Transcranial alternating current stimulation (tACS)

Andrea Antal, Walter Paulus, Andrea Antal, Walter Paulus

Abstract

Transcranial alternating current stimulation (tACS) seems likely to open a new era of the field of noninvasive electrical stimulation of the human brain by directly interfering with cortical rhythms. It is expected to synchronize (by one single resonance frequency) or desynchronize (e.g., by the application of several frequencies) cortical oscillations. If applied long enough it may cause neuroplastic effects. In the theta range it may improve cognition when applied in phase. Alpha rhythms could improve motor performance, whereas beta intrusion may deteriorate them. TACS with both alpha and beta frequencies has a high likelihood to induce retinal phosphenes. Gamma intrusion can possibly interfere with attention. Stimulation in the "ripple" range induces intensity dependent inhibition or excitation in the motor cortex (M1) most likely by entrainment of neuronal networks, whereas stimulation in the low kHz range induces excitation by neuronal membrane interference. TACS in the 200 kHz range may have a potential in oncology.

Keywords: human brain; motor; oscillations; tACS; visual.

References

    1. Ambrus G. G., Paulus W., Antal A. (2010). Cutaneous perception thresholds of electrical stimulation methods: comparison of tDCS and tRNS. Clin. Neurophysiol. 121, 1908–1914 10.1016/j.clinph.2010.04.020
    1. Ambrus G. G., Zimmer M., Kincses Z. T., Harza I., Kovacs G., Paulus W., et al. (2011). The enhancement of cortical excitability over the DLPFC before and during training impairs categorization in the prototype distortion task. Neuropsychologia 49, 1974–1980
    1. Antal A., Boros K., Poreisz C., Chaieb L., Terney D., Paulus W. (2008). Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimul. 1, 97–105 10.1016/j.brs.2007.10.001
    1. Bannister A. P. (2005). Inter- and intra-laminar connections of pyramidal cells in the neocortex. Neurosci. Res. 53, 95–103
    1. Batsikadze G., Moliadze V., Paulus W., Kuo M. F., Nitsche M. A. (2013). Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J. Physiol. 591, 1987–2000
    1. Berger U., Korngreen A., Bar-Gad I., Friedman A., Wolfus S., Yeshurun Y., et al. (2011). Magnetic stimulation intensity modulates motor inhibition. Neurosci. Lett. 504, 93–97 10.1016/j.neulet.2011.09.004
    1. Bergmann T. O., Groppa S., Seeger M., Molle M., Marshall L., Siebner H. R. (2009). Acute changes in motor cortical excitability during slow oscillatory and constant anodal transcranial direct current stimulation. J. Neurophysiol. 102, 2303–2311 10.1152/jn.00437.2009
    1. Brignani D., Ruzzoli M., Mauri P., Miniussi C. (2013). Is transcranial alternating current stimulation effective in modulating brain oscillations. PLoS ONE 8:e56589 10.1371/journal.pone.0056589
    1. Brittain J. S., Probert-Smith P., Aziz T. Z., Brown P. (2013). Tremor suppression by rhythmic transcranial current stimulation. Curr. Biol. 23, 436–440 10.1016/j.cub.2013.01.068
    1. Burns S. P., Xing D., Shapley R. M. (2011). Is gamma-band activity in the local field potential of V1 cortex a "clock" or filtered noise. J. Neurosci. 31, 9658–9664
    1. Butts D. A., Weng C., Jin J., Yeh C. I., Lesica N. A., Alonso J. M., et al. (2007). Temporal precision in the neural code and the timescales of natural vision. Nature 449, 92–95 10.1038/nature06105
    1. Chaieb L., Antal A., Paulus W. (2011). Transcranial alternating current stimulation in the low kHz range increases motor cortex excitability. Restor. Neurol. Neurosci 29, 167–175
    1. Citri A., Malenka R. C. (2008). Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 10.1038/sj.npp.1301559
    1. Fertonani A., Pirulli C., Miniussi C. (2011). Random noise stimulation improves neuroplasticity in perceptual learning. J. Neurosci. 31, 15416–15423 10.1523/JNEUROSCI.2002-11.2011
    1. Feurra M., Paulus W., Walsh V., Kanai R. (2011). Frequency specific modulation of human somatosensory cortex. Front. Psychol. 2:13 10.3389/fpsyg.2011.00013
    1. Francis J. T., Gluckman B. J., Schiff S. J. (2003). Sensitivity of neurons to weak electric fields. J. Neurosci. 23, 7255–7261
    1. Gall C., Fedorov A. B., Ernst L., Borrmann A., Sabel B. A. (2010). Repetitive transorbital alternating current stimulation in optic neuropathy. NeuroRehabilitation 27, 335–341
    1. Gonzalez-Burgos G., Lewis D. A. (2008). GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia. Schizophr. Bull. 34, 944–961 10.1093/schbul/sbn070
    1. Joundi R. A., Jenkinson N., Brittain J. S., Aziz T. Z., Brown P. (2012). Driving oscillatory activity in the human cortex enhances motor performance. Curr. Biol. 22, 403–407 10.1016/j.cub.2012.01.024
    1. Kanai R., Chaieb L., Antal A., Walsh V., Paulus W. (2008). Frequency-dependent electrical stimulation of the visual cortex. Curr. Biol. 18, 1839–1843
    1. Kanai R., Paulus W., Walsh V. (2010). Transcranial alternating current stimulation (tACS) modulates cortical excitability as assessed by TMS-induced phosphene thresholds. Clin. Neurophysiol. 121, 1551–1554 10.1016/j.clinph.2010.03.022
    1. Kirson E. D., Dbaly V., Tovarys F., Vymazal J., Soustiel J. F., Itzhaki A., et al. (2007). Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors. Proc. Natl. Acad. Sci. U.S.A. 104, 10152–10157 10.1073/pnas.0702916104
    1. Laczo B., Antal A., Niebergall R., Treue S., Paulus W. (2012). Transcranial alternating stimulation in a high gamma frequency range applied over V1 improves contrast perception but does not modulate spatial attention. Brain Stimul. 5, 484–491 10.1016/j.brs.2011.08.008
    1. Maffei A., Nelson S. B., Turrigiano G. G. (2004). Selective reconfiguration of layer 4 visual cortical circuitry by visual deprivation. Nat. Neurosci. 7, 1353–1359
    1. Manoli Z., Grossman N., Samaras T. (2012). Theoretical investigation of transcranial alternating current stimulation using realistic head model. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012, 4156–4159 10.1109/EMBC.2012.6346882
    1. Marshall L., Helgadottir H., Molle M., Born J. (2006). Boosting slow oscillations during sleep potentiates memory. Nature 444, 610–613 10.1038/nature05278
    1. Moliadze V., Antal A., Paulus W. (2010). Boosting brain excitability by transcranial high frequency stimulation in the ripple range. J. Physiol. 588, 4891–4904
    1. Moliadze V., Atalay D., Antal A., Paulus W. (2012). Close to threshold transcranial electrical stimulation preferentially activates inhibitory networks before switching to excitation with higher intensities. Brain Stimul. 5, 505–511 10.1016/j.brs.2011.11.004
    1. Moss F., Ward L. M., Sannita W. G. (2004). Stochastic resonance and sensory information processing: a tutorial and review of application. Clin. Neurophysiol. 115, 267–281 10.1016/j.clinph.2003.09.014
    1. Mulquiney P. G., Hoy K. E., Daskalakis Z. J., Fitzgerald P. B. (2011). Improving working memory: exploring the effect of transcranial random noise stimulation and transcranial direct current stimulation on the dorsolateral prefrontal cortex. Clin. Neurophysiol. 122, 2384–2389 10.1016/j.clinph.2011.05.009
    1. Neuling T., Rach S., Herrmann C. S. (2013). Orchestrating neuronal networks: sustained after-effects of transcranial alternating current stimulation depend upon brain states. Front. Hum. Neurosci. 7:161 10.3389/fnhum.2013.00161
    1. Neuling T., Rach S., Wagner S., Wolters C. H., Herrmann C. S. (2012). Good vibrations: oscillatory phase shapes perception. Neuroimage 63, 771–778 10.1016/j.neuroimage.2012.07.024
    1. Nitsche M. A., Paulus W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 527(Pt 3), 633–639
    1. Pashut T., Wolfus S., Friedman A., Lavidor M., Bar-Gad I., Yeshurun Y., et al. (2011). Mechanisms of magnetic stimulation of central nervous system neurons. PLoS Comput. Biol. 7:e1002022 10.1371/journal.pcbi.1002022
    1. Paulus W., Opitz A. (2013). Ohm's law and tDCS over the centuries. Clin. Neurophysiol. 124, 429–430 10.1016/j.clinph.2012.08.019
    1. Pogosyan A., Gaynor L. D., Eusebio A., Brown P. (2009). Boosting cortical activity at Beta-band frequencies slows movement in humans. Curr. Biol. 19, 1637–1641
    1. Polania R., Nitsche M. A., Korman C., Batsikadze G., Paulus W. (2012). The importance of timing in segregated theta phase-coupling for cognitive performance. Curr. Biol. 22, 1314–1318
    1. Radman T., Su Y., An J. H., Parra L. C., Bikson M. (2007). Spike timing amplifies the effect of electric fields on neurons: implications for endogenous field effects. J. Neurosci. 27, 3030–3036
    1. Reato D., Rahman A., Bikson M., Parra L. C. (2010). Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. J. Neurosci. 30, 15067–15079 10.1523/JNEUROSCI.2059-10.2010
    1. Sabel B. A., Fedorov A. B., Naue N., Borrmann A., Herrmann C., Gall C. (2011). Non-invasive alternating current stimulation improves vision in optic neuropathy. Restor. Neurol. Neurosci. 29, 493–505.
    1. Schutter D. J., Hortensius R. (2010). Retinal origin of phosphenes to transcranial alternating current stimulation. Clin. Neurophysiol. 121, 1080–1084 10.1016/j.clinph.2009.10.038
    1. Terney D., Chaieb L., Moliadze V., Antal A., Paulus W. (2008). Increasing human brain excitability by transcranial high-frequency random noise stimulation. J. Neurosci. 28, 14147–14155 10.1523/JNEUROSCI.4248-08.2008
    1. Turi Z., Ambrus G. G., Janacsek K., Emmert K., Hahn L., Paulus W., et al. (2013). Both the cutaneous sensation and phosphene perception are modulated in a frequency-specific manner during transcranial alternating current stimulation. Restor. Neurol. Neurosci. 31, 275–285 10.3233/RNN-120297
    1. Wach C., Krause V., Moliadze V., Paulus W., Schnitzler A., Pollok B. (2013). Effects of 10 Hz and 20 Hz transcranial alternating current stimulation (tACS) on motor functions and motor cortical excitability. Behav. Brain Res. 241, 1–6 10.1016/j.bbr.2012.11.038
    1. Wiesenfeld K., Moss F. (1995). Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature 373, 33–36 10.1038/373033a0
    1. Zaehle T., Rach S., Herrmann C. S. (2010). Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS ONE 5:e13766 10.1371/journal.pone.0013766

Source: PubMed

3
Se inscrever