: 10.1056/NEJMoa1014656.
    1. Confavreux C, O’Connor P, Comi G, et al. Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): a randomized, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol. 2014;13(3):247–256. doi: 10.1016/S1474-4422(13)70308-9.
    1. Naismith RT, Wundes A, Ziemssen T, et al. Diroximel fumarate demonstrates an improved gastrointestinal tolerability profile compared with dimethyl fumarate in patients with relapsing-remitting multiple sclerosis: results from the randomized, double-blind, phase III EVOLVE-MS-2 study. CNS Drugs. 2020;34(2):185–196. doi: 10.1007/s40263-020-00700-0.
    1. Fox RJ, Chan A, Gold R, et al. Characterizing absolute lymphocyte count profiles in dimethyl fumarate-treated patients with MS: patient management considerations. Neurol Clin Pract. 2016;6(3):220–229. doi: 10.1212/CPJ.0000000000000238.
    1. Vumerity (diroximel fumarate) [prescribing information]. Waltham (MA): Alkermes Inc.; October 2019. . Accessed 28 July 2020.
    1. Diebold M, Altersberger V, Décard BF, Kappos L, Derfuss T, Lorscheider J. A case of progressive multifocal leukoencephalopathy under dimethyl fumarate treatment without severe lymphopenia or immunosenescence. Mult Scler. 2019;25(12):1682–1685. doi: 10.1177/1352458519852100.
    1. Mantero V, Abate L, Basilico P, et al. COVID-19 in dimethyl fumarate-treated patients with multiple sclerosis. J Neurol. 2020 doi: 10.1007/s00415-020-10015-1.
    1. Von Hehn C, Howard J, Liu S, et al. Immune response to vaccines in maintained in patients treated with dimethyl fumarate. Neurol Neuroimmunol Neuroinflamm. 2018;5(1):e409. doi: 10.1212/NXI.0000000000000409.
    1. Cohen JA, Comi G, Selmaj KW, et al. Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (RADIANCE): a multicentre, randomised, 24-month, phase 3 trial. Lancet Neurol. 2019;18(11):1021–1033. doi: 10.1016/S1474-4422(19)30238-8.
    1. Gilenya (fingolimod) [prescribing information]. East Hanover (NJ): Novartis Pharmaceutical Corporation; May 2012. . Accessed 28 July 2020.
    1. Mayzent (siponimod) [prescribing information]. East Hanover (NJ): Novartis Pharmaceutical Corporation; March 2019. . Accessed 28 July 2020.
    1. Zeposia (ozanimod) [prescribing information]. Summit (NJ): Celgene Corporation; March 2020. . Accessed 28 July 2020.
    1. Gomez-Mayordomo V, Montero-Escribano P, Matías-Guiu JA, González-García N, Porta-Etessam J, Matías-Guiu J. Clinical exacerbation of SARS-CoV2 infection after fingolimod withdrawal. J Med Virol. 2020 doi: 10.1002/jmv.26279.
    1. Valencia-Sanchez C, Wingerchuk DM. A fine balance: immunosuppression and immunotherapy in a patient with multiple sclerosis and COVID-19. Mult Scler Relat Disord. 2020;42:102182. doi: 10.1016/j.msard.2020.102182.
    1. Fox EJ, Buckle GJ, Singer B, Singh V, Boster A. Lymphopenia and DMTs for relapsing forms of MS: considerations for the treating neurologist [published correction appears in Neurol Clin Pract. 2019 Jun;9(3):184] Neurol Clin Pract. 2019;9(1):53–63. doi: 10.1212/CPJ.0000000000000567.
    1. Barry B, Erwin AA, Stevens J, et al. Fingolimod rebound: a review of the clinical experience and management considerations. Neuro Ther. 2019;8:241–250. doi: 10.1007/s40120-019-00160-9.
    1. Barzegar M, Mirmosayyeb O, Nehzat N, et al. COVID-19 infection in a patient with multiple sclerosis treated with fingolimod. Neurol Neuroimmunol Neuroinflamm. 2020;7(4):e753. doi: 10.1212/NXI.0000000000000753/.
    1. Foerch C, Friedauer L, Bauer B, Wolf T, Adam EH. Severe COVID-19 infection in a patient with multiple sclerosis treated with fingolimod. Mult Scler Relat Disord. 2020;42:102180. doi: 10.1016/j.msard.2020.102180.
    1. Chiarini M, Paghera S, Moratto D, et al. Immunologic characterization of a immunosuppressed multiple sclerosis patient that recovered from SARS-CoV-2 infection. J Neuroimmunol. 2020;345:577282. doi: 10.1016/j.jneuroim.2020.577282.
    1. Kappos L, Mehling M, Arroyo R, et al. Randomized trial of vaccination in fingolimod-treated patients with multiple sclerosis. Neurology. 2015;84(9):872–879. doi: 10.1212/WNL.0000000000001302.
    1. Tysabri (natalizumab) [prescribing information]. Cambridge (MA): Biogen Idec Inc.; August 2019. . Accessed 28 July 2020.
    1. Vågberg M, Kumlin U, Svenningsson A. Humoral immune response to influenza vaccine in natalizumab-treated MS patients. Neurol Res. 2012;34(7):730–733. doi: 10.1179/1743132812Y.0000000059.
    1. Giovannoni G, Hawkes C, Lechner-Scott J, Levy M, Waubant E, Gold J. The COVID-19 pandemic and the use of MS disease-modifying therapies. Mult Scler Relat Disord. 2020;39:102073. doi: 10.1016/j.msard.2020.102073.
    1. Zhovtis Ryerson L, Frohman TC, Foley J, et al. Extended interval dosing of natalizumab in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2016;87(8):885–889. doi: 10.1136/jnnp-2015-312940.
    1. Borriello G, Ianniello A. COVID-19 occurring during Natalizumab treatment: a case report in a patient with extended interval dosing approach. Mult Scler Relat Disord. 2020;41:102165. doi: 10.1016/j.msard.2020.102165.
    1. Aguirre C, Meca-Lallana V, Barrios-Blandino A, Del Río B, Vivancos J. Covid-19 in a patient with multiple sclerosis treated with natalizumab: may the blockade of integrins have a protective role? Mult Scler Relat Disord. 2020;44:102250. doi: 10.1016/j.msard.2020.102250.
    1. Montalban X, Hauser SL, Kappos L, et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med. 2017;376(3):209–220. doi: 10.1056/NEJMoa1606468.
    1. Derfuss T, Weber MS, Hughes R, et al. Serum immunoglobulin levels and risk of serious infections in the pivotal phase III trials of ocrelizumab in multiple sclerosis and their open-label extensions. Paper presented at the 2019 European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS) annual meeting, Stockholm, 11–13 Sept 2019.
    1. Roberts DM, Jones RB, Smith RM, et al. Rituximab-associated hypogammaglobulinemia: incidence, predictors and outcomes in patients with multi-system autoimmune disease. J Autoimmun. 2015;57:60–65. doi: 10.1016/j.jaut.2014.11.009.
    1. Ocrevus (ocrelizumab) [prescribing information]. South San Francisco (CA): Genentech Inc.; March 2017. . Accessed 28 July 2020.
    1. Chen X, Jensen PE. The role of B lymphocytes as antigen-presenting cells. Arch Immunol Ther Exp (Warsz) 2008;56(2):77–83. doi: 10.1007/s00005-008-0014-5.
    1. Safavi F, Nourbakhsh B, Azimi AR. B-cell depleting therapies may affect susceptibility to acute respiratory illness among patients with multiple sclerosis during the early COVID-19 epidemic in Iran. Mult Scler Relat Disord. 2020;43:102195. doi: 10.1016/j.msard.2020.102195.
    1. Meca-Lallana V, Aguirre C, Río B, Cardeñoso L, Alarcon T, Vivancos J. COVID-19 in 7 multiple sclerosis patients in treatment with ANTI-CD20 therapies. Mult Scler Relat Disord. 2020;44:102306. doi: 10.1016/j.msard.2020.102306.
    1. Thornton JR, Harel A. Negative SARS-CoV-2 antibody testing following COVID-19 infection in two MS patients treated with ocrelizumab. Mult Scler Relat Disord. 2020;44:102341. doi: 10.1016/j.msard.2020.102341.
    1. Lucchini M, Bianco A, Del Giacomo P, De Fino C, Nociti V, Mirabella M. Is serological response to SARS-CoV-2 preserved in MS patients on ocrelizumab treatment? A case report. Mult Scler Relat Disord. 2020;44:102323. doi: 10.1016/j.msard.2020.102323.
    1. Conte WL. Attenuation of antibody response to SARS-CoV-2 in a patient on ocrelizumab with hypogammaglobulinemia. Mult Scler Relat Disord. 2020;44:102315. doi: 10.1016/j.msard.2020.102315.
    1. Van Assen S, Holvast A, Benne CA, et al. Humoral responses after influenza vaccination are severely reduced in patients with rheumatoid arthritis treated with rituximab. Arthritis Rheum. 2010;62:75–81. doi: 10.1002/art.25033.
    1. Hughes R, Pedotti R, Koendgen H. COVID-19 in persons with multiple sclerosis treated with ocrelizumab: a pharmacovigilance case series. Mult Scler Relat Disord. 2020 doi: 10.1016/j.msard.2020.102192.
    1. Montero-Escribano P, Matías-Guiu J, Gómez-Iglesias P, Porta-Etessam J, Pytel V, Matias-Guiu JA. Anti-CD20 and COVID-19 in multiple sclerosis and related disorders: a case series of 60 patients from Madrid, Spain. Mult Scler Relat Disord. 2020;42:102185. doi: 10.1016/j.msard.2020.102185.
    1. Novi G, Mikulska M, Briano F, et al. COVID-19 in a MS patient treated with ocrelizumab: does immunosuppression have a protective role? Mult Scler Relat Disord. 2020;42:102120. doi: 10.1016/j.msard.2020.102120.
    1. Ghajarzadeh M, Mirmosayyeb O, Barzegar M, et al. Favorable outcome after COVID-19 infection in a multiple sclerosis patient initiated on ocrelizumab during the pandemic. Mult Scler Relat Disord. 2020;43:102222. doi: 10.1016/j.msard.2020.102222.
    1. Gross CC, Ahmetspahic D, Ruck T, et al. Alemtuzumab treatment alters circulating innate immune cells in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2016;3(6):e289. doi: 10.1212/NXI.0000000000000289.
    1. Lemtrada (alemtuzumab) [prescribing information]. Cambridge (MA): Genzyme Corporation; October 2017. . Accessed 28 July 2020.
    1. Guevara C, Villa E, Cifuentes M, Naves R, Grazia J. Mild COVID-19 infection in a patient with multiple sclerosis and severe depletion of T-lymphocyte subsets due to alemtuzumab. Mult Scler Relat Disord. 2020;44:102314. doi: 10.1016/j.msard.2020.102314.
    1. Carandini T, Pietroboni AM, Sacchi L, et al. Alemtuzumab in multiple sclerosis during the COVID-19 pandemic: a mild uncomplicated infection despite intense immunosuppression. Mult Scler. 2020 doi: 10.1177/1352458520926459.
    1. Matías-Guiu J, Montero-Escribano P, Pytel V, Porta-Etessam J, Matias-Guiu JA. Potential COVID-19 infection in patients with severe multiple sclerosis treated with alemtuzumab. Mult Scler Relat Disord. 2020;11(44):102297. doi: 10.1016/j.msard.2020.102297.
    1. Brownlee W, Bourdette D, Broadley S, Killestein J, Ciccarelli O. Treating multiple sclerosis and neuromyelitis optica spectrum disorder during the COVID-19 pandemic. Neurology. 2020;94(22):949–952. doi: 10.1212/WNL.0000000000009507.
    1. . Accessed 10 July 2020.
    1. Durand-Dubief F, Marignier R, Berthezene Y, Cottin J, Nighoghossian N, et al. Spontaneous multiple cervical artery dissections after alemtuzumab. Mult Scler. 2020;26(3):381–383. doi: 10.1177/1352458519828663.
    1. FDA Drug Safety Communication. FDA warns about rare but serious risks of stroke and blood vessel wall tears with multiple sclerosis drug Lemtrada (alemtuzumab). . Accessed 10 July 2020.
    1. Oxley TJ, Mocco J, Majidi S, et al. Large-vessel stroke as a presenting feature of Covid-19 in the young. N Engl J Med. 2020;382(20):e60. doi: 10.1056/NEJMc2009787.
    1. Giovannoni G, Comi G, Cook S, et al. A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N Engl J Med. 2010;362(5):416–426. doi: 10.1056/NEJMoa0902533.
    1. Giovannoni G. Cladribine to treat relapsing forms of multiple sclerosis. Neurotherapeutics. 2017;14(4):874–887. doi: 10.1007/s13311-017-0573-4.
    1. Mavenclad (cladribine) [prescribing information]. Rockland (MA): EMD Serono Inc.; 2019. . Accessed 28 July 2020.
    1. Stuve O, Soelberg Soerensen P, Leist T, et al. Effects of cladribine tablets on lymphocyte subsets in patients with multiple sclerosis: an extended analysis of surface markers. Ther Adv Neurol Disord. 2019;12:1756286419854986. doi: 10.1177/1756286419854986.
    1. Dalla Costa G, Leocani L, Montalban X, et al. Real-time assessment of COVID-19 prevalence among multiple sclerosis patients: a multicenter European study. Neurol Sci. 2020 doi: 10.1007/s10072-020-04519-x.
    1. Sormani MP. Italian Study Group on COVID-19 infection in multiple sclerosis. An Italian programme for COVID-19 infection in multiple sclerosis [published correction appears in Lancet Neurol. 2020 May 28] Lancet Neurol. 2020;19(6):481–482. doi: 10.1016/s1474-4422(20)30147-2.
    1. Louapre C, Collongues N, Stankoff B, et al. Clinical characteristics and outcomes in patients with coronavirus disease 2019 and multiple sclerosis. JAMA Neurol. 2020 doi: 10.1001/jamaneurol.2020.2581.

Source: PubMed

3
Se inscrever