Coronavirus-19: Possible Therapeutic Implications of Spironolactone and Dry Extract of Glycyrrhiza glabra L. (Licorice)

Decio Armanini, Cristina Fiore, Jens Bielenberg, Chiara Sabbadin, Luciana Bordin, Decio Armanini, Cristina Fiore, Jens Bielenberg, Chiara Sabbadin, Luciana Bordin

Abstract

https://ichgcp.net/clinical-trials-registry/NCT044241349" title="See in ClinicalTrials.gov">NCT044241349, NCT043465887, NCT04487964).

Keywords: androgen receptor; inflammation; licorice; plasma membrane; spironolactone.

Copyright © 2020 Armanini, Fiore, Bielenberg, Sabbadin and Bordin.

References

    1. Armanini D., Sabbadin C., Donà G., Clari G., Bordin L. (2014). Aldosterone receptor blockers spironolactone and canrenone: two multivalent drugs. Expet Opin. Pharmacother. 15 (7), 909–912. 10.1517/14656566.2014.896901 10.1517/14656566.2014.896901 |
    1. Batlle D., Wysocki J., Satchell K. (2020). Soluble angiotensin-converting enzyme 2: a potential approach for coronavirus infection therapy?. Clin. Sci. (Lond.) 134 (5), 543–545. 10.1042/CS20200163 10.1042/CS20200163 |
    1. Bertram S., Heurich A., Lavender H., Gierer S., Danisch S., Perin P., et al. (2012). Influenza and SARS-coronavirus activating proteases TMPRSS2 and HAT are expressed at multiple sites in human respiratory and gastrointestinal tracts. PLoS One 7 (4), e35876 10.1371/journal.pone.0035876 10.1371/journal.pone.0035876 |
    1. Bordin L., Donà G., Ragazzi E., Andrisani A., Ambrosini G., Brunati A. M., et al. (2013). Human red blood cells alterations in primary aldosteronism. J. Clin. Endocrinol. Metab. 98 (6), 2494–2501. 10.1210/jc.2012-3571 10.1210/jc.2012-3571 |
    1. Cadegiani F. A. (2020). Can spironolactone be used to prevent COVID-19-induced acute respiratory distress syndrome in patients with hypertension?. Am. J. Physiol. Endocrinol. Metab. 318 (5), E587–E588. 10.1152/ajpendo.00136.2020 10.1152/ajpendo.00136.2020 |
    1. Chen L., Hu C., Hood M., Zhang X., Zhang L., Kan J., et al. (2020). A novel combination of vitamin C, curcumin and glycyrrhizic acid potentially regulates immune and inflammatory response associated with coronavirus infections: A perspective from system biology analysis. Nutrients 12, 1193 10.3390/nu12041193 10.3390/nu12041193 |
    1. Cinatl J., Morgenstern B., Bauer G., Chandra P., Rabenau H., Doerr H. W. (2003). Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet 361 (9374), 2045–2046. 10.1016/s0140-6736(03)13615-x 10.1016/s0140-6736(03)13615-x |
    1. Fiore C., Bordin L., Plellati D., Armanini D., Clari G. (2008a). Effect of glycyrrhetinic acid on membrane band 3 in human erythrocytes. Arch. Biochem. Biophys. 479, 46–51. 10.1016/j.abb.2008.08.011 10.1016/j.abb.2008.08.011 |
    1. Fiore C., Eisenhut M., Ragazzi E., Pellati D., Armanini D., Bielenberg J. (2008b). Antiviral Effects of Glycyrrhiza species. Phytother. Res. 22, 141–148. 10.1002/ptr.22959 10.1002/ptr.22959 |
    1. Hardy M. E., Hendricks J. M., Paulson J. M., Faunce N. R. (2012). 18β-glycyrrhetinic acid inhibits rotavirus replication in culture. Virol. J. 9, 96 10.1186/1743-422X-9-96 10.1186/1743-422X-9-96 |
    1. Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., et al. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell Open 181 (2), 271–280. 10.1016/j.cell.2020.02.052 10.1016/j.cell.2020.02.052 |
    1. Imai Y., Kuba K., Rao S., Huan T., Guo F., Guan B., et al. (2005). Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 436 (7047), 112–116. 10.1038/nature03712 10.1038/nature03712 |
    1. Keidar S., Gamliel-Lazarovich A., Kaplan M., Pavlotzky E., Hamoud S., Hayek T., et al. (2005). Mineralocorticoid receptor blocker increases angiotensin-converting enzyme 2 activity in congestive heart failure patients. Circ. Res. 97 (9), 946–953. 10.1161/CIRCRESAHA.120.317174 10.1161/CIRCRESAHA.120.317174 |
    1. Ko H. C., Wei B. L., Chiou W. F. (2006) The effect of medicinal plants used in Chinese folk medicine on RANTES secretion by virus-infected human epithelial cells. J. Ethnopharmacol. 107 (2), 205–210. 10.1016/j.jep.2006.03.004 10.1016/j.jep.2006.03.004 |
    1. Kong E., Zhang J., An N., Tao Y., Yu W., Wu F. (2019). Spironolactone rescues renal dysfunction in obstructive jaundice rats by upregulating ACE2 expression. J. Cell Commun. Signal. 13 (1), 17–26. 10.1007/s12079-018-0466-2 10.1007/s12079-018-0466-2 |
    1. Liaudet L., Szabo C. (2020). Blocking mineralocorticoid receptor with spironolactone may have a wide range of therapeutic actions in severe COVID-19 disease. Crit. Care 24 (1), 318 10.1186/s13054-020-03055-6 10.1186/s13054-020-03055-6 |
    1. Luo P., Liu D., Li J. (2020). Pharmacological perspective: glycyrrhizin may be an efficacious therapeutic agent for COVID-19. Int. J. Antimicrob. Agents 55, 105995 10.1016/j.ijantimicag.2020.105995 |
    1. Murck H. (2020). Symptomatic protective action of Glycyrrhizin (Licorice) in COVID-19 infection? Front. Immunol. 11, 1239 10.3389/fimmu.2020.01239 10.3389/fimmu.2020.01239 |
    1. Murthy V. L., Koupenova M., Shah R. V. (2020). ACEing COVID-19: a role for angiotensin axis inhibition in SARS-CoV-2 infection?. Circ. Res. 126 (12), 1682–1684. 10.1161/CIRCRESAHA.120.317174 10.1161/CIRCRESAHA.120.317174 |
    1. Sabbadin C., Bordin L., Donà G., Manso J., Avruscio G., Armanini D. (2019). Licorice: from pseudohyperaldosteronism to therapeutic uses. Front. Endocrinol. 10, 484 10.3389/fendo.2019.00484 10.3389/fendo.2019.00484 |
    1. Sasaki H., Takei M., Kobayashi M., Pollard R. B., Suzuki F. (2002–2003). Effect of glycyrrhizin, an active component of licorice roots, on HIV replication in cultures of peripheral blood mononuclear cells from HIV-seropositive patients. Pathobiology 70 (4), 229–236. 10.1159/000069334 10.1159/000069334 |
    1. Stoll R., Yokota R., Sanches Aragã D., Casarini D. E. (2019). Both aldosterone and spironolactone can modulate the intracellular ACE/ANG II/AT1 and ACE2/ANG (1-7)/MAS receptor axes in human mesangial cells. Physiol. Rep. 7 (11), e14105 10.14814/phy2.14105 10.14814/phy2.14105 |
    1. Stopsack K. H., Mucci L. A., Antonarakis E., Nelson P. S., Kantoff P. W. (2020). TMPRSS2 and COVID-19: serendipity or opportunity for intervention?. Cancer Discov. 10, 779–782. 10.1158/-20-0451 10.1158/-20-0451 |
    1. Utsunomiya T., Kobayashi M., Pollard R. B., Suzuki F. (1997). Glycyrrhizin, an active component of licorice roots, reduces morbidity and mortality of mice infected with lethal doses of influenza virus. Antimicrob. Agents Chemother. 41 (3), 551–556. 10.1128/AAC.41.3.551 10.1128/AAC.41.3.551 |
    1. Wang L., Yang R., Yuan B., Liu Y., Liu C. (2015). The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta Pharm. Sin. B 5 (4), 310–315. 10.1016/j.apsb.2015.05.005 10.1016/j.apsb.2015.05.005 |
    1. Yeh C. F., Wang K. C., Chiang L. C., Shieh D. E., Yen M. H., Chang J. S. (2013). Water extract of licorice had anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J. Ethnopharmacol. 148, 466–473. 10.1016/j.jep.2013.04.040 10.1016/j.jep.2013.04.040 |
    1. Zhao X., Jiang Y., Zhao Y., Xi H., Liu C., Qu F., et al. (2020). Analysis of the susceptibility to COVID-19 in pregnancy and recommendations on potential drug screening. Eur. J. Clin. Microbiol. Infect. Dis. 39 (7), 1209–1200. 10.1007/s10096-020-03897-6 10.1007/s10096-020-03897-6 |

Source: PubMed

3
Se inscrever