Recent Advances of Curcumin in the Prevention and Treatment of Renal Fibrosis

Xuejiao Sun, Yi Liu, Cheng Li, Xiting Wang, Ruyuan Zhu, Chenyue Liu, Haixia Liu, Lili Wang, Rufeng Ma, Min Fu, Dongwei Zhang, Yu Li, Xuejiao Sun, Yi Liu, Cheng Li, Xiting Wang, Ruyuan Zhu, Chenyue Liu, Haixia Liu, Lili Wang, Rufeng Ma, Min Fu, Dongwei Zhang, Yu Li

Abstract

Curcumin, a polyphenol derived from the turmeric, has received attention as a potential treatment for renal fibrosis primarily because it is a relatively safe and inexpensive compound that contributes to kidney health. Here, we review the literatures on the applications of curcumin in resolving renal fibrosis in animal models and summarize the mechanisms of curcumin and its analogs (C66 and (1E,4E)-1,5-bis(2-bromophenyl) penta-1,4-dien-3-one(B06)) in preventing inflammatory molecules release and reducing the deposition of extracellular matrix at the priming and activation stage of renal fibrosis in animal models by consulting PubMed and Cnki databases over the past 15 years. Curcumin exerts antifibrotic effect through reducing inflammation related factors (MCP-1, NF-κB, TNF-α, IL-1β, COX-2, and cav-1) and inducing the expression of anti-inflammation factors (HO-1, M6PRBP1, and NEDD4) as well as targeting TGF-β/Smads, MAPK/ERK, and PPAR-γ pathways in animal models. As a food derived compound, curcumin is becoming a promising drug candidate for improving renal health.

Figures

Figure 1
Figure 1
The chemical structure of curcumin (a), C66 (b), and B06 (c).
Figure 2
Figure 2
Nrf2 signaling pathway. Nrf2, as a transcription factor, resides within cytoplasm binding to the actin-associated Keap1 protein and is normally degraded. Upon oxidation stress, the association will be disrupted, resulting in the translocation of Nrf2 to nuclei and then increased expression of cytoprotective enzymes (HO-1, SOD, etc.).
Figure 3
Figure 3
Curcumin plays a protective role at the priming and the activation stage of renal fibrosis. At the priming stage, curcumin reduces proinflammatory molecular activity and blocks inflammation associated signaling pathways. At the activation stage, curcumin inhibits the expression of renal fibrosis markers, rebuilds the redox balance, blocks MAPK/ERK pathway and TGF-β/Smads pathway, and increases PPAR-γ expression. NF-κB, nuclear factor-kappa B; MCP-1, monocyte chemotactic protein 1; ICAM-1, intercellular adhesion molecule 1; TNF-α, tumor necrosis factor α; IL-1β, interleukin-1β; Cav-1, Caveolin-1; MAPK, mitogen-activated protein kinase; cPLA2, cytosolic phospholipase A2; iPLA2, calcium-independent intracellular PLA2; COX, cyclooxygenase; HO-1, heme oxygenase-1; CCR7, chemokine receptor 7; CCL21, chemokine ligand 21; α-SMA, α smooth muscle actin; Fsp-1, fibroblast-specific protein 1; TGF, transforming growth factor; Sphk1, sphingosine kinase 1; S1P, sphingosine 1-phosphate; PPAR-γ, peroxisome proliferators-activated receptor-γ; SOD, superoxide dismutase; CAT, catalase; GR, glutathione reductase; GPx, glutathione peroxidase; GSH, glutathione; MDA, malondialdehyde; iNOS, inducible nitric oxide synthase; NEDD4, neural precursor cell expressed, developmentally downregulated 4; M6PRBP1, mannose-6-phosphate receptor binding protein 1.

References

    1. Kössler S., Nofziger C., Jakab M., Dossena S., Paulmichl M. Curcumin affects cell survival and cell volume regulation in human renal and intestinal cells. Toxicology. 2012;292(2-3):123–135. doi: 10.1016/j.tox.2011.12.002.
    1. Zhang D.-w., Fu M., Gao S.-H., Liu J.-L. Curcumin and diabetes: a systematic review. Evidence-Based Complementary and Alternative Medicine. 2013;2013:16. doi: 10.1155/2013/636053.636053
    1. Prasad S., Aggarwal B. Turmeric, the golden spice: from traditional medicine to modern medicine. In: Benzie I. F. F., Wachtel-Galor S., editors. Herbal Medicine: Biomolecular and Clinical Aspects. Boca Raton, Fla, USA: CRC Press; 2011. pp. 263–288.
    1. Lelli D., Sahebkar A., Johnston T. P., Pedone C. Curcumin use in pulmonary diseases: state of the art and future perspectives. Pharmacological Research. 2017;115:133–148. doi: 10.1016/j.phrs.2016.11.017.
    1. Jones E. A., Shahed A., Shoskes D. A. Modulation of apoptotic and inflammatory genes by bioflavonoids and angiotensin II inhibition in ureteral obstruction. Urology. 2000;56(2):346–351. doi: 10.1016/S0090-4295(00)00608-7.
    1. Trujillo J., Chirino Y. I., Molina-Jijón E., Andérica-Romero A. C., Tapia E., Pedraza-Chaverrí J. Renoprotective effect of the antioxidant curcumin: recent findings. Redox Biology. 2013;1(1):448–456. doi: 10.1016/j.redox.2013.09.003.
    1. Li L.-C., Kan L.-D. Traditional Chinese medicine for pulmonary fibrosis therapy: progress and future prospects. Journal of Ethnopharmacology. 2017;198:45–63. doi: 10.1016/j.jep.2016.12.042.
    1. Xia J., He L.-Q., Su X. Interventional mechanisms of herbs or herbal extracts on renal interstitial fibrosis. Journal of Integrative Medicine. 2016;14(3):165–173. doi: 10.1016/s2095-4964(16)60256-x.
    1. Liu Y. Cellular and molecular mechanisms of renal fibrosis. Nature Reviews Nephrology. 2011;7(12):684–696. doi: 10.1038/nrneph.2011.149.
    1. Meng X.-M., Nikolic-Paterson D. J., Lan H. Y. Inflammatory processes in renal fibrosis. Nature Reviews Nephrology. 2014;10(9):493–503. doi: 10.1038/nrneph.2014.114.
    1. Conway B., Hughes J. Cellular orchestrators of renal fibrosis. QJM. 2012;105(7):611–615. doi: 10.1093/qjmed/hcr235.
    1. Nikolic-Paterson D. J., Wang S., Lan H. Y. Macrophages promote renal fibrosis through direct and indirect mechanisms. Kidney International Supplements. 2014;4(1):34–38. doi: 10.1038/kisup.2014.7.
    1. Kuwabara N., Tamada S., Iwai T., et al. Attenuation of renal fibrosis by curcumin in rat obstructive nephropathy. Urology. 2006;67(2):440–446. doi: 10.1016/j.urology.2005.09.028.
    1. Sun L.-N., Yang Z.-Y., Lv S.-S., Liu X.-C., Guan G.-J., Liu G. Curcumin prevents diabetic nephropathy against inflammatory response via reversing caveolin-1 Tyr14 phosphorylation influenced TLR4 activation. International Immunopharmacology. 2014;23(1):236–246. doi: 10.1016/j.intimp.2014.08.023.
    1. Soetikno V., Sari F. R., Veeraveedu P. T., et al. Curcumin ameliorates macrophage infiltration by inhibiting NF-κB activation and proinflammatory cytokines in streptozotocin induced-diabetic nephropathy. Nutrition and Metabolism. 2011;8(1, article 35) doi: 10.1186/1743-7075-8-35.
    1. Ghosh S. S., Massey H. D., Krieg R., et al. Curcumin ameliorates renal failure in 5/6 nephrectomized rats: role of inflammation. American Journal of Physiology—Renal Physiology. 2009;296(5):F1146–F1157. doi: 10.1152/ajprenal.90732.2008.
    1. Wada T., Furuichi K., Sakai N., et al. Gene therapy via blockade of monocyte chemoattractant protein-1 for renal fibrosis. Journal of the American Society of Nephrology. 2004;15(4):940–948. doi: 10.1097/01.asn.0000120371.09769.80.
    1. Kitagawa K., Wada T., Furuichi K., et al. Blockade of CCR2 ameliorates progressive fibrosis in kidney. The American Journal of Pathology. 2004;165(1):237–246. doi: 10.1016/s0002-9440(10)63292-0.
    1. Jacob A., Chaves L., Eadon M. T., Chang A., Quigg R. J., Alexander J. J. Curcumin alleviates immune-complex-mediated glomerulonephritis in factor-H-deficient mice. Immunology. 2013;139(3):328–337. doi: 10.1111/imm.12079.
    1. Zhong F., Chen H., Han L., Jin Y., Wang W. Curcumin attenuates lipopolysaccharide-induced renal inflammation. Biological and Pharmaceutical Bulletin. 2011;34(2):226–232. doi: 10.1248/bpb.34.226.
    1. Sun L.-N., Chen Z.-X., Liu X.-C., Liu H.-Y., Guan G.-J., Liu G. Curcumin ameliorates epithelial-to-mesenchymal transition of podocytes in vivo and in vitro via regulating caveolin-1. Biomedicine and Pharmacotherapy. 2014;68(8):1079–1088. doi: 10.1016/j.biopha.2014.10.005.
    1. Huang J., Huang K., Lan T., et al. Curcumin ameliorates diabetic nephropathy by inhibiting the activation of the SphK1-S1P signaling pathway. Molecular and Cellular Endocrinology. 2013;365(2):231–240. doi: 10.1016/j.mce.2012.10.024.
    1. Ghosh S. S., Krieg R., Massey H. D., et al. Curcumin and enalapril ameliorate renal failure by antagonizing inflammation in 5/6 nephrectomized rats: role of phospholipase and cyclooxygenase. American Journal of Physiology—Renal Physiology. 2012;302(4):F439–F454. doi: 10.1152/ajprenal.00356.2010.
    1. Tapia E., Zatarain-Barrón Z. L., Hernández-Pando R., et al. Curcumin reverses glomerular hemodynamic alterations and oxidant stress in 5/6 nephrectomized rats. Phytomedicine. 2013;20(3-4):359–366. doi: 10.1016/j.phymed.2012.11.014.
    1. Zhong F., Chen H., Jin Y., Guo S., Wang W., Chen N. Analysis of the gene expression profile of curcumin-treated kidney on endotoxin-induced renal inflammation. Inflammation. 2013;36(1):80–93. doi: 10.1007/s10753-012-9522-x.
    1. Hashem R. M., Soliman H. M., Shaapan S. F. Turmeric-based diet can delay apoptosis without modulating NF-κB in unilateral ureteral obstruction in rats. Journal of Pharmacy and Pharmacology. 2008;60(1):83–89. doi: 10.1211/jpp.60.1.0011.
    1. Zhou X., Zhang J., Xu C., Wang W. Curcumin ameliorates renal fibrosis by inhibiting local fibroblast proliferation and extracellular matrix deposition. Journal of Pharmacological Sciences. 2014;126(4):344–350. doi: 10.1254/jphs.14173FP.
    1. Gaedeke J., Noble N. A., Border W. A. Curcumin blocks fibrosis in anti-Thy 1 glomerulonephritis through up-regulation of heme oxygenase 1. Kidney International. 2005;68(5):2042–2049. doi: 10.1111/j.1523-1755.2005.00658.x.
    1. Manikandan R., Thiagarajan R., Beulaja S., Sudhandiran G., Arumugam M. Curcumin protects against hepatic and renal injuries mediated by inducible nitric oxide synthase during selenium-induced toxicity in Wistar rats. Microscopy Research and Technique. 2010;73(6):631–637. doi: 10.1002/jemt.20802.
    1. Buyuklu M., Mehmet Kandemir F., Ozkaraca M., Set T., Murat Bakirci E., Topal E. Protective effect of curcumin against contrast induced nephropathy in rat kidney: what is happening to oxidative stress, inflammation, autophagy and apoptosis? European Review for Medical and Pharmacological Sciences. 2014;18(4):461–470.
    1. Trujillo J., Molina-Jijón E., Medina-Campos O. N., et al. Curcumin prevents cisplatin-induced decrease in the tight and adherens junctions: relation to oxidative stress. Food and Function. 2016;7(1):279–293. doi: 10.1039/c5fo00624d.
    1. Abdel Fattah E. A., Hashem H. E., Ahmed F. A., Ghallab M. A., Varga I., Polak S. Prophylactic role of curcumin against cyclosporine-induced nephrotoxicity: histological and immunohistological study. General Physiology and Biophysics. 2010;29(1):85–94. doi: 10.4149/gpb_2010_01_85.
    1. Xue H.-Y., Yuan L., Cao Y.-J., Fan Y.-P., Chen X.-L., Huang X.-Z. Resveratrol ameliorates renal injury in spontaneously hypertensive rats by inhibiting renal micro-inflammation. Bioscience Reports. 2016;36(3) doi: 10.1042/bsr20160035.e00339
    1. Gilmore T. D. Introduction to NF-κB: players, pathways, perspectives. Oncogene. 2006;25(51):6680–6684. doi: 10.1038/sj.onc.1209954.
    1. Nagarajan R. P., Chen F., Li W., et al. Repression of transforming-growth-factor-β-mediated transcription by nuclear factor κB. Biochemical Journal. 2000;348(3):591–596. doi: 10.1042/0264-6021:3480591.
    1. Kayama F., Yoshida T., Kodama Y., Matsui T., Matheson J. M., Luster M. I. Pro-inflammatory cytokines and interleukin 6 in the renal response to bacterial endotoxin. Cytokine. 1997;9(9):688–695. doi: 10.1006/cyto.1997.0214.
    1. Pan Y., Wang Y., Cai L., et al. Inhibition of high glucose-induced inflammatory response and macrophage infiltration by a novel curcumin derivative prevents renal injury in diabetic rats. British Journal of Pharmacology. 2012;166(3):1169–1182. doi: 10.1111/j.1476-5381.2012.01854.x.
    1. Correa-Costa M., Semedo P., Monteiro A. P. F. S., et al. Induction of heme oxygenase-1 can halt and even reverse renal tubule-interstitial fibrosis. PLoS ONE. 2010;5(12) doi: 10.1371/journal.pone.0014298.e14298
    1. Chen X., Wei S.-Y., Li J.-S., et al. Overexpression of heme oxygenase-1 prevents renal interstitial inflammation and fibrosis induced by unilateral ureter obstruction. PLoS ONE. 2016;11(1) doi: 10.1371/journal.pone.0147084.e0147084
    1. Oliver P. M., Cao X., Worthen G. S., et al. Ndfip1 protein promotes the function of itch ubiquitin ligase to prevent T cell activation and T helper 2 cell-mediated inflammation. Immunity. 2006;25(6):929–940. doi: 10.1016/j.immuni.2006.10.012.
    1. Che X., Wang Q., Xie Y., et al. Astragaloside IV suppresses transforming growth factor-β1 induced fibrosis of cultured mouse renal fibroblasts via inhibition of the MAPK and NF-κB signaling pathways. Biochemical and Biophysical Research Communications. 2015;464(4):1260–1266. doi: 10.1016/j.bbrc.2015.07.116.
    1. Wang W., Zhou P.-H., Xu C.-G., Zhou X.-J., Hu W., Zhang J. Baicalein attenuates renal fibrosis by inhibiting inflammation via down-regulating NF-κB and MAPK signal pathways. Journal of Molecular Histology. 2015;46(3):283–290. doi: 10.1007/s10735-015-9621-8.
    1. Akira S., Takeda K., Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunology. 2001;2(8):675–680. doi: 10.1038/90609.
    1. Tesch G. H. Macrophages and diabetic nephropathy. Seminars in Nephrology. 2010;30(3):290–301. doi: 10.1016/j.semnephrol.2010.03.007.
    1. Sun Y. B. Y., Qu X., Caruana G., Li J. The origin of renal fibroblasts/myofibroblasts and the signals that trigger fibrosis. Differentiation. 2016;92(3):102–107. doi: 10.1016/j.diff.2016.05.008.
    1. Hao S., He W., Li Y., et al. Targeted inhibition of β-catenin/CBP signaling ameliorates renal interstitial fibrosis. Journal of the American Society of Nephrology. 2011;22(9):1642–1653. doi: 10.1681/ASN.2010101079.
    1. Heuberger J., Birchmeier W. Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling. Cold Spring Harbor Perspectives in Biology. 2010;2(2)a002915
    1. Galbiati F., Volonte D., Brown A. M. C., et al. Caveolin-1 expression inhibits Wnt/β-catenin/Lef-1 signaling by recruting β-catenin to caveolae membrane domains. Journal of Biological Chemistry. 2000;275(30):23368–23377. doi: 10.1074/jbc.m002020200.
    1. Li Y., Chen Z.-Q., Li Y.-D. Effects of curcumin on the epithelial mesenchymal transition and TGF-beta/Smads signaling pathway in unilateral ureteral obstruction rats. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2011;31(9):1224–1228.
    1. Li R., Wang Y., Liu Y., et al. Curcumin inhibits transforming growth factor-β1-induced EMT via PPARγ pathway, not smad pathway in renal tubular epithelial cells. PLoS ONE. 2013;8(3) doi: 10.1371/journal.pone.0058848.e58848
    1. Zhang X., Liang D., Guo L., et al. Curcumin protects renal tubular epithelial cells from high glucose-induced epithelial-to-mesenchymal transition through Nrf2-mediated upregulation of heme oxygenase-1. Molecular Medicine Reports. 2015;12(1):1347–1355. doi: 10.3892/mmr.2015.3556.
    1. Li Z. L., Mo L., Le G., Shi Y. Oxidized casein impairs antioxidant defense system and induces hepatic and renal injury in mice. Food and Chemical Toxicology. 2014;64:86–93. doi: 10.1016/j.fct.2013.10.039.
    1. Tapia E., Soto V., Ortiz-Vega K. M., et al. Curcumin induces Nrf2 nuclear translocation and prevents glomerular hypertension, hyperfiltration, oxidant stress, and the decrease in antioxidant enzymes in 5/6 nephrectomized rats. Oxidative Medicine and Cellular Longevity. 2012;2012 doi: 10.1155/2012/269039.269039
    1. Boddupalli S., Mein J. R., Lakkanna S., James D. R. Induction of phase 2 antioxidant enzymes by broccoli sulforaphane: perspectives in maintaining the antioxidant activity of vitamins A, C, and E. Frontiers in Genetics. 2012;3, article 7 doi: 10.3389/fgene.2012.00007.
    1. Nguyen T., Nioi P., Pickett C. B. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. Journal of Biological Chemistry. 2009;284(20):13291–13295. doi: 10.1074/jbc.R900010200.
    1. Lee S.-Y., Kim S. I., Choi M. E. Therapeutic targets for treating fibrotic kidney diseases. Translational Research. 2015;165(4):512–530. doi: 10.1016/j.trsl.2014.07.010.
    1. Gaedeke J., Noble N. A., Border W. A. Curcumin blocks multiple sites of the TGF-β signaling cascade in renal cells. Kidney International. 2004;66(1):112–120. doi: 10.1111/j.1523-1755.2004.00713.x.
    1. Zeng C.-C., Liu X., Liu W.-W., et al. Protective effect of curcumin derivative B06 on kidney of type 2 diabetic rats. Chinese Journal of Applied Physiology. 2015;31(1):38–42.
    1. Xin C., Ren S., Kleuser B., et al. Sphingosine 1-phosphate cross-activates the Smad signaling cascade and mimics transforming growth factor-β-induced cell responses. The Journal of Biological Chemistry. 2004;279(34):35255–35262. doi: 10.1074/jbc.m312091200.
    1. Ogretmen B., Hannun Y. A. Biologically active sphingolipids in cancer pathogenesis and treatment. Nature Reviews Cancer. 2004;4(8):604–616. doi: 10.1038/nrc1411.
    1. Fu X.-Y., Zhang D.-W., Li Y.-D., et al. Curcumin treatment suppresses CCR7 expression and the differentiation and migration of human circulating fibrocytes. Cellular Physiology and Biochemistry. 2015;35(2):489–498. doi: 10.1159/000369714.
    1. Xu T., Wang N.-S., Fu L.-L., Ye C.-Y., Yu S.-Q., Mei C.-L. Celecoxib inhibits growth of human autosomal dominant polycystic kidney cyst-lining epithelial cells through the VEGF/Raf/MAPK/ERK signaling pathway. Molecular Biology Reports. 2012;39(7):7743–7753. doi: 10.1007/s11033-012-1611-2.
    1. Sun S., Ning X., Zhai Y., et al. Egr-1 mediates chronic hypoxia-induced renal interstitial fibrosis via the PKC/ERK pathway. American Journal of Nephrology. 2014;39(5):436–448. doi: 10.1159/000362249.
    1. Ni J., Shen Y., Wang Z., et al. P300-dependent STAT3 acetylation is necessary for angiotensin II-induced pro-fibrotic responses in renal tubular epithelial cells. Acta Pharmacologica Sinica. 2014;35(9):1157–1166. doi: 10.1038/aps.2014.54.
    1. Li Q., Liu X., Wei J. Ageing related periostin expression increase from cardiac fibroblasts promotes cardiomyocytes senescent. Biochemical and Biophysical Research Communications. 2014;452(3):497–502. doi: 10.1016/j.bbrc.2014.08.109.
    1. Wang Y., Wang Y., Luo M., et al. Novel curcumin analog C66 prevents diabetic nephropathy via JNK pathway with the involvement of p300/CBP-mediated histone acetylation. Biochimica et Biophysica Acta—Molecular Basis of Disease. 2015;1852(1):34–46. doi: 10.1016/j.bbadis.2014.11.006.
    1. Pang M., Kothapally J., Mao H., et al. Inhibition of histone deacetylase activity attenuates renal fibroblast activation and interstitial fibrosis in obstructive nephropathy. American Journal of Physiology—Renal Physiology. 2009;297(4):F996–F1005. doi: 10.1152/ajprenal.00282.2009.
    1. Okunuki Y., Usui Y., Nakagawa H., et al. Peroxisome proliferator-activated receptor-γ agonist pioglitazone suppresses experimental autoimmune uveitis. Experimental Eye Research. 2013;116:291–297. doi: 10.1016/j.exer.2013.09.017.
    1. Kusunoki H., Taniyama Y., Rakugi H., Morishita R. Cardiac and renal protective effects of irbesartan via peroxisome proliferator-activated receptorγ-hepatocyte growth factor pathway independent of angiotensin II Type 1a receptor blockade in mouse model of salt-sensitive hypertension. Journal of the American Heart Association. 2013;2(2) doi: 10.1161/jaha.113.000103.e000103
    1. Santos E. L., de Picoli Souza K., da Silva E. D., et al. Long term treatment with ACE inhibitor enalapril decreases body weight gain and increases life span in rats. Biochemical Pharmacology. 2009;78(8):951–958. doi: 10.1016/j.bcp.2009.06.018.
    1. Zhao S., Mugabo Y., Iglesias J., et al. α/β-Hydrolase domain-6-accessible monoacylglycerol controls glucose-stimulated insulin secretion. Cell Metabolism. 2014;19(6):993–1007. doi: 10.1016/j.cmet.2014.04.003.

Source: PubMed

3
Se inscrever