A Randomized Comparison of Delivered Energy in Cardioversion of Atrial Fibrillation: Biphasic Truncated Exponential Versus Pulsed Biphasic Waveforms

Elina Trendafilova, Elena Dimitrova, Jean-Philippe Didon, Vessela Krasteva, Elina Trendafilova, Elena Dimitrova, Jean-Philippe Didon, Vessela Krasteva

Abstract

A few randomized trials have compared impedance-compensated biphasic defibrillators in clinical use. We aim to compare pulsed biphasic (PB) and biphasic truncated exponential (BTE) waveforms in a non-inferiority cardioversion (CVS) study. This was a prospective monocentric randomized clinical trial. Eligible patients admitted for elective CVS of atrial fibrillation (AF) between February 2019 and March 2020 were alternately randomized to treatment with either a PB defibrillator (DEFIGARD TOUCH7, Schiller Médical, Wissembourg, France) or a BTE high-energy (BTE-HE) defibrillator (LIFEPAK15, Physio-Control Inc., Redmond, WA, USA). Fixed-energy protocol (200-200-200 J) was administered. CVS success was accepted if sinus rhythm was restored at 1 min post-shock. The study design considered non-inferiority testing of the primary outcome: cumulative delivered energy (CDE). Seventy-three out of 78 randomized patients received allocated intervention: 38 BTE-HE (52%), 35 PB (48%). Baseline characteristics were well-balanced between groups (p > 0.05). Both waveforms had similar CDE (mean ± standard deviation, 95% confidence interval): BTE-HE (253.9 ± 120.2 J, 214-293 J) vs. PB (226.0 ± 109.8 J, 188-264 J), p = 0.31. Indeed, effective PB shocks delivered significantly lower energies by mean of 25.6 J (95% CI 24-27.1 J, p < 0.001). Success rates were similar (BTE-HE vs. PB): 1 min first-shock (84.2% vs. 82.9%), 1 min CVS (97.4% vs. 94.3%), 2 h CVS (94.7% vs. 94.3%), 24 h CVS (92.1% vs. 94.3%), p > 0.05. Safety analysis did not find CVS hazards, reporting insignificant changes of myocardial-specific biomarkers, transient and rare ST-segment deviations, and no case of harmful tachyarrhythmias and apnea. Cardioversion of AF with fixed-energy protocol 200-200-200 J was highly efficient and safe for both PB and BTE-HE waveforms. These similar performances were achieved despite differences in the waveforms' technical design, associated with significantly lower delivered energy for the effective PB shocks. Clinical Trial Registration: Registration number: NCT04032678, trial register: ClinicalTrials.gov.

Keywords: atrial fibrillation; biphasic waveform defibrillation; cardioversion; delivered energy; efficacy; high-sensitivity troponin; safety.

Conflict of interest statement

The authors E.T., E.D. and V.K. declare no competing interests. The author J.-P.D. is an employee of Schiller Médical, Wissembourg, France.

Figures

Figure 1
Figure 1
Recorded currents of studied defibrillation waveforms: (A) (PB generated with DGT7), (B) (BTE-HE generated with LP15). Both waveforms were digitized with the Defimpulse recorder under the same test conditions: selected energy (200 J) and patient impedance (100 Ω).
Figure 2
Figure 2
CONSORT flowchart of patient enrollment, allocation and analysis. * The third-party defibrillator was DEFIGARD 4000 (Schiller Médical, Wissembourg, France), embedding the pulsed biphasic technology.
Figure 3
Figure 3
Comparison of BTE-HE and PB waveforms in respect to the delivered energies during CVS: cumulative delivered energy (primary endpoint), delivered energy of the effective shock (secondary endpoint). Plots indicate mean ± 95% CI (box) and min–max range (whiskers). Markers: # p = 0.31—Non-inferiority result was proven for the cumulative delivered energies; * p < 0.001—Significantly lower delivered energy of the effective shock was found for the PB waveform.

References

    1. Hindricks G., Potpara T., Dagres N., Arbelo E., Bax J.J., Blomström-Lundqvist C., Boriani G., Castella M., Dan G.A., Dilaveris P.E., et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association of Cardio-Thoracic Surgery (EACTS) Eur. Heart J. 2021;42:373–489. doi: 10.1093/eurheartj/ehaa612.
    1. Brandes A., Crijns H., Rienstra M., Kirchhof P., Grove E.L., Pedersen K.B., Van Gelder I.C. Cardioversion of atrial fibrillation and atrial flutter revisited: Current evidence and practical guidance for a common procedure. EP Eur. 2020;22:1149–1161. doi: 10.1093/europace/euaa057.
    1. Mittal S., Ayati S., Stein K.M., Schwartzman D., Cavlovich D., Tchou P.J., Markowitz S.M., Slotwiner D.J., Scheiner M.A., Lerman B.B. Transthoracic Cardioversion of Atrial Fibrillation: Comparison of Rectilinear Biphasic Versus Damped Sine Wave Monophasic Shocks. Circulation. 2000;101:1282–1287. doi: 10.1161/01.CIR.101.11.1282.
    1. Inácio J.F., da Rosa M., Shah J., Rosário J., Vissoci J.R., Manica A.L., Rodrigues C.G. Monophasic and biphasic shock for transthoracic conversion of atrial fibrillation: Systematic review and network meta-analysis. Resuscitation. 2016;100:66–75. doi: 10.1016/j.resuscitation.2015.12.009.
    1. Mortensen K., Risius T., Schwemer T.F., Aydin M.A., Köster R., Klemm H.U., Lutomsky B., Meinertz T., Ventura R., Willems S. Biphasic versus Monophasic Shock for External Cardioversion of Atrial Flutter. Cardiology. 2008;111:57–62. doi: 10.1159/000113429.
    1. Ambler J.J., Deakin C.D. A randomized controlled trial of efficacy and ST change following use of the Welch-Allyn MRL PIC biphasic waveform versus damped sine monophasic waveform for external DC cardioversion. Resuscitation. 2006;71:146–151. doi: 10.1016/j.resuscitation.2006.03.017.
    1. Page R.L., Kerber R.E., Russell J.K., Trouton T., Waktare J., Gallik D., Olgin J.E., Ricard P., Dalzell G.W., Reddy R., et al. Biphasic versus monophasic shock waveform for conversion of atrial fibrillation: The results of an international randomized, double-blind multicenter trial. J. Am. Coll. Cardiol. 2002;39:1956–1963. doi: 10.1016/S0735-1097(02)01898-3.
    1. Deakin C.D., Connelly S., Wharton R., Yuen H.M. A comparison of rectilinear and truncated exponential biphasic waveforms in elective cardioversion of atrial fibrillation: A prospective randomized controlled trial. Resuscitation. 2013;84:286–291. doi: 10.1016/j.resuscitation.2012.07.010.
    1. Neal S., Ngarmukos T., Lessard D., Rosenthal L. Comparison of the efficacy and safety of two biphasic defibrillator waveforms for the conversion of atrial fibrillation to sinus rhythm. Am. J. Cardiol. 2003;92:810–814. doi: 10.1016/S0002-9149(03)00888-9.
    1. Alatawi F., Gurevitz O., White R.D., Ammash N.M., Malouf J.F., Bruce C.J., Moon B.S., Rosales A.G., Hodge D., Hammill S.C., et al. Prospective, randomized comparison of two biphasic waveforms for the efficacy and safety of transthoracic biphasic cardioversion of atrial fibrillation. Heart Rhythm. 2005;2:382–387. doi: 10.1016/j.hrthm.2004.12.024.
    1. Kim M.L., Kim S.G., Park D.S., Gross J.N., Ferrick K.J., Palma E.C., Fisher J.D. Comparison of rectilinear biphasic waveform energy versus truncated exponential biphasic waveform energy for transthoracic cardioversion of atrial fibrillation. Am. J. Cardiol. 2004;94:1438–1440. doi: 10.1016/j.amjcard.2004.07.149.
    1. Schmidt A.S., Lauridsen K.G., Adelborg K., Torp P., Bach L.F., Jepsen S.M., Hornung N., Deakin C.D., Rickers H., Løfgren B. Cardioversion Efficacy Using Pulsed Biphasic or Biphasic Truncated Exponential Waveforms: A Randomized Clinical Trial. J. Am. Heart Assoc. 2017;6:e004853. doi: 10.1161/JAHA.116.004853.
    1. Lavignasse D., Trendafilova E., Dimitrova E., Krasteva V. Cardioversion of Atrial Fibrillation and Flutter: Comparative Study of Pulsed vs. Low Energy Biphasic Truncated Exponential Waveforms. J. Atr. Fibrillation. 2019;12:2172. doi: 10.4022/jafib.2172.
    1. Schmidt A.S., Lauridsen K.G., Torp P., Bach L.F., Rickers H., Løfgren B. Maximum-fixed energy shocks for cardioverting atrial fibrillation. Eur. Heart J. 2019;41:626–631. doi: 10.1093/eurheartj/ehz585.
    1. Glover B.M., Walsh S.J., McCann C.J., Moore M.J., Manoharan G., Dalzell G.W., McAllister A., McClements B., McEneaney D.J., Trouton T.G., et al. Biphasic energy selection for transthoracic cardioversion of atrial fibrillation. The BEST AF Trial. Heart. 2008;94:884–887. doi: 10.1136/hrt.2007.120782.
    1. Sadek M.M., Chaugai V., Cleland M.J., Zakutney T.J., Birnie D.H., Ramirez F.D. Association between transthoracic impedance and electrical cardioversion success with biphasic defibrillators: An analysis of 1055 shocks for atrial fibrillation and flutter. Clin. Cardiol. 2018;41:666–670. doi: 10.1002/clc.22947.
    1. Krasteva V., Trendafilova E., Cansell A., Daskalov I. Assessment of balanced biphasic defibrillation waveforms in transthoracic atrial cardioversion. J. Med. Eng. Technol. 2001;25:68–73. doi: 10.1080/03091900110038384.
    1. IEC 60601-2-4:2010+AMD1:2018 n.d. [(accessed on 13 January 2020)]; Available online: .
    1. Kette F., Locatelli A., Bozzola M., Zoli A., Li Y., Salmoiraghi M., Ristagno G., Andreassi A. Electrical features of eighteen automated external defibrillators: A systematic evaluation. Resuscitation. 2013;84:1596–1603. doi: 10.1016/j.resuscitation.2013.05.017.
    1. Nocchi F., Derrico P., Masucci G., Capussotto C., Cecchetti C., Ritrovato M. Semiautomated external defibrillators for in-hospital early defibrillation: A comparative study. Int. J. Technol. Assess. Health Care. 2014;30:78–89. doi: 10.1017/S0266462313000652.
    1. White R.D. Caution when comparing different defibrillation waveforms and energies. Resuscitation. 2016;102:e1. doi: 10.1016/j.resuscitation.2016.01.038.
    1. Deakin C.D., Callaway C.W., Soar J. Reply to: “Caution when comparing different defibrillation waveforms and energies”. Resuscitation. 2016;102:e2. doi: 10.1016/j.resuscitation.2016.03.010.
    1. Chen B., Yu T., Ristagno G., Quan W., Li Y. Average current is better than peak current as therapeutic dosage for biphasic waveforms in a ventricular fibrillation pig model of cardiac arrest. Resuscitation. 2014;85:1399–1404. doi: 10.1016/j.resuscitation.2014.06.029.
    1. Adgey A.A.J. Theory and practice of defibrillation: (1) Atrial fibrillation and DC conversion. Heart. 2004;90:1493–1498. doi: 10.1136/hrt.2003.019919.
    1. Mudrov T.N., Krasteva V.T., Jekova I.I., Mudrov N.T., Matveev M.G., Stoyanov T.V. Device for Data Collection During Cardioversion. Annu. J. Electron. 2010;4:142–145.
    1. Achleitner U., Rheinberger K., Furtner B., Amann A., Baubin M. Waveform analysis of biphasic external defibrillators. Resuscitation. 2001;50:61–70. doi: 10.1016/S0300-9572(01)00326-4.
    1. Rumeau P., Fourcade J., Duparc A., Hébrard A., Mondoly P., Rollin A., Massabuau P., Detis N., Elbaz M., Carrié D., et al. ST-segment changes after direct current external cardioversion for atrial fibrillation. Incidence, characteristics and predictive factors. Int. J. Cardiol. 2011;148:341–346. doi: 10.1016/j.ijcard.2009.11.031.
    1. Zelinger A.B., Falk R.H., Hood W.B. Electrical-induced sustained myocardial depolarization as a possible cause for transient ST elevation post-DC elective cardioversion. Am. Heart J. 1982;103:1073–1074. doi: 10.1016/0002-8703(82)90574-9.
    1. White H.D. Pathobiology of Troponin Elevations. J. Am. Coll. Cardiol. 2011;57:2406–2408. doi: 10.1016/j.jacc.2011.01.029.
    1. Walcott G.P., Killingsworth C.R., Ideker R.E. Do clinically relevant transthoracic defibrillation energies cause myocardial damage and dysfunction? Resuscitation. 2003;59:59–70. doi: 10.1016/S0300-9572(03)00161-8.
    1. Agusala V., Khera R., Cheeran D., Mody P., Reddy P.P., Link M.S. Diagnostic and prognostic utility of cardiac troponin in post-cardiac arrest care. Resuscitation. 2019;141:69–72. doi: 10.1016/j.resuscitation.2019.06.004.
    1. Trendafilova E., Krasteva V., Lavignasse D., Dimitrova E., Grigorov V., Jouven X. Cardioversion for atrial fibrillation: Efficacy of dose-response of low energy, high energy and pulsed biphasic truncated exponential waveforms. Resuscitation. 2018;130:e45–e46. doi: 10.1016/j.resuscitation.2018.07.079.
    1. Callaway C.W., Soar J., Aibiki M., Böttiger B.W., Brooks S.C., Deakin C.D., Donnino M.W., Drajer S., Kloeck W., Morley P.T., et al. Part 4: Advanced Life Support: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation. 2015;132(Suppl. S1):S84–S145. doi: 10.1161/CIR.0000000000000273.

Source: PubMed

3
Se inscrever