Focus on the Primary Prevention of Intrauterine Adhesions: Current Concept and Vision

Wen-Ling Lee, Chia-Hao Liu, Min Cheng, Wen-Hsun Chang, Wei-Min Liu, Peng-Hui Wang, Wen-Ling Lee, Chia-Hao Liu, Min Cheng, Wen-Hsun Chang, Wei-Min Liu, Peng-Hui Wang

Abstract

Intrauterine adhesion (IUA), and its severe form Asherman syndrome (Asherman's syndrome), is a mysterious disease, often accompanied with severe clinical problems contributing to a significant impairment of reproductive function, such as menstrual disturbance (amenorrhea), infertility or recurrent pregnancy loss. Among these, its correlated infertility may be one of the most challenging problems. Although there are many etiologies for the development of IUA, uterine instrumentation is the main cause of IUA. Additionally, more complicated intrauterine surgeries can be performed by advanced technology, further increasing the risk of IUA. Strategies attempting to minimize the risk and reducing its severity are urgently needed. The current review will expand the level of our knowledge required to face the troublesome disease of IUA. It is separated into six sections, addressing the introduction of the normal cyclic endometrial repairing process and its abruption causing the formation of IUA; the etiology and prevalence of IUA; the diagnosis of IUA; the classification of IUA; the pathophysiology of IUA; and the primary prevention of IUA, including (1) delicate surgical techniques, such as the use of surgical instruments, energy systems, and pre-hysteroscopic management, (2) barrier methods, such as gels, intrauterine devices, intrauterine balloons, as well as membrane structures containing hyaluronate-carboxymethylcellulose or polyethylene oxide-sodium carboxymethylcellulose as anti-adhesive barrier.

Keywords: endometrium; hysteroscopic surgery; intrauterine adhesion; pathophysiology; prevention.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Three proposed key components of endometrial biology are present to maintain normal uterine physiology.
Figure 2
Figure 2
The pathophysiology of change in intrauterine adhesion.
Figure 3
Figure 3
The recent development of agents available for the primary prevention of intrauterine adhesions after uterine surgery.

References

    1. Owusu-Akyaw A., Krishnamoorthy K., Goldsmith L.T., Morelli S.S. The role of mesenchymal-epithelial transition in endometrial function. Hum. Reprod. Update. 2019;25:114–133. doi: 10.1093/humupd/dmy035.
    1. Torres-De La Roche L.A., Campo R., Devassy R., Di Spiezio Sardo A., Hooker A., Koninckx P., Urman B., Wallwiener M., De Wilde R.L. Adhesions and anti-adhesion systems highlights. Facts Views Vis. ObGyn. 2019;11:137–149.
    1. Evans J., Salamonsen L.A., Winship A., Menkhorst E., Nie G., Gargett C.E., Dimitriadis E. Fertile ground: Human endometrial programming and lessons in health and disease. Nat. Rev. Endocrinol. 2016;12:654–667. doi: 10.1038/nrendo.2016.116.
    1. Weimar C.H., Macklon N.S., Post Uiterweer E.D., Brosens J.J., Gellersen B. The motile and invasive capacity of human endometrial stromal cells: Implications for normal and impaired reproductive function. Hum. Reprod. Update. 2013;19:542–557. doi: 10.1093/humupd/dmt025.
    1. Jiang D., Rinkevich Y. Scars or regeneration?—Dermal fibroblasts as drivers of diverse skin wound responses. Int. J. Mol. Sci. 2020;21:617. doi: 10.3390/ijms21020617.
    1. El Ayadi A., Jay J.W., Prasai A. Current approaches targeting the wound healing phases to attenuate fibrosis and scarring. Int. J. Mol. Sci. 2020;21:1105. doi: 10.3390/ijms21031105.
    1. Akita S. Wound repair and regeneration: Mechanisms, signaling. Int. J. Mol. Sci. 2019;20:6328. doi: 10.3390/ijms20246328.
    1. Ogawa R. Recent advances in scar biology. Int. J. Mol. Sci. 2018;19:1749. doi: 10.3390/ijms19061749.
    1. Wang P.H., Huang B.S., Horng H.C., Yeh C.C., Chen Y.J. Wound healing. J. Chin. Med. Assoc. 2018;81:94–101. doi: 10.1016/j.jcma.2017.11.002.
    1. Horng H.C., Chang W.H., Yeh C.C., Huang B.S., Chang C.P., Chen Y.J., Tsui K.H., Wang P.H. Estrogen effects on wound healing. Int. J. Mol. Sci. 2017;18:2325. doi: 10.3390/ijms18112325.
    1. Marquardt R.M., Kim T.H., Shin J.H., Jeong J.W. Progesterone and estrogen signaling in the endometrium: What goes wrong in endometriosis? Int. J. Mol. Sci. 2019;20:3822. doi: 10.3390/ijms20153822.
    1. Wang P.H. Endometrial receptivity and adenomyosis. Taiwan. J. Obstet. Gynecol. 2018;57:625–626. doi: 10.1016/j.tjog.2018.08.002.
    1. Lai T.H., Chang F.W., Lin J.J., Ling Q.D. Endometrial L-selectin ligand is downregulated in the mid-secretory phase during the menstrual cycle in women with adenomyosis. Taiwan. J. Obstet. Gynecol. 2018;57:507–516. doi: 10.1016/j.tjog.2018.06.005.
    1. Chen J.X., Yi X.J., Gu P.L., Gao S.X. The role of KDR in intrauterine adhesions may involve the TGF-β1/Smads signaling pathway. Braz. J. Med. Biol Res. 2019;52:e8324. doi: 10.1590/1414-431x20198324.
    1. Kwack J.Y., Lee S.J., Kwon Y.S. Pregnancy and delivery outcomes in the women who have received adenomyomectomy: Performed by a single surgeon by a uniform surgical technique. Taiwan. J. Obstet. Gynecol. 2021;60:99–102. doi: 10.1016/j.tjog.2020.11.015.
    1. Nakamura K., Kusama K., Suda Y., Fujiwara H., Hori M., Imakawa K. Emerging role of extracellular vesicles in embryo-mternal communication throughout implantation processes. Int. J. Mol. Sci. 2020;21:5523. doi: 10.3390/ijms21155523.
    1. Fujiwara H., Ono M., Sato Y., Imakawa K., Iizuka T., Kagami K., Fujiwara T., Horie A., Tani H., Hattori A., et al. Promoting Roles of embryonic signals in embryo implantation and placentation in cooperation with endocrine and immune systems. Int. J. Mol. Sci. 2020;21:1885. doi: 10.3390/ijms21051885.
    1. Wu Y., Sun L.F., Si Y.N., Luan X.L., Gao Y.M. Clinical efficacy analysis of different therapeutic methods in patients with cesarean scar pregnancy. Taiwan. J. Obstet. Gynecol. 2021;60:498–502. doi: 10.1016/j.tjog.2021.03.019.
    1. Yildirim G.Y., Koroglu N., Akca A., Talmac M., Dikmen S., Yıldırım G., Polat I., Ozdemir I. What is new in peripartum hysterectomy? A seventeen year experience in a tertiary hospital. Taiwan. J. Obstet. Gynecol. 2021;60:95–98. doi: 10.1016/j.tjog.2020.11.014.
    1. Zhang L.P., Wang M., Shang X., Zhang Q., Yang B.J., Xu Y., Li J.H., Feng L.M. The incidence of placenta related disease after the hysteroscopic adhesiolysis in patients with intrauterine adhesions. Taiwan. J. Obstet. Gynecol. 2020;59:575–579. doi: 10.1016/j.tjog.2020.05.018.
    1. Horng H.C., Lai M.J., Chang W.H., Wang P.H. Placenta accreta spectrum (PAS) and peripartum hysterectomy. Taiwan. J. Obstet. Gynecol. 2021;60:395–396. doi: 10.1016/j.tjog.2021.03.001.
    1. Guarga Montori M., Álvarez Martínez A., Luna Álvarez C., Abadía Cuchí N., Mateo Alcalá P., Ruiz-Martínez S. Advanced maternal age and adverse pregnancy outcomes: A cohort study. Taiwan. J. Obstet. Gynecol. 2021;60:119–124. doi: 10.1016/j.tjog.2020.11.018.
    1. Li B., Zhang Q., Sun J., Lai D. Human amniotic epithelial cells improve fertility in an intrauterine adhesion mouse model. Stem. Cell Res. Ther. 2019;10:257. doi: 10.1186/s13287-019-1368-9.
    1. Yan Y., Xu D. The Effect of adjuvant treatment to prevent and treat intrauterine adhesions: A network meta-analysis of randomized controlled trials. J. Minim. Invasive Gynecol. 2018;25:589–599. doi: 10.1016/j.jmig.2017.09.006.
    1. Muneer A., Macrae B., Krishnamoorthy S., Zumla A. Urogenital tuberculosis—Epidemiology, pathogenesis and clinical features. Nat. Rev. Urol. 2019;16:573–598. doi: 10.1038/s41585-019-0228-9.
    1. Yu D., Wong Y.M., Cheong Y., Xia E., Li T.C. Asherman syndrome-one century later. Fertil. Steril. 2008;89:759–779. doi: 10.1016/j.fertnstert.2008.02.096.
    1. March C.M. Management of Asherman’s syndrome. Rerpod. Biomed. Online. 2011;23:63–76. doi: 10.1016/j.rbmo.2010.11.018.
    1. Dreisler E., Kjer J.J. Asherman’s syndrome: Current perspectives on diagnosis and management. Int. J. Womens Health. 2019;11:191–198. doi: 10.2147/IJWH.S165474.
    1. Deans R., Abbott J. Review of intrauterine adhesions. J. Minim. Invasive Gynecol. 2010;17:555–569. doi: 10.1016/j.jmig.2010.04.016.
    1. Doroftei B., Dabuleanu A.M., Ilie O.D., Maftei R., Anton E., Simionescu G., Matei T., Armeanu T. Mini-review of the new therapeutic possibilities in Asherman syndrome—Where are we after one hundred and twenty-six years? Diagnostics. 2020;10:706. doi: 10.3390/diagnostics10090706.
    1. Wang Y.Q., Song X.H., Wu S.L., Huang Y.Z., Yan L., Li C.Z. Comparison of autocross-linked hyaluronic acid gel and intrauterine device for preventing intrauterine adhesions in infertile patients: A randomized clinical trial. Gynecol. Minim. Invasive Ther. 2020;9:74–80.
    1. Van Wessel S., Hamerlynck T., Schutyser V., Tomassetti C., Wyns C., Nisolle M., Verguts J., Colman R., Weyers S., Bosteels J. Anti-adhesion gel versus no gel following operative hysteroscopy prior to subsequent fertility treatment or timed InterCourse (AGNOHSTIC), a randomised controlled trial: Protocol. Hum. Reprod. Open. 2021;2021:hoab001. doi: 10.1093/hropen/hoab001.
    1. Fritsch H. Ein Fall von volligen Schwund der Gebaumutterhohle nach Auskratzung. Zent. Gynaekol. 1894;18:1337–1342.
    1. Asherman J.G. Amenorrhoea traumatica (atretica) J. Obstet. Gynaecol. Br. Emp. 1948;55:23–27. doi: 10.1111/j.1471-0528.1948.tb07045.x.
    1. Tu C.H., Yang X.L., Qin X.Y., Cai L.P., Zhang P. Management of intrauterine adhesions: A novel intrauterine device. Med. Hypothesis. 2013;81:394–396. doi: 10.1016/j.mehy.2013.05.028.
    1. Hooker A.B., Lemmers M., Thurkow A.L., Heymans M.W., Opmeer B.C., Brolmann H.A.M., Mol B.W., Huirne J.A.F. Systematic review and meta-analysis of intrauterine adhesions after miscarriage: Prevalence, risk factors and long-term reproductive outcome. Hum. Reprod. Update. 2014;20:262–278. doi: 10.1093/humupd/dmt045.
    1. Chiu C.S., Hwu Y.M., Lee R.K., Lin M.H. Intrauterine adhesion prevention with Malecot catheter after hysteroscopic myomectomy: A novel approach. Taiwan. J. Obstet. Gynecol. 2020;59:56–60. doi: 10.1016/j.tjog.2019.11.008.
    1. Liao W.L., Ying T.H., Shen H.P., Wu P.J. Combined treatment for big submucosal myoma with High Intensity Focused Ultrasound and hysteroscopic resection. Taiwan. J. Obstet. Gynecol. 2019;58:888–890. doi: 10.1016/j.tjog.2019.04.001.
    1. Yang J.H., Chen M.J., Chen C.D., Chen S.U., Ho H.N., Yang Y.S. Optimal waiting period for subsequent fertility treatment after various hysteroscopic surgeries. Fertil. Steril. 2013;99:2092–2096.e3. doi: 10.1016/j.fertnstert.2013.01.137.
    1. Yang J.H., Chen M.J., Wu M.Y., Chao K.H., Ho H.N., Yang Y.S. Office hysteroscopic early lysis of intrauterine adhesion after transcervical resection of multiple apposing submucous myomas. Fertil. Steril. 2008;89:1254–1259. doi: 10.1016/j.fertnstert.2007.05.027.
    1. Mettler L., Schollmeyer T., Tinelli A., Malvasi A., Alkatout I. Complications of uterine fibroids and their management, surgical management of fibroids, laparoscopy and hysteroscopy versus hysterectomy, haemorrhage, adhesions, and complications. Obstet. Gynecol. Int. 2012;2012:791248. doi: 10.1155/2012/791248.
    1. Taskin O., Sadik S., Onoglu A., Gokdeniz R., Erturan E., Burak F., Wheeler J.M. Role of endometrial suppression on the frequency of intrauterine adhesions after resectoscopic surgery. J. Am. Assoc. Gynecol. Laparosc. 2000;7:351–354. doi: 10.1016/S1074-3804(05)60478-1.
    1. Di Guardo F., Della Corte L., Vilos G.A., Carugno J., Török P., Giampaolino P., Manchanda R., Vitale S.G. Evaluation and treatment of infertile women with Asherman syndrome: An updated review focusing on the role of hysteroscopy. Reprod. Biomed. Online. 2020;41:55–61. doi: 10.1016/j.rbmo.2020.03.021.
    1. Passos I.M.P.E., Britto R.L. Diagnosis and treatment of Mullerian malformations. Taiwan. J. Obstet. Gynecol. 2020;59:183–188. doi: 10.1016/j.tjog.2020.01.003.
    1. Sao C.H., Chan-Tioplanco M., Chung K.C., Chen Y.J., Horng H.C., Lee W.L., Wang P.H. Pain after laparoscopic surgery: Focus on shoulder-tip pain after gynecological laparoscopic surgery. J. Chin. Med. Assoc. 2019;82:819–826. doi: 10.1097/JCMA.0000000000000190.
    1. Lin S., Xie X., Guo Y., Zhang H., Liu C., Yi J., Su Y., Deng Q., Zhu W. Clinical characteristics and pregnancy outcomes of infertile patients with endometriosis and endometrial polyps: A retrospective cohort study. Taiwan. J. Obstet. Gynecol. 2020;59:916–921. doi: 10.1016/j.tjog.2020.09.020.
    1. Fedele L., Bianchi S., Dorta M., Vignali M. Intrauterine adhesions: Detection with transvaginal US. Radiology. 1996;199:757–759. doi: 10.1148/radiology.199.3.8638001.
    1. Roma Dalfó A., Ubeda B., Ubeda A., Monzón M., Rotger R., Ramos R., Palacio A. Diagnostic value of hysterosalpingography in the detection of intrauterine abnormalities: A comparison with hysteroscopy. AJR Am. J. Roentgenol. 2004;183:1405–1409. doi: 10.2214/ajr.183.5.1831405.
    1. Berridge D.L., Winter T.C. Saline infusion sonohysterography: Technique, indications, and imaging findings. J. Ultrasound. Med. 2004;23:97–112. doi: 10.7863/jum.2004.23.1.97.
    1. Lee F.K., Lee W.L., Wang P.H. Is hysterosalpingography a good tool to confirm the patency of tubes. J. Chin. Med. Assoc. 2017;80:275–276. doi: 10.1016/j.jcma.2016.10.006.
    1. Kim M.J., Lee Y., Lee C., Chun S., Kim A., Kim H.Y., Lee J.Y. Accuracy of three dimensional ultrasound and treatment outcomes of intrauterine adhesion in infertile women. Taiwan. J. Obstet. Gynecol. 2015;54:737–741. doi: 10.1016/j.tjog.2015.10.011.
    1. Nasr A.L., Al-Inany H.G., Thabet S.M., Aboulghar M. A clinicohysteroscopic scoring system of intrauterine adhesions. Gynecol. Obstet. Investig. 2000;50:178–181. doi: 10.1159/000010305.
    1. The American Fertility Society classifications of adnexal adhesions, distal tubal occlusion, tubal occlusion secondary to tubal ligation, tubal pregnancies, Müllerian anomalies and intrauterine adhesions. Fertil. Steril. 1988;49:944–955. doi: 10.1016/S0015-0282(16)59942-7.
    1. Wamsteker K. Diagnostic hysteroscopy: Technique and documentation. In: Sutton C.D., Diamond M., editors. Endoscopic Surgery for Gynecologists. WB Saunders; London, UK: 1998. pp. 511–524.
    1. AAGL Elevating Gynecologic Surgery AAGL Practice report: Practice guidelines on intrauterine adhesions developed in collaboration with the European Society of Gynaecological Endoscopy (ESGE) J. Minim. Invasive Gynecol. 2017;24:695–705. doi: 10.1016/j.jmig.2016.11.008.
    1. March C.M., Israel R., March A.D. Hysteroscopic management of intrauterine adhesions. Am. J. Obstet. Gynecol. 1978;130:653–657. doi: 10.1016/0002-9378(78)90322-8.
    1. Hamou J., Salat-Baroux J., Siegler A.M. Diagnosis and treatment of intrauterine adhesions by microhysteroscopy. Fertil. Steril. 1983;39:321–326. doi: 10.1016/S0015-0282(16)46879-2.
    1. Valle R.F., Sciarra J.J. Intrauterine adhesions: Hysteroscopic diagnosis, classification, treatment, and reproductive outcome. Am. J. Obstet. Gynecol. 1988;158:1459–1470. doi: 10.1016/0002-9378(88)90382-1.
    1. Donnez J., Nisolle M. Hysteroscopic lysis of intrauterine adhesions (Asherman syndrome) In: Donnez J., editor. Atlas of Laser Operative Laparoscopy and Hysteroscopy. Press-Parthenon; New York, NY, USA: 1994. pp. 305–322.
    1. Foix A., Bruno R.O., Davison T., Lema B. The pathology of postcurettage adhesions. Am. J. Obstet. Gynecol. 1966;96:1027–1033. doi: 10.1016/0002-9378(66)90452-2.
    1. Yaffe H., Ron M., Polishuk W. Amenorrhoea, hypomenorrhoea and uterine fibrosis. Am. J. Obstet. Gynecol. 1978;130:599–601. doi: 10.1016/0002-9378(78)90093-5.
    1. Han Q., Du Y. Advances in the application of biomimetic endometrium interfaces for uterine bioengineering in female infertility. Front. Bioeng. Biotechnol. 2020;8:153. doi: 10.3389/fbioe.2020.00153.
    1. Wei C., Pan Y., Zhang Y., Dai Y., Jiang L., Shi L., Yang W., Xu S., Zhang Y., Xu W., et al. Overactivated sonic hedgehog signaling aggravates intrauterine adhesion via inhibiting autophagy in endometrial stromal cells. Cell. Death Dis. 2020;11:755. doi: 10.1038/s41419-020-02956-2.
    1. Liu F., Hu S., Wang S., Cheng K. Cell and biomaterial-based approaches to uterus regeneration. Regen. Biomater. 2019;6:141–148. doi: 10.1093/rb/rbz021.
    1. Maybin J.A., Critchley H. Menstrual physiology: Implications for endometrial pathology and beyond. Hum. Reprod. Update. 2015;2:748–761. doi: 10.1093/humupd/dmv038.
    1. Chen G., Liu L., Sun J., Zeng L., Cai H., He Y. Foxf2 and Smad6 co-regulation of collagen 5A2 transcription is involved in the pathogenesis of intrauterine adhesion. J. Cell. Mol. Med. 2020;24:2802–2818. doi: 10.1111/jcmm.14708.
    1. Guo L.P., Chen L.M., Chen F., Jiang N.H., Sui L. Smad signaling coincides with epithelial-mesenchymal transition in a rat model of intrauterine adhesion. Am. J. Transl. Res. 2019;11:4726–4737.
    1. Zhou Q., Wu X., Hu J., Yuan R. Abnormal expression of fibrosis markers, estrogen receptor α and stromal derived factor-1/chemokine (C-X-C motif) receptor-4 axis in intrauterine adhesions. Int. J. Mol. Med. 2018;42:81–90. doi: 10.3892/ijmm.2018.3586.
    1. Xu Q., Duan H., Gan L., Liu X., Chen F., Shen X., Tang Y.Q., Wang S. MicroRNA-1291 promotes endometrial fibrosis by regulating the ArhGAP29-RhoA/ROCK1 signaling pathway in a murine model. Mol. Med. Rep. 2017;16:4501–4510. doi: 10.3892/mmr.2017.7210.
    1. Salma U., Xue M., Ali Sheikh M.S., Guan X., Xu B., Zhang A., Huang L., Xu D. Role of transforming growth factor-β1 and smads signaling pathway in intrauterine adhesion. Mediat. Inflamm. 2016;2016:4158287. doi: 10.1155/2016/4158287.
    1. Liu X., Duan H., Zhang H.H., Gan L., Xu Q. Integrated data set of microRNAs and mRNAs involved in severe intrauterine adhesion. Reprod. Sci. 2016;23:1340–1347. doi: 10.1177/1933719116638177.
    1. Santamaria X., Isaacson K., Simón C. Asherman’s Syndrome: It may not be all our fault. Hum. Reprod. 2018;33:1374–1380. doi: 10.1093/humrep/dey232.
    1. Friedman J.A., Wong J.M.K., Chaudhari A., Tsai S., Milad M.P. Hysteroscopic myomectomy: A comparison of techniques and review of current evidence in the management of abnormal uterine bleeding. Curr. Opin. Obstet. Gynecol. 2018;30:243–251. doi: 10.1097/GCO.0000000000000475.
    1. Healy M.W., Schexnayder B., Connell M.T., Terry N., DeCherney A.H., Csokmay J.M., Yauger B.J., Hill M.J. Intrauterine adhesion prevention after hysteroscopy: A systematic review and meta-analysis. Am. J. Obstet. Gynecol. 2016;215:267–275. doi: 10.1016/j.ajog.2016.05.001.
    1. Haber K., Hawkins E., Levie M., Chudnoff S. Hysteroscopic morcellation: Review of the manufacturer and user facility device experience (MAUDE) database. J. Minim. Invasive Gynecol. 2015;22:110–114. doi: 10.1016/j.jmig.2014.08.008.
    1. Ciebiera M., Łoziński T., Wojtyła C., Rawski W., Jakiel G. Complications in modern hysteroscopic myomectomy. Ginekol. Polska. 2018;89:398–404. doi: 10.5603/GP.a2018.0068.
    1. Capmas P., Levaillant J.M., Fernandez H. Surgical techniques and outcome in the management of submucous fibroids. Curr. Opin. Obstet. Gynecol. 2013;25:332–338. doi: 10.1097/GCO.0b013e3283630e10.
    1. Gambadauro P., Gudmundsson J., Torrejón R. Intrauterine adhesions following conservative treatment of uterine fibroids. Obstet. Gynecol. Int. 2012;2012:853269. doi: 10.1155/2012/853269.
    1. Litta P., Leggieri C., Conte L., Dalla Toffola A., Multinu F., Angioni S. Monopolar versus bipolar device: Safety, feasibility, limits and perioperative complications in performing hysteroscopic myomectomy. Clin. Exp. Obstet. Gynecol. 2014;41:335–338.
    1. Hamerlynck T.W., van Vliet H.A., Beerens A.S., Weyers S., Schoot B.C. Hysteroscopic morcellation versus loop resection for removal of placental remnants: A randomized trial. J. Minim. Invasive Gynecol. 2016;23:1172–1180. doi: 10.1016/j.jmig.2016.08.828.
    1. Mazzon I., Favilli A., Cocco P., Grasso M., Horvath S., Bini V., Di Renzo G.C., Gerli S. Does cold loop hysteroscopic myomectomy reduce intrauterine adhesions? A retrospective study. Fertil. Steril. 2014;101:294–298.e3. doi: 10.1016/j.fertnstert.2013.09.032.
    1. Van Wessel S., van Vliet H.A.A.M., Schoot B.C., Weyers S., Hamerlynck T.W.O. Hysteroscopic morcellation versus bipolar resection for removal of type 0 and 1 submucous myomas: A randomized trial. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021;259:32–37. doi: 10.1016/j.ejogrb.2021.01.050.
    1. Chua K.J.C., McLucas B. Sepsis following hysteroscopic myomectomy. Minim. Invasive Ther. Allied Technol. 2021;2021:1–3. doi: 10.1080/13645706.2020.1864407.
    1. Capmas P., Lobersztajn A., Duminil L., Barral T., Pourcelot A.G., Fernandez H. Operative hysteroscopy for retained products of conception: Efficacy and subsequent fertility. J. Gynecol. Obstet. Hum. Reprod. 2019;48:151–154. doi: 10.1016/j.jogoh.2018.12.005.
    1. Barel O., Krakov A., Pansky M., Vaknin Z., Halperin R., Smorgick N. Intrauterine adhesions after hysteroscopic treatment for retained products of conception: What are the risk factors? Fertil. Steril. 2015;103:775–779. doi: 10.1016/j.fertnstert.2014.11.016.
    1. Huang C.Y., Chang W.H., Cheng M., Huang H.Y., Horng H.C., Chen Y.J., Lee W.L., Wang P.H. Crosslinked hyaluronic acid gels for the prevention of intrauterine adhesions after a hysteroscopic myomectomy in women with submucosal myomas: A prospective, randomized, controlled trial. Life. 2020;10:67. doi: 10.3390/life10050067.
    1. Zhao H., Yang B., Li H., Xu Y., Feng L. Successful pregnancies in women with diffuse uterine leiomyomatosis after hysteroscopic management using the hysteroscopy endo operative system. J. Minim. Invasive Gynecol. 2019;26:960–967. doi: 10.1016/j.jmig.2018.10.003.
    1. Vitale S.G., Sapia F., Rapisarda A.M.C., Valenti G., Santangelo F., Rossetti D., Chiofalo B., Sarpietro G., La Rosa V.L., Triolo O., et al. Hysteroscopic morcellation of submucous myomas: A systematic review. Biomed. Res. Int. 2017;2017:6848250. doi: 10.1155/2017/6848250.
    1. Hsu Y.H., Yeh C.C., Wang P.H. The better way-uterine feeding vessel occlusion to manage postpartum hemorrhage. Taiwan. J. Obstet. Gynecol. 2019;58:175–176. doi: 10.1016/j.tjog.2019.02.001.
    1. Chao H.T., Wang P.H. Fertility outcomes after uterine artery occlusion in the management of women with symptomatic uterine fibroids. Taiwan. J. Obstet. Gynecol. 2014;53:1–2. doi: 10.1016/j.tjog.2012.10.006.
    1. Lee W.L., Liu W.M., Fuh J.L., Tsai Y.C., Shih C.C., Wang P.H. Use of uterine vessel occlusion in the management of uterine myomas: Two different approaches. Fertil. Steril. 2010;94:1875–1881. doi: 10.1016/j.fertnstert.2009.11.015.
    1. Song D., Liu Y., Xiao Y., Li T.C., Zhou F., Xia E. A matched cohort study comparing the outcome of intrauterine adhesiolysis for Asherman’s syndrome after uterine artery embolization or surgical trauma. J. Minim. Invasive Gynecol. 2014;21:1022–1028. doi: 10.1016/j.jmig.2014.04.015.
    1. Jiang J., Wang C., Xue M. High-intensity focused ultrasound versus uterine artery embolization for patients with retained placenta accrete. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020;252:82–86. doi: 10.1016/j.ejogrb.2020.06.003.
    1. Orlando M., Kollikonda S., Hackett L., Kho R. Nonhysteroscopic myomectomy and fertility outcomes: A systematic review. J. Minim. Invasive Gynecol. 2021;28:598–618. doi: 10.1016/j.jmig.2020.10.006.
    1. Sancho J.M., Delgado V.S.C., Valero M.J.N., Soteras M.G., Amate V.P., Carrascosa A.A. Hysteroscopic myomectomy outcomes after 3-month treatment with either Ulipristal Acetate or GnRH analogues: A retrospective comparative study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016;198:127–130. doi: 10.1016/j.ejogrb.2016.01.014.
    1. Murji A., Wais M., Lee S., Pham A., Tai M., Liu G. A multicenter study evaluating the effect of ulipristal acetate during myomectomy. J. Minim. Invasive Gynecol. 2018;25:514–521. doi: 10.1016/j.jmig.2017.10.016.
    1. Sayyah-Melli M., Bidadi S., Taghavi S., Ouladsahebmadarek E., Jafari-Shobeiri M., Ghojazadeh M., Rahmani V. Comparative study of vaginal danazol vs. diphereline (a synthetic GnRH agonist) in the control of bleeding during hysteroscopic myomectomy in women with abnormal uterine bleeding: A randomized controlled clinical trial. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016;196:48–51. doi: 10.1016/j.ejogrb.2015.10.021.
    1. Cheng M.H., Wang P.H. Uterine myoma: A condition amenable to medical therapy? Expert Opin. Emerg. Drugs. 2008;13:119–133. doi: 10.1517/14728214.13.1.119.
    1. Wang P.H., Lee W.L., Cheng M.H., Yen M.S., Chao K.C., Chao H.T. Use of a gonadotropin-releasing hormone agonist to manage perimenopausal women with symptomatic uterine myomas. Taiwan. J. Obstet. Gynecol. 2009;48:133–137. doi: 10.1016/S1028-4559(09)60273-4.
    1. Coddington C.C., Grow D.R., Ahmed M.S., Toner J.P., Cook E., Diamond M.P. Gonadotropin-releasing hormone agonist pretreatment did not decrease postoperative adhesion formation after abdominal myomectomy in a randomized control trial. Fertil. Steril. 2009;91:1909–1913. doi: 10.1016/j.fertnstert.2008.02.128.
    1. Acunzo G., Guida M., Pellicano M., Tommaselli G.A., Di Spiezio Sardo A., Bifulco G., Cirillo D., Taylor A., Nappi C. Effectiveness of auto-cross-linked hyaluronic acid gel in the prevention of intrauterine adhesions after hysteroscopic adhesiolysis: A prospective, randomized, controlled study. Hum. Reprod. 2003;18:1918–1921. doi: 10.1093/humrep/deg368.
    1. Zhou Q., Shi X., Saravelos S., Huang X., Zhao Y., Huang R., Xia E., Li T.C. Auto-cross-linked hyaluronic acid gel for prevention of intrauterine adhesions after hysteroscopic adhesiolysis: A randomized controlled trial. J. Minim. Invasive Gynecol. 2021;28:307–313. doi: 10.1016/j.jmig.2020.06.030.
    1. Bosteels J., Weyers S., D’Hooghe T.M., Torrance H., Broekmans F.J., Chua S.J., Mol B.W.J. Anti-Adhesion therapy following operative hysteroscopy for treatment of female subfertility. Cochrane Database Syst. Rev. 2017;11:CD011110.
    1. Lin X., Wei M., Li T.C., Huang Q., Huang D., Zhou F., Zhang S. A comparison of intrauterine balloon, intrauterine contraceptive device and hyaluronic acid gel in the prevention of adhesion reformation following hysteroscopic surgery for Asherman syndrome: A cohort study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013;170:512–516. doi: 10.1016/j.ejogrb.2013.07.018.
    1. Salma U., Xue M., Md Sayed A.S., Xu D. Efficacy of intrauterine device in the treatment of intrauterine adhesions. Biomed. Res. Int. 2014;2014:589296. doi: 10.1155/2014/589296.
    1. Azumaguchi A., Henmi H., Saito T. Efficacy of silicone sheet as a personalized barrier for preventing adhesion reformation after hysteroscopic adhesiolysis of intrauterine adhesions. Reprod. Med. Biol. 2019;18:378–383. doi: 10.1002/rmb2.12294.
    1. Zhu R., Duan H., Gan L., Wang S. Comparison of intrauterine suitable balloon and Foley balloon in the prevention of adhesion after hysteroscopic adhesiolysis. Biomed. Res. Int. 2018;2018:9494101. doi: 10.1155/2018/9494101.
    1. Huang H., Xu B., Cheng C., Xu D. A novel intrauterine stent for prevention of intrauterine adhesions. Ann. Transl. Med. 2020;8:61. doi: 10.21037/atm.2019.12.82.
    1. Fuchs N., Smorgick N., Ben Ami I., Vaknin Z., Tovbin Y., Halperin R., Pansky M. Intercoat (Oxiplex/AP gel) for preventing intrauterine adhesions after operative hysteroscopy for suspected retained products of conception: Double-blind, prospective, randomized pilot study. J. Minim. Invasive Gynecol. 2014;21:126–130. doi: 10.1016/j.jmig.2013.07.019.
    1. Di Spiezio Sardo A., Spinelli M., Bramante S., Scognamiglio M., Greco E., Guida M., Cela V., Nappi C. Efficacy of a polyethylene oxide-sodium carboxymethylcellulose gel in prevention of intrauterine adhesions after hysteroscopic surgery. J. Minim. Invasive Gynecol. 2011;18:462–469. doi: 10.1016/j.jmig.2011.04.007.
    1. Bosteels J., Weyers S., Mol B.W., D’Hooghe T. Anti-Adhesion barrier gels following operative hysteroscopy for treating female infertility: A systematic review and meta-analysis. Gynecol. Surg. 2014;11:113–127. doi: 10.1007/s10397-014-0832-x.
    1. Bosteels J. Anti-Adhesion barrier gels: Time for evidence-informed practice in gynecologic surgery? Fertil. Steril. 2017;107:1143–1144. doi: 10.1016/j.fertnstert.2017.03.006.
    1. Thubert T., Dussaux C., Demoulin G., Rivain A.L., Trichot C., Deffieux X. Influence of auto-cross-linked hyaluronic acid gel on pregnancy rate and hysteroscopic outcomes following surgical removal of intra-uterine adhesions. Eur. J. Obstet. Gynecol. Reprod. Biol. 2015;193:65–69. doi: 10.1016/j.ejogrb.2015.06.025.
    1. Hooker A.B., de Leeuw R., van de Ven P.M., Bakkum E.A., Thurkow A.L., Vogel N.E.A., van Vliet H.A.A.M., Bongers M.Y., Emanuel M.H., Verdonkschot A.E.M., et al. Prevalence of intrauterine adhesions after the application of hyaluronic acid gel after dilatation and curettage in women with at least one previous curettage: Short-term outcomes of a multicenter, prospective randomized controlled trial. Fertil. Steril. 2017;107:1223–1231.e3. doi: 10.1016/j.fertnstert.2017.02.113.
    1. Hooker A.B., de Leeuw R.A., van de Ven P.M., Brölmann H.A.M., Huirne J.A.F. Reproductive performance after the application of hyaluronic acid gel after dilation and curettage in women who have experienced at least one previous curettage: Long-term results of a multicenter prospective randomized trial. Fertil. Steril. 2018;110:1231–1238. doi: 10.1016/j.fertnstert.2018.07.021.
    1. Hooker A.B., de Leeuw R.A., van de Ven P.M., Brölmann H.A.M., Huirne J.A. Pregnancy and neonatal outcomes 42 months after application of hyaluronic acid gel following dilation and curettage for miscarriage in women who have experienced at least one previous curettage: Follow-up of a randomized controlled trial. Fertil. Steril. 2020;114:601–609. doi: 10.1016/j.fertnstert.2020.04.021.
    1. Can S., Kirpinar G., Dural O., Karamustafaoglu B.B., Tas I.S., Yasa C., Ugurlucan F.G. Efficacy of a new crosslinked hyaluronan gel in the prevention of intrauterine adhesions. J.S.L.S. 2018;22:e2018.00036. doi: 10.4293/JSLS.2018.00036.
    1. Mais V., Cirronis M.G., Peiretti M., Ferrucci G., Cossu E., Melis G.B. Efficacy of auto-crosslinked hyaluronan gel for adhesion prevention in laparoscopy and hysteroscopy: A systematic review and meta-analysis of randomized controlled trials. Eur. J. Obstet. Gynecol. Reprod. Biol. 2012;160:1–5. doi: 10.1016/j.ejogrb.2011.08.002.
    1. Guida M., Acunzo G., Di Spiezio Sardo A., Bifulco G., Piccoli R., Pellicano M., Cerrota G., Cirillo D., Nappi C. Effectiveness of auto-crosslinked hyaluronic acid gel in the prevention of intrauterine adhesions after hysteroscopic surgery: A prospective, randomized, controlled study. Hum. Reprod. 2004;19:1461–1464. doi: 10.1093/humrep/deh238.
    1. Kim T., Ahn K.H., Choi D.S., Hwang K.J., Lee B.I., Jung M.H., Kim J.W., Kim J.H., Cha S.H., Lee K.H., et al. A randomized, multi-center, clinical trial to assess the efficacy and safety of alginate carboxymethylcellulose hyaluronic acid compared to carboxymethylcellulose hyaluronic acid to prevent postoperative intrauterine adhesion. J. Minim. Invasive Gynecol. 2012;19:731–736. doi: 10.1016/j.jmig.2012.08.003.
    1. Hindocha A., Beere L., Dias S., Watson A., Ahmad G. Adhesion prevention agents for gynaecological surgery: An overview of Cochrane reviews. Cochrane Database Syst. Rev. 2015;1:CD011254. doi: 10.1002/14651858.CD011254.pub2.
    1. Zheng F., Zhu B., Xin X., He F., Cui Y. Meta-Analysis on the use of hyaluronic acid gel to prevent recurrence of intrauterine adhesion after hysteroscopic adhesiolysis. Taiwan. J. Obstet. Gynecol. 2019;58:731–736.
    1. Zheng F., Xin X., He F., Cui Y. Meta-Analysis of the use of hyaluronic acid gel to prevent intrauterine adhesions after miscarriage. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020;244:1–4.
    1. Johary J., Xue M., Zhu X., Xu D., Velu P.P. Efficacy of estrogen therapy in patients with intrauterine adhesions: Systematic review. J. Minim. Invasive Gynecol. 2014;21:44–54. doi: 10.1016/j.jmig.2013.07.018.
    1. Zheng F., Xin X., He F., Liu J., Cui Y. Meta-Analysis on the use of hyaluronic acid gel to prevent intrauterine adhesion after intrauterine operations. Exp. Ther. Med. 2020;19:2672–2678. doi: 10.3892/etm.2020.8483.
    1. Shokeir T.A., Fawzy M., Tatongy M. The nature of intrauterine adhesions following reproductive hysteroscopic surgery as determined by early and late follow-up hysteroscopy: Clinical implications. Arch. Gynecol. Obstet. 2008;277:423–427. doi: 10.1007/s00404-007-0475-5.
    1. Sebbag L., Even M., Fay S., Naoura I., Revaux A., Carbonnel M., Pirtea P., de Ziegler D., Ayoubi J.M. Early second-look hysteroscopy: Prevention and treatment of intrauterine post-surgical adhesions. Front. Surg. 2019;6:50. doi: 10.3389/fsurg.2019.00050.
    1. Li X., Wu L., Zhou Y., Fan X., Huang J., Wu J., Yu R., Lou J., Yang M., Yao Z., et al. New crosslinked hyaluronan gel for the prevention of intrauterine adhesions after dilation and curettage in patients with delayed miscarriage: A prospective, multicenter, randomized, controlled trial. J. Minim. Invasive Gynecol. 2019;26:94–99. doi: 10.1016/j.jmig.2018.03.032.
    1. Tsapanos V.S., Stathopoulou L.P., Papathanassopoulou V.S., Tzingounis V.A. The role of Seprafilm bioresorbable membrane in the prevention and therapy of endometrial synechiae. J. Biomed. Mater. Res. 2002;63:10–14. doi: 10.1002/jbm.10040.
    1. Xiao S., Wan Y., Zou F., Ye M., Deng H., Ma J., Wei Y., Tan C., Xue M. Prevention of intrauterine adhesion with auto-crosslinked hyaluronic acid gel: A prospective, randomized, controlled clinical study. Zhonghua. Fu Chan Ke Za Zhi. 2015;50:32–36.
    1. Ducarme G., Davitian C., Zarrouk S., Uzan M., Poncelet C. Interest of auto-crosslinked hyaluronic acid gel in the prevention of intrauterine adhesions after hysteroscopic surgery: A case-control study. J. Gynecol. Obstet. Biol. Reprod. 2006;35:691–695. doi: 10.1016/S0368-2315(06)76465-1.
    1. Krajcovicova R., Hudeck R., Ventruba P., Surgentova K. The role of hyaluronan in Asherman’s syndrome therapy. J. Gynecol. Surg. 2015;31:250–254. doi: 10.1089/gyn.2014.0129.
    1. Salama N.M., Zaghlol S.S., Mohamed H.H., Kamar S.S. Suppression of the inflammation and fibrosis in asherman syndrome rat model by mesenchymal stem cells: Histological and immunohistochemical studies. Folia Histochem. Cytobiol. 2020;58:208–218. doi: 10.5603/FHC.a2020.0024.
    1. Cao J., Liu D., Zhao S., Yuan L., Huang Y., Ma J., Yang Z., Shi B., Wang L., Wei J. Estrogen attenuates TGF-β1-induced EMT in intrauterine adhesion by activating Wnt/β-catenin signaling pathway. Braz. J. Med. Biol. Res. 2020;53:e9794. doi: 10.1590/1414-431x20209794.
    1. Matsubara S. A novel uterine stent for preventing intrauterine adhesion: Not only gynecologic but also obstetric significance. Ann. Transl. Med. 2020;8:614. doi: 10.21037/atm.2020.03.65.
    1. Xin L., Lin X., Zhou F., Li C., Wang X., Yu H., Pan Y., Fei H., Ma L., Zhang S. A scaffold laden with mesenchymal stem cell-derived exosomes for promoting endometrium regeneration and fertility restoration through macrophage immunomodulation. Acta Biomater. 2020;113:252–266. doi: 10.1016/j.actbio.2020.06.029.
    1. Ai Y., Chen M., Liu J., Ren L., Yan X., Feng Y. lncRNA TUG1 promotes endometrial fibrosis and inflammation by sponging miR-590-5p to regulate Fasl in intrauterine adhesions. Int. Immunopharmacol. 2020;86:106703. doi: 10.1016/j.intimp.2020.106703.
    1. Zhang Z., Li S., Deng J., Yang S., Xiang Z., Guo H., Xi H., Sang M., Zhang W. Aspirin inhibits endometrial fibrosis by suppressing the TGF-β1-Smad2/Smad3 pathway in intrauterine adhesions. Int. J. Mol. Med. 2020;45:1351–1360. doi: 10.3892/ijmm.2020.4506.
    1. De Miguel-Gómez L., López-Martínez S., Campo H., Francés-Herrero E., Faus A., Díaz A., Pellicer A., Domínguez F., Cervelló I. Comparison of different sources of platelet-rich plasma as treatment option for infertility-causing endometrial pathologies. Fertil. Steril. 2021;115:490–500. doi: 10.1016/j.fertnstert.2020.07.053.
    1. Queckbörner S., Davies L.C., von Grothusen C., Santamaria X., Simón C., Gemzell-Danielsson K. Cellular therapies for the endometrium: An update. Acta. Obstet. Gynecol. Scand. 2019;98:672–677. doi: 10.1111/aogs.13598.
    1. Park M., Hong S.H., Park S.H., Kim Y.S., Yang S.C., Kim H.R., Noh S., Na S., Lee H.K., Lim H.J., et al. Perivascular stem cell-derived cyclophilin A improves uterine environment with Asherman’s syndrome via HIF1α-dependent angiogenesis. Mol. Ther. 2020;28:1818–1832. doi: 10.1016/j.ymthe.2020.05.015.
    1. Bozorgmehr M., Gurung S., Darzi S., Nikoo S., Kazemnejad S., Zarnani A.H., Gargett C.E. Endometrial and menstrual blood mesenchymal stem/stromal cells: Biological properties and clinical application. Front. Cell. Dev. Biol. 2020;8:497. doi: 10.3389/fcell.2020.00497.
    1. Gan L., Duan H., Sun F.Q., Xu Q., Tang Y.Q., Wang S. Efficacy of freeze-dried amnion graft following hysteroscopic adhesiolysis of severe intrauterine adhesions. Int. J. Gynaecol. Obstet. 2017;137:116–122. doi: 10.1002/ijgo.12112.
    1. Lee D.Y., Lee S.R., Kim S.K., Joo J.K., Lee W.S., Shin J.H., Cho S., Park J.C., Kim S.H. A new thermo-responsive hyaluronic acid sol-gel to prevent intrauterine adhesions after hysteroscopic surgery: A randomized, non-inferiority trial. Yonsei Med. J. 2020;61:868–874. doi: 10.3349/ymj.2020.61.10.868.
    1. Tonguc E.A., Var T., Yilmaz N., Batioglu S. Intrauterine device or estrogen treatment after hysteroscopic uterine septum resection. Int. J. Gynaecol. Obstet. 2010;109:226–229. doi: 10.1016/j.ijgo.2009.12.015.
    1. Yu X., Yuhan L., Dongmei S., Enlan X., Tinchiu L. The incidence of post-operative adhesion following transection of uterine septum: A cohort study comparing three different adjuvant therapies. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016;201:61–64. doi: 10.1016/j.ejogrb.2016.01.039.
    1. Vercellini P., Fedele L., Arcaini L., Rognoni M.T., Candiani G.B. Value of intrauterine device insertion and estrogen administration after hysteroscopic metroplasty. J. Reprod. Med. 1989;34:447–450.
    1. Cheng M., Chang W.H., Yang S.T., Huang H.Y., Tsui K.H., Chang C.P., Lee W.L., Wang P.H. Efficacy of applying hyaluronic acid gels in the primary prevention of intrauterine adhesion after hysteroscopic myomectomy: A meta-analysis of randomized controlled trials. Life. 2020;10:285. doi: 10.3390/life10110285.
    1. De Iaco P.A., Muzzupapa G., Bovicelli A., Marconi S., Bitti S.R., Sansovini M., Bovicelli L. Hyaluronan derivative gel in intrauterine adhesion (IUA) prevention after operative hysteroscopy. Ellipse. 2003;19:15–18.
    1. Şükür Y.E., Saridogan E. Multiple myomectomy to aid fertility treatment—Surgical and fertility outcomes: A retrospective cohort study. Facts Views Vis. ObGyn. 2021;12:283–289.
    1. Li C., Wang W., Sun S., Xu Y., Fang Z., Cong L. Expression and potential role of MMP-9 in intrauterine adhesion. Mediat. Inflamm. 2021;2021:6676510. doi: 10.1155/2021/6676510.
    1. Zhao X., Gao B., Yang X., Zhang A., Jamail G., Li Y., Xu D. The density of endometrial glandular openings: A novel variable to predict the live birth rate in patients with intrauterine adhesions following hysteroscopic adhesiolysis. Hum. Reprod. 2021;36:965–975. doi: 10.1093/humrep/deaa377.
    1. Zhang M., Lin X. Analysis of risk factors for obstetric outcomes after hysteroscopic adhesiolysis for Asherman syndrome: A retrospective cohort study. Int. J. Gynaecol. Obstet. 2021 doi: 10.1002/ijgo.13616.
    1. Zhang T., Zhang R., Li J., Tang J., Shen C., Shen L., Dong J., Zhang X. Preparation of fibroblast suppressive poly(ethylene glycol)-b-poly(l-phenylalanine)/poly(ethylene glycol) hydrogel and its application in intrauterine fibrosis prevention. ACS Biomater. Sci. Eng. 2021;7:311–321.
    1. Abbott J., Deans R. Accelerating the science after 125 years of treating intrauterine adhesions. J. Minim. Invasive Gynecol. 2021;28:151–152. doi: 10.1016/j.jmig.2020.12.028.
    1. Hooker A.B., de Leeuw R.A., Twisk J.W.R., Brölmann H.A.M., Huirne J.A.F. Reproductive performance of women with and without intrauterine adhesions following recurrent dilatation and curettage for miscarriage: Long-term follow-up of a randomized controlled trial. Hum. Reprod. 2021;36:70–81.
    1. Lee W.L., Lee F.K., Wang P.H. Application of hyaluronic acid in patients with interstitial cystitis. J. Chin. Med. Assoc. 2021;84:341–343. doi: 10.1097/JCMA.0000000000000489.
    1. Tsai C.P., Yang J.M., Liang S.J., Lin Y.H., Huang W.C., Lin T.Y., Hsu C.S., Chuang F.C., Hung M.J. Factors associated with treatment outcomes after intravesical hyaluronic acid therapy in women with refractor interstitial cystitis: A prospective, multicenter study. J. Chin. Med. Assoc. 2021;84:418–422. doi: 10.1097/JCMA.0000000000000498.
    1. Peng Y.C., Yueh-Hsia Chiu S., Feng M., Liang C.C. The effect of intravesical hyaluronic acid therapy on urodynamic and clinical outcomes among women with interstitial cystitis/bladder pain syndrome. Taiwan. J. Obstet. Gynecol. 2020;59:922–926. doi: 10.1016/j.tjog.2020.09.021.
    1. Gote V., Sharma A.D., Pal D. Hyaluronic acid-targeted stimuli-sensitive nanomicelles co-encapsulating paclitaxel and ritonavir to overcome multi-drug resistance in metastatic breast cancer and triple-negative breast cancer cells. Int. J. Mol. Sci. 2021;22:1257. doi: 10.3390/ijms22031257.
    1. Chang M.C., Chiang P.F., Kuo Y.J., Peng C.L., Chen K.Y., Chiang Y.C. Hyaluronan-Loaded liposomal dexamethasone-diclofenac nanoparticles for local osteoarthritis treatment. Int. J. Mol. Sci. 2021;22:665. doi: 10.3390/ijms22020665.
    1. Kim S.B., Cho J., Jue S.S., Park J.H., Kim J.Y. Effect of hyaluronic acid filler injection on the interdental papilla in a mouse model of open gingival embrasure. Int. J. Environ. Res. Public Health. 2020;17:4956. doi: 10.3390/ijerph17144956.
    1. Winter C., Keimel R., Gugatschka M., Kolb D., Leitinger G., Roblegg E. Investigation of changes in saliva in radiotherapy-induced head neck cancer patients. Int. J. Environ. Res. Public Health. 2021;18:1629. doi: 10.3390/ijerph18041629.
    1. Benor A., Gay S., DeCherney A. An update on stem cell therapy for Asherman syndrome. J. Assist. Reprod. Genet. 2020;37:1511–1529. doi: 10.1007/s10815-020-01801-x.
    1. Jiang X., Li X., Fei X., Shen J., Chen J., Guo M., Li Y. Endometrial membrane organoids from human embryonic stem cell combined with the 3D Matrigel for endometrium regeneration in asherman syndrome. Bioact. Mater. 2021;6:3935–3946. doi: 10.1016/j.bioactmat.2021.04.006.
    1. Lee S.Y., Shin J.E., Kwon H., Choi D.H., Kim J.H. Effect of autologous adipose-derived stromal vascular fraction transplantation on endometrial regeneration in patients of Asherman’s syndrome: A pilot study. Reprod. Sci. 2020;27:561–568. doi: 10.1007/s43032-019-00055-y.
    1. Zhang S., Chang Q., Li P., Tong X., Feng Y., Hao X., Zhang X., Yuan Z., Tan J. Concentrated small extracellular vesicles from menstrual blood-derived stromal cells improve intrauterine adhesion, a pre-clinical study in a rat model. Nanoscale. 2021;13:7334–7347. doi: 10.1039/D0NR08942G.
    1. Zhao Y.X., Chen S.R., Huang Q.Y., Chen W.C., Xia T., Shi Y.C., Gao H.Z., Shi Q.Y., Lin S. Repair abilities of mouse autologous adipose-derived stem cells and ShakeGel™3D complex local injection with intrauterine adhesion by BMP7-Smad5 signaling pathway activation. Stem Cell Res. Ther. 2021;12:191. doi: 10.1186/s13287-021-02258-0.

Source: PubMed

3
Se inscrever