Effects of Melatonin on Glucose Homeostasis, Antioxidant Ability, and Adipokine Secretion in ICR Mice with NA/STZ-Induced Hyperglycemia

Chung-Cheng Lo, Shyh-Hsiang Lin, Jung-Su Chang, Yi-Wen Chien, Chung-Cheng Lo, Shyh-Hsiang Lin, Jung-Su Chang, Yi-Wen Chien

Abstract

Diabetes is often associated with decreased melatonin level. The aim was to investigate the effects of different dosage of melatonin on glucose hemostasis, antioxidant ability and adipokines secretion in diabetic institute for cancer research (ICR) mice. Forty animals were randomly divided into five groups including control (C), diabetic (D), low-dosage (L), medium-dosage (M), and high-dosage (H) groups. Groups L, M, and H, respectively, received oral melatonin at 10, 20, and 50 mg/kg of BW (body weight) daily after inducing hyperglycemia by nicotinamide (NA)/ streptozotocin (STZ). After the six-week intervention, results showed that melatonin administration increased insulin level and performed lower area under the curve (AUC) in H group (p < 0.05). Melatonin could lower hepatic Malondialdehyde (MDA) level in all melatonin-treated groups and increase superoxide dismutase activity in H group (p < 0.05). Melatonin-treated groups revealed significant higher adiponectin in L group, and lower leptin/adiponectin ratio and leptin in M and H groups (p < 0.05). Melatonin could lower cholesterol and triglyceride in liver and decrease plasma cholesterol and low-density lipoprotein-cholesterol (LDL-C) in L group, and increase plasma high-density lipoprotein-cholesterol (HDL-C) in H group (p < 0.05). Above all, melatonin could decrease oxidative stress, increase the adiponectin level and improve dyslipidemia, especially in H group. These data support melatonin possibly being a helpful aid for treating hyperglycemia-related symptoms.

Keywords: adiopkines; diabetes; melatonin; oxidative stress and insulin resistance.

Conflict of interest statement

The authors have no conflicts of interest to declare.

Figures

Figure 1
Figure 1
Oral glucose tolerance test (OGTT): (A) before; and (B) after the six-week melatonin intervention. All values are the mean ± SD (n = 8). * p < 0.05 compared to the diabetic group. # p < 0.05 compared to the diabetic group. C, control group; D, diabetic group; L, low-dosage group (10 mg melatonin/kg of body weight (BW)); M, medium-dosage group (20 mg melatonin/kg of BW); and H, high-dosage group (50 mg melatonin/kg of BW).
Figure 1
Figure 1
Oral glucose tolerance test (OGTT): (A) before; and (B) after the six-week melatonin intervention. All values are the mean ± SD (n = 8). * p < 0.05 compared to the diabetic group. # p < 0.05 compared to the diabetic group. C, control group; D, diabetic group; L, low-dosage group (10 mg melatonin/kg of body weight (BW)); M, medium-dosage group (20 mg melatonin/kg of BW); and H, high-dosage group (50 mg melatonin/kg of BW).

References

    1. Chan J.C., Malik V., Jia W., Kadowaki T., Yajnik C.S., Yoon K.-H., Hu F.B. Diabetes in Asia: Epidemiology, risk factors, and pathophysiology. JAMA. 2009;301:2129–2140. doi: 10.1001/jama.2009.726.
    1. Yoon K.-H., Lee J.-H., Kim J.-W., Cho J.H., Choi Y.-H., Ko S.-H., Zimmet P., Son H.-Y. Epidemic obesity and type 2 diabetes in Asia. Lancet. 2006;368:1681–1688. doi: 10.1016/S0140-6736(06)69703-1.
    1. Yeh C.-J., Chang H.-Y., Pan W.-H. Time trend of obesity, the metabolic syndrome and related dietary pattern in Taiwan: From NAHSIT 1993–1996 to NAHSIT 2005–2008. Asia Pac. J. Clin. Nutr. 2011;20:292–300.
    1. Diabetes Control and Complications Trial Research Group. Nathan D.M., Genuth S., Lachin J., Cleary P., Crofford O., Davis M., Rand L., Siebert C. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 1993;1993:977–986.
    1. Wei M., Gaskill S.P., Haffner S.M., Stern M.P. Effects of diabetes and level of glycemia on all-cause and cardiovascular mortality: The San Antonio heart study. Diabetes Care. 1998;21:1167–1172. doi: 10.2337/diacare.21.7.1167.
    1. Ginsberg H.N. Insulin resistance and cardiovascular disease. J. Clin. Investig. 2000;106:453–458. doi: 10.1172/JCI10762.
    1. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813–820. doi: 10.1038/414813a.
    1. Garrel C., Fowler P.A., Al-Gubory K.H. Developmental changes in antioxidant enzymatic defences against oxidative stress in sheep placentomes. J. Endocrinol. 2010;205:107–116. doi: 10.1677/JOE-09-0362.
    1. Tan D.X., Manchester L., Fuentes-Broto L., Paredes S., Reiter R. Significance and application of melatonin in the regulation of brown adipose tissue metabolism: Relation to human obesity. Obes. Rev. 2011;12:167–188. doi: 10.1111/j.1467-789X.2010.00756.x.
    1. Benloucif S., Burgess H.J., Klerman E.B., Lewy A.J., Middleton B., Murphy P.J., Parry B.L., Revell V.L. Measuring melatonin in humans. J. Clin. Sleep Med. 2008;4:66–69.
    1. Cardinali D.P., Srinivasan V., Brzezinski A., Brown G.M. Melatonin and its analogs in insomnia and depression. J. Pineal Res. 2012;52:365–375. doi: 10.1111/j.1600-079X.2011.00962.x.
    1. Blask D.E. Melatonin, sleep disturbance and cancer risk. Sleep Med. Rev. 2009;13:257–264. doi: 10.1016/j.smrv.2008.07.007.
    1. Agil A., Rosado I., Ruiz R., Figueroa A., Zen N., Fernández-Vázquez G. Melatonin improves glucose homeostasis in young zucker diabetic fatty rats. J. Pineal Res. 2012;52:203–210. doi: 10.1111/j.1600-079X.2011.00928.x.
    1. Calvo J.R., González-Yanes C., Maldonado M. The role of melatonin in the cells of the innate immunity: A review. J. Pineal Res. 2013;55:103–120. doi: 10.1111/jpi.12075.
    1. Paulis L., Simko F. Blood pressure modulation and cardiovascular protection by melatonin: Potential mechanisms behind. Physiol. Res. 2007;56:671.
    1. Singh M., Jadhav H.R. Melatonin: Functions and ligands. Drug Discov. Today. 2014;19:1410–1418. doi: 10.1016/j.drudis.2014.04.014.
    1. Nogueira T.C., Lellis-Santos C., Jesus D.S., Taneda M., Rodrigues S.C., Amaral F.G., Lopes A.M.S., Cipolla-Neto J., Bordin S., Anhe G.F. Absence of melatonin induces night-time hepatic insulin resistance and increased gluconeogenesis due to stimulation of nocturnal unfolded protein response. Endocrinology. 2011;152:1253–1263. doi: 10.1210/en.2010-1088.
    1. Hussain S.A.R. Effect of melatonin on cholesterol absorption in rats. J. Pineal Res. 2007;42:267–271. doi: 10.1111/j.1600-079X.2006.00415.x.
    1. Elbe H., Esrefoglu M., Vardi N., Taslidere E., Ozerol E., Tanbek K. Melatonin, quercetin and resveratrol attenuates oxidative hepatocellular injury in streptozotocin-induced diabetic rats. Hum. Exp. Toxicol. 2015;34:859–868. doi: 10.1177/0960327114559993.
    1. Anderson T., Schein P.S., McMenamin M.G., Cooney D.A. Streptozotocin diabetes. Correlation with extent of depression of pancreatic islet nicotinamide adenine dinucleotide. J. Clin. Investig. 1974;54:672–677. doi: 10.1172/JCI107805.
    1. Kröncke K.-D., Fehsel K., Sommer A., Rodriguez M.-L., Kolb-Bachofen V. Nitric oxide generation during cellular metabolization of the diabetogenic n-methyl-n-nitroso-urea streptozotozin contributes to islet cell DNA damage. Biol. Chem. Hoppe Seyler. 1995;376:179–186. doi: 10.1515/bchm3.1995.376.3.179.
    1. Murata M., Takahashi A., Saito I., Kawanishi S. Site-specific DNA methylation and apoptosis: Induction by diabetogenic streptozotocin. Biochem. Pharmacol. 1999;57:881–887. doi: 10.1016/S0006-2952(98)00370-0.
    1. Szkudelska K., Nogowski L., Szkudelski T. Adipocyte dysfunction in rats with streptozotocin–nicotinamide-induced diabetes. Int. J. Exp. Pathol. 2014;95:86–94. doi: 10.1111/iep.12073.
    1. Ha B.G., Park J.-E., Shin E.J., Shon Y.H. Modulation of glucose metabolism by balanced deep-sea water ameliorates hyperglycemia and pancreatic function in streptozotocin-induced diabetic mice. PLoS ONE. 2014;9:e102095. doi: 10.1371/journal.pone.0102095.
    1. Lee J., Lee H.-I., Seo K.-I., Cho H.W., Kim M.-J., Park E.-M., Lee M.-K. Effects of ursolic acid on glucose metabolism, the polyol pathway and dyslipidemia in non-obese type 2 diabetic mice. Indian J. Exp. Biol. 2014;52:683–691.
    1. She M., Hou H., Wang Z., Zhang C., Laudon M., Yin W. Melatonin rescues 3T3-L1 adipocytes from ffa-induced insulin resistance by inhibiting phosphorylation of IRS-1 on ser307. Biochimie. 2014;103:126–130. doi: 10.1016/j.biochi.2014.05.001.
    1. Amaral F.G., Turati A.O., Barone M., Scialfa J.H., Carmo Buonfiglio D., Peres R., Peliciari-Garcia R.A., Afeche S.C., Lima L., Scavone C. Melatonin synthesis impairment as a new deleterious outcome of diabetes-derived hyperglycemia. J. Pineal Res. 2014;57:67–79. doi: 10.1111/jpi.12144.
    1. Nduhirabandi F., Huisamen B., Strijdom H., Blackhurst D., Lochner A. Short-term melatonin consumption protects the heart of obese rats independent of body weight change and visceral adiposity. J. Pineal Res. 2014;57:317–332. doi: 10.1111/jpi.12171.
    1. Prunet-Marcassus B., Desbazeille M., Bros A., Louche K., Delagrange P., Renard P., Casteilla L., Penicaud L. Melatonin reduces body weight gain in Sprague Dawley rats with diet-induced obesity. Endocrinology. 2003;144:5347–5352. doi: 10.1210/en.2003-0693.
    1. Nduhirabandi F., Du Toit E.F., Blackhurst D., Marais D., Lochner A. Chronic melatonin consumption prevents obesity-related metabolic abnormalities and protects the heart against myocardial ischemia and reperfusion injury in a prediabetic model of diet-induced obesity. J. Pineal Res. 2011;50:171–182. doi: 10.1111/j.1600-079X.2010.00826.x.
    1. Kitagawa A., Ohta Y., Ohashi K. Melatonin improves metabolic syndrome induced by high fructose intake in rats. J. Pineal Res. 2012;52:403–413. doi: 10.1111/j.1600-079X.2011.00955.x.
    1. Sartori C., Dessen P., Mathieu C., Monney A., Bloch J., Nicod P., Scherrer U., Duplain H. Melatonin improves glucose homeostasis and endothelial vascular function in high-fat diet-fed insulin-resistant mice. Endocrinology. 2009;150:5311–5317. doi: 10.1210/en.2009-0425.
    1. Zhang W.L., Meng H.Z., Yang R.F., Yang M.W., Sun G.H., Liu J.H., Shi P.X., Liu F., Yang B. Melatonin suppresses autophagy in type 2 diabetic osteoporosis. Oncotarget. 2016;7:52179–52194. doi: 10.18632/oncotarget.10538.
    1. Negi G., Kumar A., Kaundal R.K., Gulati A., Sharma S.S. Functional and biochemical evidence indicating beneficial effect of melatonin and nicotinamide alone and in combination in experimental diabetic neuropathy. Neuropharmacology. 2010;58:585–592. doi: 10.1016/j.neuropharm.2009.11.018.
    1. Klepac N., Rudes Z., Klepac R. Effects of melatonin on plasma oxidative stress in rats with streptozotocin induced diabetes. Biomed. Pharmacother. 2006;60:32–35. doi: 10.1016/j.biopha.2005.08.005.
    1. Amniattalab A., Malekinejad H., Rezabakhsh A., Rokhsartalab-Azar S., Alizade-Fanalou S. Silymarin: A novel natural agent to restore defective pancreatic beta cells in streptozotocin (stz)-induced diabetic rats. Iran. J. Pharm. Res. 2016;15:493–500.
    1. Elbe H., Vardi N., Esrefoglu M., Ates B., Yologlu S., Taskapan C. Amelioration of streptozotocin-induced diabetic nephropathy by melatonin, quercetin, and resveratrol in rats. Hum. Exp. Toxicol. 2015;34:100–113. doi: 10.1177/0960327114531995.
    1. Bibak B., Khalili M., Rajaei Z., Soukhtanloo M., Hadjzadeh M.A., Hayatdavoudi P. Effects of melatonin on biochemical factors and food and water consumption in diabetic rats. Adv. Biomed. Res. 2014;3:173.
    1. Allagui M.S., Feriani A., Bouoni Z., Alimi H., Murat J.C., El Feki A. Protective effects of vitamins (c and e) and melatonin co-administration on hematological and hepatic functions and oxidative stress in alloxan-induced diabetic rats. J. Physiol. Biochem. 2014;70:713–723. doi: 10.1007/s13105-014-0340-5.
    1. Yuan G., Al-Shali K.Z., Hegele R.A. Hypertriglyceridemia: Its etiology, effects and treatment. CMAJ. 2007;176:1113–1120. doi: 10.1503/cmaj.060963.
    1. Agil A., Navarro-Alarcon M., Ruiz R., Abuhamadah S., El-Mir M.Y., Vazquez G.F. Beneficial effects of melatonin on obesity and lipid profile in young Zucker diabetic fatty rats. J. Pineal Res. 2011;50:207–212. doi: 10.1111/j.1600-079X.2010.00830.x.
    1. Ridker P.M., Stampfer M.J., Rifai N. Novel risk factors for systemic atherosclerosis: A comparison of C-reactive protein, fibrinogen, homocysteine, lipoprotein (a), and standard cholesterol screening as predictors of peripheral arterial disease. JAMA. 2001;285:2481–2485. doi: 10.1001/jama.285.19.2481.
    1. Salmanoglu D.S., Gurpinar T., Vural K., Ekerbicer N., Dariverenli E., Var A. Melatonin and l-carnitin improves endothelial disfunction and oxidative stress in type 2 diabetic rats. Redox Biol. 2016;8:199–204. doi: 10.1016/j.redox.2015.11.007.
    1. Vural H., Sabuncu T., Arslan S.O., Aksoy N. Melatonin inhibits lipid peroxidation and stimulates the antioxidant status of diabetic rats. J. Pineal Res. 2001;31:193–198. doi: 10.1034/j.1600-079X.2001.310301.x.
    1. Aksoy N., Vural H., Sabuncu T., Aksoy S. Effects of melatonin on oxidative-antioxidative status of tissues in streptozotocin-induced diabetic rats. Cell Biochem. Funct. 2003;21:121–125. doi: 10.1002/cbf.1006.
    1. Sudnikovich E.J., Maksimchik Y.Z., Zabrodskaya S.V., Kubyshin V.L., Lapshina E.A., Bryszewska M., Reiter R.J., Zavodnik I.B. Melatonin attenuates metabolic disorders due to streptozotocin-induced diabetes in rats. Eur. J. Pharmacol. 2007;569:180–187. doi: 10.1016/j.ejphar.2007.05.018.
    1. De Oliveira A.C., Andreotti S., Farias Tda S., Torres-Leal F.L., de Proenca A.R., Campana A.B., de Souza A.H., Sertie R.A., Carpinelli A.R., Cipolla-Neto J., et al. Metabolic disorders and adipose tissue insulin responsiveness in neonatally STZ-induced diabetic rats are improved by long-term melatonin treatment. Endocrinology. 2012;153:2178–2188. doi: 10.1210/en.2011-1675.
    1. Norata G.D., Raselli S., Grigore L., Garlaschelli K., Dozio E., Magni P., Catapano A.L. Leptin: Adiponectin ratio is an independent predictor of intima media thickness of the common carotid artery. Stroke. 2007;38:2844–2846. doi: 10.1161/STROKEAHA.107.485540.

Source: PubMed

3
Se inscrever