Cardiac and Vascular Surgery-Associated Acute Kidney Injury: The 20th International Consensus Conference of the ADQI (Acute Disease Quality Initiative) Group

Mitra K Nadim, Lui G Forni, Azra Bihorac, Charles Hobson, Jay L Koyner, Andrew Shaw, George J Arnaoutakis, Xiaoqiang Ding, Daniel T Engelman, Hrvoje Gasparovic, Vladimir Gasparovic, Charles A Herzog, Kianoush Kashani, Nevin Katz, Kathleen D Liu, Ravindra L Mehta, Marlies Ostermann, Neesh Pannu, Peter Pickkers, Susanna Price, Zaccaria Ricci, Jeffrey B Rich, Lokeswara R Sajja, Fred A Weaver, Alexander Zarbock, Claudio Ronco, John A Kellum, Mitra K Nadim, Lui G Forni, Azra Bihorac, Charles Hobson, Jay L Koyner, Andrew Shaw, George J Arnaoutakis, Xiaoqiang Ding, Daniel T Engelman, Hrvoje Gasparovic, Vladimir Gasparovic, Charles A Herzog, Kianoush Kashani, Nevin Katz, Kathleen D Liu, Ravindra L Mehta, Marlies Ostermann, Neesh Pannu, Peter Pickkers, Susanna Price, Zaccaria Ricci, Jeffrey B Rich, Lokeswara R Sajja, Fred A Weaver, Alexander Zarbock, Claudio Ronco, John A Kellum

No abstract available

Keywords: biomarker; dialysis; diuretics; ischemia–reperfusion injury; renal insufficiency.

Figures

Figure 1
Figure 1
Major pathophysiological mechanisms for the development of cardiac and vascular surgery–associated acute kidney injury (CVS‐AKI). Many common factors contribute to the development of CVS‐AKI. Hemodynamic perturbations such as exposure to cardiopulmonary bypass (CPB), cross‐clamping of the aorta, high doses of exogenous vasopressors, and blood‐product transfusion all increase the risk of AKI. Similarly, the mechanical factors outlined may be associated with renal perfusion injury following episodes of ischemia, resulting in increased oxidative stress and associated inflammation as well as embolic disease including cholesterol emboli, all of which increase the pathological burden on the kidney. Other mechanisms such as neurohormonal activation are relevant, as is the generation of free hemoglobin and the liberation of free iron perioperatively, all potentiating AKI. Associated tissue damage is reflected in a systemic inflammatory response, and all these factors contribute to a significant inflammatory response. Immune activation, the generation of reactive oxygen species, and upregulation of proinflammatory transcription factors all play roles.
Figure 2
Figure 2
Risk assessment for acute kidney injury (AKI) following cardiac and vascular surgery (CVS). This figure provides a framework for the time course of risk assessment for AKI following CVS. Risk assessment should be a continual process that is repeatedly performed in the pre‐, peri‐, and early postoperative time course, and it should incorporate clinical factors and biomarkers if available. Patients deemed to be at high risk of AKI may benefit from the implementation of kidney‐focused care to improve patient outcomes. CHF indicates congestive heart failure; COPD, chronic obstructive pulmonary disease; CPB, cardiopulmonary bypass; EF, ejection fraction; IABP, intra‐aortic balloon pump; IGFBP7, insulin‐like growth factor binding protein 7; KDIGO, Kidney Disease Initiative Global Outcome; NGAL, neutrophil gelatinase–associated lipocalin; PVD, peripheral vascular disease; TIMP2, tissue inhibitor of metalloproteinases 2.
Figure 3
Figure 3
Classification of acute kidney injury (AKI) by changes in function and/or damage. Currently the diagnosis of AKI is made through changes in serum creatinine (sCr) or urine output (UO)—functional biomarkers. The 10th Acute Disease Quality Initiative consensus meeting delineated criteria for defining AKI in terms of changes in biomarkers of renal function (sCr/UO) and biomarkers of kidney damage. This paradigm allows for the combination of injury biomarkers with sCr and UO and has been useful in the discrimination of patients with AKI. The terms prerenal and intrinsic AKI are sometimes used to denote these relationships. The upper right box may be termed subclinical. The upper left box is yellow because we may still miss changes in function and damage in some patients; a role for additional diagnostics and/or stress tests is acknowledged.
Figure 4
Figure 4
A, Cardiorespiratory‐specific diagnostic approach. This diagnostic approach may be applied to a patient who has a cardiorespiratory cause of acute kidney injury (AKI). The level of intervention is governed by the degree and chronicity of cardiorespiratory dysfunction. Source: ADQI (Acute Disease Quality Initiative) 20th consensus meeting (http://www.adqi.org). Used with permission. B, Kidney‐specific diagnostic approach. This diagnostic approach may be applied to a patient who has a renal‐specific cause of AKI. The level of intervention is governed by the degree and duration of renal dysfunction. This is particularly relevant in the post–intensive care unit phase, in which a patient with persistent AKI (>2 or 3 days) or acute kidney disease should be monitored and followed up. BNP indicates brain natriuretic peptide; CI, cardiac index; CKD, chronic kidney disease; CO, cardiac output; CVP, central venous pressure; CXR, chest x‐ray; EVLW, extravascular lung water; HR, heart rate; MAP, mean arterial pressure; RR, respiratory rate; Scvo 2, central venous oxygen saturation; Spo 2, peripheral oxygen saturation; SVV, stroke volume variation; US, ultrasound.
Figure 5
Figure 5
Fluid management strategies in critical illness: the place of mechanical fluid removal. Once life‐threatening hypovolemia has been corrected (savage resuscitation), fluid overload (FO) needs to be avoided. Early mechanical fluid removal should be considered if specific indications exist. Note, the existence of an extracorporeal circuit for extracorporeal membrane oxygenation (ECMO) greatly reduces any added risk for renal replacement therapy (RRT), assuming this circuit is used rather than a separate line for RRT. However, some patients will respond well to diuretics, and thus an ECMO circuit in place is only a relative indication for early RRT initiation and only when fluid or solute management dictates. During therapy, hemodynamic and intravascular volume status should be monitored and fluid removal rate and fluid balance targets reassessed regularly, aiming for clinical stability and tolerance of fluid removal. Within this pathway, RRT should be considered at any point if additional solute clearance is necessary. FB indicates fluid balance; UF, ultrafiltration.

References

    1. Hoste EA, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN, Edipidis K, Forni LG, Gomersall CD, Govil D, Honore PM, Joannes‐Boyau O, Joannidis M, Korhonen AM, Lavrentieva A, Mehta RL, Palevsky P, Roessler E, Ronco C, Uchino S, Vazquez JA, Vidal Andrade E, Webb S, Kellum JA. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI‐EPI study. Intensive Care Med. 2015;41:1411–1423.
    1. Chawla LS, Amdur RL, Shaw AD, Faselis C, Palant CE, Kimmel PL. Association between AKI and long‐term renal and cardiovascular outcomes in United States veterans. Clin J Am Soc Nephrol. 2014;9:448–456.
    1. Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta‐analysis. Kidney Int. 2012;81:442–448.
    1. Liyanage T, Ninomiya T, Jha V, Neal B, Patrice HM, Okpechi I, Zhao MH, Lv J, Garg AX, Knight J, Rodgers A, Gallagher M, Kotwal S, Cass A, Perkovic V. Worldwide access to treatment for end‐stage kidney disease: a systematic review. Lancet. 2015;385:1975–1982.
    1. Quan S, Pannu N, Wilson T, Ball C, Tan Z, Tonelli M, Hemmelgarn BR, Dixon E, James MT. Prognostic implications of adding urine output to serum creatinine measurements for staging of acute kidney injury after major surgery: a cohort study. Nephrol Dial Transplant. 2016;31:2049–2056.
    1. Englberger L, Suri RM, Li Z, Casey ET, Daly RC, Dearani JA, Schaff HV. Clinical accuracy of RIFLE and Acute Kidney Injury Network (AKIN) criteria for acute kidney injury in patients undergoing cardiac surgery. Crit Care. 2011;15:R16.
    1. Bastin AJ, Ostermann M, Slack AJ, Diller GP, Finney SJ, Evans TW. Acute kidney injury after cardiac surgery according to risk/injury/failure/loss/end‐stage, acute kidney injury network, and kidney disease: improving global outcomes classifications. J Crit Care. 2013;28:389–396.
    1. Machado MN, Nakazone MA, Maia LN. Prognostic value of acute kidney injury after cardiac surgery according to kidney disease: improving global outcomes definition and staging (KDIGO) criteria. PLoS One. 2014;9:e98028.
    1. James MT, Dixon E, Roberts DJ, Barry R, Balint C, Bharwani A, Buie WD, Godinez T, Hemmelgarn BR, Kortbeek JB, Manns BJ, Marin A, Scott‐Douglas N, Stelfox HT, Pannu N. Improving prevention, early recognition and management of acute kidney injury after major surgery: results of a planning meeting with multidisciplinary stakeholders. Can J Kidney Health Dis. 2014;1:20.
    1. Warren J, Mehran R, Baber U, Xu K, Giacoppo D, Gersh BJ, Guagliumi G, Witzenbichler B, Magnus Ohman E, Pocock SJ, Stone GW. Incidence and impact of acute kidney injury in patients with acute coronary syndromes treated with coronary artery bypass grafting: insights from the Harmonizing Outcomes With Revascularization and Stents in Acute Myocardial Infarction (HORIZONS‐AMI) and Acute Catheterization and Urgent Intervention Triage Strategy (ACUITY) trials. Am Heart J. 2016;171:40–47.
    1. Kashani K, Steuernagle JH IV, Akhoundi A, Alsara A, Hanson AC, Kor DJ. Vascular surgery kidney injury predictive score: a historical cohort study. J Cardiothorac Vasc Anesth. 2015;29:1588–1595.
    1. Ishani A, Nelson D, Clothier B, Schult T, Nugent S, Greer N, Slinin Y, Ensrud KE. The magnitude of acute serum creatinine increase after cardiac surgery and the risk of chronic kidney disease, progression of kidney disease, and death. Arch Intern Med. 2011;171:226–233.
    1. Thakar CV, Christianson A, Himmelfarb J, Leonard AC. Acute kidney injury episodes and chronic kidney disease risk in diabetes mellitus. Clin J Am Soc Nephrol. 2011;6:2567–2572.
    1. Kellum JA, Bellomo R, Ronco C. Acute Dialysis Quality Initiative (ADQI): methodology. Int J Artif Organs. 2008;31:90–93.
    1. Chang RW, Luo CM, Yu HY, Chen YS, Wang CH. Investigation of the pathophysiology of cardiopulmonary bypass using rodent extracorporeal life support model. BMC Cardiovasc Disord. 2017;17:123.
    1. DeNino WF, Carter CB, Sievert A, Goss A, Toole JM, Mukherjee R, Uber WE. The effect of ultrafiltration with cardiopulmonary bypass on the removal of dabigatran from the circulation of adult pigs. Perfusion. 2016;31:424–430.
    1. Sgouralis I, Evans RG, Layton AT. Renal medullary and urinary oxygen tension during cardiopulmonary bypass in the rat. Math Med Biol. 2017;34:313–333.
    1. Brezis M, Rosen S. Hypoxia of the renal medulla—its implications for disease. N Engl J Med. 1995;332:647–655.
    1. Lannemyr L, Bragadottir G, Krumbholz V, Redfors B, Sellgren J, Ricksten SE. Effects of cardiopulmonary bypass on renal perfusion, filtration, and oxygenation in patients undergoing cardiac surgery. Anesthesiology. 2017;126:205–213.
    1. Salmasi V, Maheshwari K, Yang D, Mascha EJ, Singh A, Sessler DI, Kurz A. Relationship between intraoperative hypotension, defined by either reduction from baseline or absolute thresholds, and acute kidney and myocardial injury after noncardiac surgery: a retrospective cohort analysis. Anesthesiology. 2017;126:47–65.
    1. Futier E, Lefrant JY, Guinot PG, Godet T, Lorne E, Cuvillon P, Bertran S, Leone M, Pastene B, Piriou V, Molliex S, Albanese J, Julia JM, Tavernier B, Imhoff E, Bazin JE, Constantin JM, Pereira B, Jaber S; Group IS . Effect of individualized vs standard blood pressure management strategies on postoperative organ dysfunction among high‐risk patients undergoing major surgery: a randomized clinical trial. JAMA. 2017;318:1346–1357.
    1. Walsh M, Devereaux PJ, Garg AX, Kurz A, Turan A, Rodseth RN, Cywinski J, Thabane L, Sessler DI. Relationship between intraoperative mean arterial pressure and clinical outcomes after noncardiac surgery: toward an empirical definition of hypotension. Anesthesiology. 2013;119:507–515.
    1. Parolari A, Pesce LL, Pacini D, Mazzanti V, Salis S, Sciacovelli C, Rossi F, Alamanni F; Monzino Research Group on Cardiac Surgery O . Risk factors for perioperative acute kidney injury after adult cardiac surgery: role of perioperative management. Ann Thorac Surg. 2012;93:584–591.
    1. Zarbock A, Schmidt C, Van Aken H, Wempe C, Martens S, Zahn PK, Wolf B, Goebel U, Schwer CI, Rosenberger P, Haeberle H, Gorlich D, Kellum JA, Meersch M. Effect of remote ischemic preconditioning on kidney injury among high‐risk patients undergoing cardiac surgery: a randomized clinical trial. JAMA. 2015;313:2133–2141.
    1. Hausenloy DJ, Candilio L, Evans R, Ariti C, Jenkins DP, Kolvekar S, Knight R, Kunst G, Laing C, Nicholas J, Pepper J, Robertson S, Xenou M, Clayton T, Yellon DM; Investigators ET . Remote ischemic preconditioning and outcomes of cardiac surgery. N Engl J Med. 2015;373:1408–1417.
    1. Meybohm P, Bein B, Brosteanu O, Cremer J, Gruenewald M, Stoppe C, Coburn M, Schaelte G, Boning A, Niemann B, Roesner J, Kletzin F, Strouhal U, Reyher C, Laufenberg‐Feldmann R, Ferner M, Brandes IF, Bauer M, Stehr SN, Kortgen A, Wittmann M, Baumgarten G, Meyer‐Treschan T, Kienbaum P, Heringlake M, Schon J, Sander M, Treskatsch S, Smul T, Wolwender E, Schilling T, Fuernau G, Hasenclever D, Zacharowski K; Collaborators RIS . A multicenter trial of remote ischemic preconditioning for heart surgery. N Engl J Med. 2015;373:1397–1407.
    1. Zaugg M, Lucchinetti E. Remote ischemic preconditioning in cardiac surgery—ineffective and risky? N Engl J Med. 2015;373:1470–1472.
    1. Chen KP, Cavender S, Lee J, Feng M, Mark RG, Celi LA, Mukamal KJ, Danziger J. Peripheral edema, central venous pressure, and risk of AKI in critical illness. Clin J Am Soc Nephrol. 2016;11:602–608.
    1. Rajendram R, Prowle JR. Venous congestion: are we adding insult to kidney injury in sepsis? Crit Care. 2014;18:104.
    1. Afsar B, Ortiz A, Covic A, Solak Y, Goldsmith D, Kanbay M. Focus on renal congestion in heart failure. Clin Kidney J. 2016;9:39–47.
    1. Mokri B. The Monro‐Kellie hypothesis: applications in CSF volume depletion. Neurology. 2001;56:1746–1748.
    1. Becher RD, Hoth JJ, Miller PR, Meredith JW, Chang MC. Systemic inflammation worsens outcomes in emergency surgical patients. J Trauma Acute Care Surg. 2012;72:1140–1149.
    1. MacCallum NS, Finney SJ, Gordon SE, Quinlan GJ, Evans TW. Modified criteria for the systemic inflammatory response syndrome improves their utility following cardiac surgery. Chest. 2014;145:1197–1203.
    1. Napolitano LM, Ferrer T, McCarter RJ Jr, Scalea TM. Systemic inflammatory response syndrome score at admission independently predicts mortality and length of stay in trauma patients. J Trauma. 2000;49:647–652; discussion 652‐653.
    1. Greenberg JH, Whitlock R, Zhang WR, Thiessen‐Philbrook HR, Zappitelli M, Devarajan P, Eikelboom J, Kavsak PA, Devereaux PJ, Shortt C, Garg AX, Parikh CR; Consortium T‐A . Interleukin‐6 and interleukin‐10 as acute kidney injury biomarkers in pediatric cardiac surgery. Pediatr Nephrol. 2015;30:1519–1527.
    1. Zhang WR, Garg AX, Coca SG, Devereaux PJ, Eikelboom J, Kavsak P, McArthur E, Thiessen‐Philbrook H, Shortt C, Shlipak M, Whitlock R, Parikh CR; Consortium T‐A . Plasma IL‐6 and IL‐10 concentrations predict AKI and long‐term mortality in adults after cardiac surgery. J Am Soc Nephrol. 2015;26:3123–3132.
    1. Gomez H, Ince C, De Backer D, Pickkers P, Payen D, Hotchkiss J, Kellum JA. A unified theory of sepsis‐induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury. Shock. 2014;41:3–11.
    1. O'Neal JB, Shaw AD, Billings FT. Acute kidney injury following cardiac surgery: current understanding and future directions. Crit Care. 2016;20:187.
    1. Ali F, Sultana S. Repeated short‐term stress synergizes the ROS signalling through up regulation of NFkB and iNOS expression induced due to combined exposure of trichloroethylene and UVB rays. Mol Cell Biochem. 2012;360:133–145.
    1. Wei C, Li L, Kim IK, Sun P, Gupta S. NF‐kappaB mediated miR‐21 regulation in cardiomyocytes apoptosis under oxidative stress. Free Radical Res. 2014;48:282–291.
    1. Garg AX, Devereaux PJ, Yusuf S, Cuerden MS, Parikh CR, Coca SG, Walsh M, Novick R, Cook RJ, Jain AR, Pan X, Noiseux N, Vik K, Stolf NA, Ritchie A, Favaloro RR, Parvathaneni S, Whitlock RP, Ou Y, Lawrence M, Lamy A; Investigators C . Kidney function after off‐pump or on‐pump coronary artery bypass graft surgery: a randomized clinical trial. JAMA. 2014;311:2191–2198.
    1. Shroyer AL, Hattler B, Wagner TH, Collins JF, Baltz JH, Quin JA, Almassi GH, Kozora E, Bakaeen F, Cleveland JC Jr, Bishawi M, Grover FL; Veterans Affairs R‐FSG . Five‐year outcomes after on‐pump and off‐pump coronary‐artery bypass. N Engl J Med. 2017;377:623–632.
    1. Araujo IR, Ferrari TC, Teixeira‐Carvalho A, Campi‐Azevedo AC, Rodrigues LV, Guimaraes Junior MH, Barros TL, Gelape CL, Sousa GR, Nunes MC. Cytokine signature in infective endocarditis. PLoS One. 2015;10:e0133631.
    1. Billings FT IV, Ball SK, Roberts LJ II, Pretorius M. Postoperative acute kidney injury is associated with hemoglobinemia and an enhanced oxidative stress response. Free Radic Biol Med. 2011;50:1480–1487.
    1. Billings FT IV, Yu C, Byrne JG, Petracek MR, Pretorius M. Heme oxygenase‐1 and acute kidney injury following cardiac surgery. Cardiorenal Med. 2014;4:12–21.
    1. Haase M, Bellomo R, Devarajan P, Ma Q, Bennett MR, Mockel M, Matalanis G, Dragun D, Haase‐Fielitz A. Novel biomarkers early predict the severity of acute kidney injury after cardiac surgery in adults. Ann Thorac Surg. 2009;88:124–130.
    1. Haase M, Haase‐Fielitz A, Bagshaw SM, Ronco C, Bellomo R. Cardiopulmonary bypass‐associated acute kidney injury: a pigment nephropathy? Contrib Nephrol. 2007;156:340–353.
    1. Haase M, Bellomo R, Haase‐Fielitz A. Novel biomarkers, oxidative stress, and the role of labile iron toxicity in cardiopulmonary bypass‐associated acute kidney injury. J Am Coll Cardiol. 2010;55:2024–2033.
    1. Billings FT IV, Pretorius M, Schildcrout JS, Mercaldo ND, Byrne JG, Ikizler TA, Brown NJ. Obesity and oxidative stress predict AKI after cardiac surgery. J Am Soc Nephrol. 2012;23:1221–1228.
    1. McGuinness SP, Parke RL, Drummond K, Willcox T, Bailey M, Kruger C, Baker M, Cowdrey KA, Gilder E, McCarthy L, Painter T; Investigators S‐C . A multicenter, randomized, controlled phase IIb trial of avoidance of hyperoxemia during cardiopulmonary bypass. Anesthesiology. 2016;125:465–473.
    1. Gomez H. Between chromatin and SNPs: genetic variability and the susceptibility to acute kidney injury. Crit Care. 2017;21:138.
    1. Vilander LM, Kaunisto MA, Pettila V. Genetic predisposition to acute kidney injury—a systematic review. BMC Nephrol. 2015;16:197.
    1. Yan TK, Li XL, Xue Y, Wei L, Lin S. Acute kidney injury induced by allergic conditions‐associated renal cholesterol crystal embolism. Nefrologia. 2012;32:856–857.
    1. Sandler N, Kaczmarek E, Itagaki K, Zheng Y, Otterbein L, Khabbaz K, Liu D, Senthilnathan V, Gruen RL, Hauser CJ. Mitochondrial DAMPs are released during cardiopulmonary bypass surgery and are associated with postoperative atrial fibrillation. Heart Lung Circ. 2018;27:122–129.
    1. Chertow GM, Lazarus JM, Christiansen CL, Cook EF, Hammermeister KE, Grover F, Daley J. Preoperative renal risk stratification. Circulation. 1997;95:878–884.
    1. Jorge‐Monjas P, Bustamante‐Munguira J, Lorenzo M, Heredia‐Rodriguez M, Fierro I, Gomez‐Sanchez E, Hernandez A, Alvarez FJ, Bermejo‐Martin JF, Gomez‐Pesquera E, Gomez‐Herreras JI, Tamayo E. Predicting cardiac surgery‐associated acute kidney injury: the CRATE score. J Crit Care. 2016;31:130–138.
    1. Mehta RH, Grab JD, O'Brien SM, Bridges CR, Gammie JS, Haan CK, Ferguson TB, Peterson ED; Society of Thoracic Surgeons National Cardiac Surgery Database I . Bedside tool for predicting the risk of postoperative dialysis in patients undergoing cardiac surgery. Circulation. 2006;114:2208–2216; quiz 2208.
    1. Palomba H, de Castro I, Neto AL, Lage S, Yu L. Acute kidney injury prediction following elective cardiac surgery: AKICS Score. Kidney Int. 2007;72:624–631.
    1. Pannu N, Graham M, Klarenbach S, Meyer S, Kieser T, Hemmelgarn B, Ye F, James M; APPROACH Investigators and the Alberta Kidney Disease Network . A new model to predict acute kidney injury requiring renal replacement therapy after cardiac surgery. CMAJ. 2016;188:1076–1083.
    1. Ranucci M, Castelvecchio S, Menicanti L, Frigiola A, Pelissero G. Risk of assessing mortality risk in elective cardiac operations: age, creatinine, ejection fraction, and the law of parsimony. Circulation. 2009;119:3053–3061.
    1. Thakar CV, Arrigain S, Worley S, Yared JP, Paganini EP. A clinical score to predict acute renal failure after cardiac surgery. J Am Soc Nephrol. 2005;16:162–168.
    1. Vanmassenhove J, Kielstein J, Jorres A, Biesen WV. Management of patients at risk of acute kidney injury. Lancet. 2017;389:2139–2151.
    1. Kheterpal S, Tremper KK, Englesbe MJ, O'Reilly M, Shanks AM, Fetterman DM, Rosenberg AL, Swartz RD. Predictors of postoperative acute renal failure after noncardiac surgery in patients with previously normal renal function. Anesthesiology. 2007;107:892–902.
    1. Kheterpal S, Tremper KK, Heung M, Rosenberg AL, Englesbe M, Shanks AM, Campbell DA Jr. Development and validation of an acute kidney injury risk index for patients undergoing general surgery: results from a national data set. Anesthesiology. 2009;110:505–515.
    1. Petaja L, Vaara S, Liuhanen S, Suojaranta‐Ylinen R, Mildh L, Nisula S, Korhonen AM, Kaukonen KM, Salmenpera M, Pettila V. Acute kidney injury after cardiac surgery by complete KDIGO criteria predicts increased mortality. J Cardiothorac Vasc Anesth. 2017;31:827–836.
    1. McIlroy DR, Argenziano M, Farkas D, Umann T, Sladen RN. Incorporating oliguria into the diagnostic criteria for acute kidney injury after on‐pump cardiac surgery: impact on incidence and outcomes. J Cardiothorac Vasc Anesth. 2013;27:1145–1152.
    1. Meersch M, Schmidt C, Hoffmeier A, Van Aken H, Wempe C, Gerss J, Zarbock A. Prevention of cardiac surgery‐associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med. 2017;43:1551–1561.
    1. Birnie K, Verheyden V, Pagano D, Bhabra M, Tilling K, Sterne JA, Murphy GJ; Collaborators UAiCS . Predictive models for kidney disease: improving global outcomes (KDIGO) defined acute kidney injury in UK cardiac surgery. Crit Care. 2014;18:606.
    1. Brown JR, Kramer RS, MacKenzie TA, Coca SG, Sint K, Parikh CR. Determinants of acute kidney injury duration after cardiac surgery: an externally validated tool. Ann Thorac Surg. 2012;93:570–576.
    1. Demirjian S, Schold JD, Navia J, Mastracci TM, Paganini EP, Yared JP, Bashour CA. Predictive models for acute kidney injury following cardiac surgery. Am J Kidney Dis. 2012;59:382–389.
    1. James MT, Hemmelgarn BR, Wiebe N, Pannu N, Manns BJ, Klarenbach SW, Tonelli M; Alberta Kidney Disease N . Glomerular filtration rate, proteinuria, and the incidence and consequences of acute kidney injury: a cohort study. Lancet. 2010;376:2096–2103.
    1. Molnar AO, Parikh CR, Sint K, Coca SG, Koyner J, Patel UD, Butrymowicz I, Shlipak M, Garg AX. Association of postoperative proteinuria with AKI after cardiac surgery among patients at high risk. Clin J Am Soc Nephrol. 2012;7:1749–1760.
    1. Nadkarni GN, Coca SG, Meisner A, Patel S, Kerr KF, Patel UD, Koyner JL, Garg AX, Philbrook HT, Edelstein CL, Shlipak M, El‐Khoury J, Parikh CR; Investigators T‐AC . Urinalysis findings and urinary kidney injury biomarker concentrations. BMC Nephrol. 2017;18:218.
    1. Kidney disease: improving global outcomes (KDIGO) acute kidney injury work group. Clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2:1–138.
    1. Lassnigg A, Schmid ER, Hiesmayr M, Falk C, Druml W, Bauer P, Schmidlin D. Impact of minimal increases in serum creatinine on outcome in patients after cardiothoracic surgery: do we have to revise current definitions of acute renal failure? Crit Care Med. 2008;36:1129–1137.
    1. Lassnigg A, Schmidlin D, Mouhieddine M, Bachmann L, Druml W, Bauer P, Hiemayr M. Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study. J Am Soc Nephrol. 2004;15:1597–1605.
    1. Hobson CE, Yavas S, Segal MS, Schold JD, Tribble CG, Layon AJ, Bihorac A. Acute kidney injury is associated with increased long‐term mortality after cardiothoracic surgery. Circulation. 2009;119:2444–2453.
    1. Huber M, Ozrazgat‐Baslanti T, Thottakkara P, Efron PA, Feezor R, Hobson C, Bihorac A. Mortality and cost of acute and chronic kidney disease after vascular surgery. Ann Vasc Surg. 2016;30:72–81.e1–2.
    1. Kaddourah A, Basu RK, Bagshaw SM, Goldstein SL; Investigators A . Epidemiology of acute kidney injury in critically ill children and young adults. N Engl J Med. 2017;376:11–20.
    1. Kellum JA, Sileanu FE, Murugan R, Lucko N, Shaw AD, Clermont G. Classifying AKI by urine output versus serum creatinine level. J Am Soc Nephrol. 2015;26:2231–2238.
    1. Jin K, Murugan R, Sileanu FE, Foldes E, Priyanka P, Clermont G, Kellum JA. Intensive monitoring of urine output is associated with increased detection of acute kidney injury and improved outcomes. Chest. 2017;152:972–979.
    1. Chawla LS, Bellomo R, Bihorac A, Goldstein SL, Siew ED, Bagshaw SM, Bittleman D, Cruz D, Endre Z, Fitzgerald RL, Forni L, Kane‐Gill SL, Hoste E, Koyner J, Liu KD, Macedo E, Mehta R, Murray P, Nadim M, Ostermann M, Palevsky PM, Pannu N, Rosner M, Wald R, Zarbock A, Ronco C, Kellum JA; Acute Disease Quality Initiative W . Acute kidney disease and renal recovery: consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup. Nat Rev Nephrol. 2017;13:241–257.
    1. Inker LA, Schmid CH, Tighiouart H, Eckfeldt JH, Feldman HI, Greene T, Kusek JW, Manzi J, Van Lente F, Zhang YL, Coresh J, Levey AS; Investigators C‐E . Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med. 2012;367:20–29.
    1. Endre ZH, Kellum JA, Di Somma S, Doi K, Goldstein SL, Koyner JL, Macedo E, Mehta RL, Murray PT. Differential diagnosis of AKI in clinical practice by functional and damage biomarkers: workgroup statements from the tenth Acute Dialysis Quality Initiative Consensus Conference. Contrib Nephrol. 2013;182:30–44.
    1. Parikh CR, Coca SG, Thiessen‐Philbrook H, Shlipak MG, Koyner JL, Wang Z, Edelstein CL, Devarajan P, Patel UD, Zappitelli M, Krawczeski CD, Passik CS, Swaminathan M, Garg AX. Postoperative biomarkers predict acute kidney injury and poor outcomes after adult cardiac surgery. J Am Soc Nephrol. 2011;22:1748–1757.
    1. Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, Ruff S, Zahedi K, Shao M, Bean J, Mori K, Barasch J, Devarajan P. Neutrophil gelatinase‐associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365:1231–1238.
    1. Meersch M, Schmidt C, Van Aken H, Martens S, Rossaint J, Singbartl K, Gorlich D, Kellum JA, Zarbock A. Urinary TIMP‐2 and IGFBP7 as early biomarkers of acute kidney injury and renal recovery following cardiac surgery. PLoS One. 2014;9:e93460.
    1. Murray PT, Mehta RL, Shaw A, Ronco C, Endre Z, Kellum JA, Chawla LS, Cruz D, Ince C, Okusa MD; ADQI 10 workgroup . Potential use of biomarkers in acute kidney injury: report and summary of recommendations from the 10th Acute Dialysis Quality Initiative consensus conference. Kidney Int. 2014;85:513–521.
    1. Vijayan A, Faubel S, Askenazi DJ, Cerda J, Fissell WH, Heung M, Humphreys BD, Koyner JL, Liu KD, Mour G, Nolin TD, Bihorac A; American Society of Nephrology Acute Kidney Injury Advisory G . Clinical use of the urine biomarker [TIMP‐2] x [IGFBP7] for acute kidney injury risk assessment. Am J Kidney Dis. 2016;68:19–28.
    1. Shah KS, Taub P, Patel M, Rehfeldt M, Struck J, Clopton P, Mehta RL, Maisel AS. Proenkephalin predicts acute kidney injury in cardiac surgery patients. Clin Nephrol. 2015;83:29–35.
    1. Ng LL, Squire IB, Jones DJ, Cao TH, Chan DC, Sandhu JK, Quinn PA, Davies JE, Struck J, Hartmann O, Bergmann A, Mebazaa A, Gayat E, Arrigo M, Akiyama E, Sabti Z, Lohrmann J, Twerenbold R, Herrmann T, Schumacher C, Kozhuharov N, Mueller C, GREAT Network . Proenkephalin, renal dysfunction, and prognosis in patients with acute heart failure: a GREAT Network Study. J Am Coll Cardiol. 2017;69:56–69.
    1. Mossanen JC, Pracht J, Jansen TU, Buendgens L, Stoppe C, Goetzenich A, Struck J, Autschbach R, Marx G, Tacke F. Elevated soluble urokinase plasminogen activator receptor and proenkephalin serum levels predict the development of acute kidney injury after cardiac surgery. Int J Mol Sci. 2017;18:E1662.
    1. Gocze I, Jauch D, Gotz M, Kennedy P, Jung B, Zeman F, Gnewuch C, Graf BM, Gnann W, Banas B, Bein T, Schlitt HJ, Bergler T. Biomarker‐guided intervention to prevent acute kidney injury after major surgery: the prospective randomized BigpAK study. Ann Surg. 2018;267:1013–1020.
    1. Landoni G, Lomivorotov VV, Alvaro G, Lobreglio R, Pisano A, Guarracino F, Calabro MG, Grigoryev EV, Likhvantsev VV, Salgado‐Filho MF, Bianchi A, Pasyuga VV, Baiocchi M, Pappalardo F, Monaco F, Boboshko VA, Abubakirov MN, Amantea B, Lembo R, Brazzi L, Verniero L, Bertini P, Scandroglio AM, Bove T, Belletti A, Michienzi MG, Shukevich DL, Zabelina TS, Bellomo R, Zangrillo A; CHEETAH Study Group . Levosimendan for hemodynamic support after cardiac surgery. N Engl J Med. 2017;376:2021–2031.
    1. Mehta RH, Leimberger JD, van Diepen S, Meza J, Wang A, Jankowich R, Harrison RW, Hay D, Fremes S, Duncan A. Levosimendan in patients with left ventricular dysfunction undergoing cardiac surgery. N Engl J Med. 2017;376:2032–2042.
    1. Bove T, Matteazzi A, Belletti A, Paternoster G, Saleh O, Taddeo D, Dossi R, Greco T, Bradic N, Husedzinovic I. Beneficial impact of levosimendan in critically ill patients with or at risk for acute renal failure: a meta‐analysis of randomized clinical trials. Heart Lung Vessel. 2015;7:35.
    1. Joannidis M, Druml W, Forni LG, Groeneveld ABJ, Honore PM, Hoste E, Ostermann M, Oudemans‐van Straaten HM, Schetz M. Prevention of acute kidney injury and protection of renal function in the intensive care unit: update 2017: expert opinion of the working group on prevention, AKI section, European Society of Intensive Care Medicine. Intensive Care Med. 2017;43:730–749.
    1. Billings FT IV, Hendricks PA, Schildcrout JS, Shi Y, Petracek MR, Byrne JG, Brown NJ. High‐dose perioperative atorvastatin and acute kidney injury following cardiac surgery: a randomized clinical trial. JAMA. 2016;315:877–888.
    1. Lewicki M, Ng I, Schneider AG. HMG CoA reductase inhibitors (statins) for preventing acute kidney injury after surgical procedures requiring cardiac bypass. Cochrane Database Syst Rev. 2015:CD010480.
    1. Wang J, Gu C, Gao M, Yu W, Yu Y. Preoperative statin therapy and renal outcomes after cardiac surgery: a meta‐analysis and meta‐regression of 59,771 patients. Can J Cardiol. 2015;31:1051–1060.
    1. Haase M, Haase‐Fielitz A, Bagshaw SM, Reade MC, Morgera S, Seevenayagam S, Matalanis G, Buxton B, Doolan L, Bellomo R. Phase II, randomized, controlled trial of high‐dose N‐acetylcysteine in high‐risk cardiac surgery patients. Crit Care Med. 2007;35:1324–1331.
    1. Burns KE, Chu MW, Novick RJ, Fox SA, Gallo K, Martin CM, Stitt LW, Heidenheim AP, Myers ML, Moist L. Perioperative N‐acetylcysteine to prevent renal dysfunction in high‐risk patients undergoing CABG surgery: a randomized controlled trial. JAMA. 2005;294:342–350.
    1. El‐Hamamsy I, Stevens LM, Carrier M, Pellerin M, Bouchard D, Demers P, Cartier R, Page P, Perrault LP. Effect of intravenous N‐acetylcysteine on outcomes after coronary artery bypass surgery: a randomized, double‐blind, placebo‐controlled clinical trial. J Thorac Cardiovasc Surg. 2007;133:7–12.
    1. Song JW, Shim JK, Soh S, Jang J, Kwak YL. Double‐blinded, randomized controlled trial of N‐acetylcysteine for prevention of acute kidney injury in high risk patients undergoing off‐pump coronary artery bypass. Nephrology. 2015;20:96–102.
    1. Bailey M, McGuinness S, Haase M, Haase‐Fielitz A, Parke R, Hodgson CL, Forbes A, Bagshaw SM, Bellomo R. Sodium bicarbonate and renal function after cardiac surgery: a prospectively planned individual patient meta‐analysis. Anesthesiology. 2015;122:294–306.
    1. Haase M, Haase‐Fielitz A, Plass M, Kuppe H, Hetzer R, Hannon C, Murray PT, Bailey MJ, Bellomo R, Bagshaw SM. Prophylactic perioperative sodium bicarbonate to prevent acute kidney injury following open heart surgery: a multicenter double‐blinded randomized controlled trial. PLoS Med. 2013;10:e1001426.
    1. Wetz AJ, Brauer A, Quintel M, Heise D. Does sodium bicarbonate infusion really have no effect on the incidence of acute kidney injury after cardiac surgery? A prospective observational trial. Crit Care. 2015;19:183.
    1. Kim JH, Kim HJ, Kim JY, Ahn H, Ahn IM, Choe WJ, Lim CH. Meta‐analysis of sodium bicarbonate therapy for prevention of cardiac surgery‐associated acute kidney injury. J Cardiothorac Vasc Anesth. 2015;29:1248–1256.
    1. Penny‐Dimri JC, Cochrane AD, Perry LA, Smith JA. Characterising the role of perioperative erythropoietin for preventing acute kidney injury after cardiac surgery: systematic review and meta‐analysis. Heart Lung Circ. 2016;25:1067–1076.
    1. Kim JE, Song SW, Kim JY, Lee HJ, Chung KH, Shim YH. Effect of a single bolus of erythropoietin on renoprotection in patients undergoing thoracic aortic surgery with moderate hypothermic circulatory arrest. Ann Thorac Surg. 2016;101:690–696.
    1. de Seigneux S, Ponte B, Weiss L, Pugin J, Romand JA, Martin PY, Saudan P. Epoetin administrated after cardiac surgery: effects on renal function and inflammation in a randomized controlled study. BMC Nephrol. 2012;13:132.
    1. Tasanarong A, Duangchana S, Sumransurp S, Homvises B, Satdhabudha O. Prophylaxis with erythropoietin versus placebo reduces acute kidney injury and neutrophil gelatinase‐associated lipocalin in patients undergoing cardiac surgery: a randomized, double‐blind controlled trial. BMC Nephrol. 2013;14:136.
    1. Tie HT, Luo MZ, Lin D, Zhang M, Wan JY, Wu QC. Erythropoietin administration for prevention of cardiac surgery‐associated acute kidney injury: a meta‐analysis of randomized controlled trials. Eur J Cardiothorac Surg. 2015;48:32–39.
    1. Cho JS, Shim JK, Soh S, Kim MK, Kwak YL. Perioperative dexmedetomidine reduces the incidence and severity of acute kidney injury following valvular heart surgery. Kidney Int. 2016;89:693–700.
    1. Ammar AS, Mahmoud KM, Kasemy ZA, Helwa MA. Cardiac and renal protective effects of dexmedetomidine in cardiac surgeries: a randomized controlled trial. Saudi J Anaesth. 2016;10:395–401.
    1. Ji F, Li Z, Young JN, Yeranossian A, Liu H. Post‐bypass dexmedetomidine use and postoperative acute kidney injury in patients undergoing cardiac surgery with cardiopulmonary bypass. PLoS One. 2013;8:e77446.
    1. Bhamidipati CM, LaPar DJ, Stukenborg GJ, Morrison CC, Kern JA, Kron IL, Ailawadi G. Superiority of moderate control of hyperglycemia to tight control in patients undergoing coronary artery bypass grafting. J Thorac Cardiovasc Surg. 2011;141:543–551.
    1. Song JW, Shim JK, Yoo KJ, Oh SY, Kwak YL. Impact of intraoperative hyperglycaemia on renal dysfunction after off‐pump coronary artery bypass. Interact Cardiovasc Thorac Surg. 2013;17:473–478.
    1. Bansal B, Carvalho P, Mehta Y, Yadav J, Sharma P, Mithal A, Trehan N. Prognostic significance of glycemic variability after cardiac surgery. J Diabetes Complications. 2016;30:613–617.
    1. Myburgh JA, Finfer S, Bellomo R, Billot L, Cass A, Gattas D, Glass P, Lipman J, Liu B, McArthur C. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367:1901–1911.
    1. Bayer O, Reinhart K. Acute kidney injury in cardiac surgery patients receiving hydroxyethyl starch solutions. Crit Care. 2015;19:209.
    1. Frenette AJ, Bouchard J, Bernier P, Charbonneau A, Nguyen LT, Rioux JP, Troyanov S, Williamson DR. Albumin administration is associated with acute kidney injury in cardiac surgery: a propensity score analysis. Crit Care. 2014;18:602.
    1. Kim JY, Joung KW, Kim KM, Kim MJ, Kim JB, Jung SH, Lee EH, Choi IC. Relationship between a perioperative intravenous fluid administration strategy and acute kidney injury following off‐pump coronary artery bypass surgery: an observational study. Crit Care. 2015;19:350.
    1. Lee EH, Kim WJ, Kim JY, Chin JH, Choi DK, Sim JY, Choo SJ, Chung CH, Lee JW, Choi IC. Effect of exogenous albumin on the incidence of postoperative acute kidney injury in patients undergoing off‐pump coronary artery bypass surgery with a preoperative albumin level of less than 4.0 g/dl. Anesthesiology. 2016;124:1001–1011.
    1. Coca SG, Garg AX, Swaminathan M, Garwood S, Hong K, Thiessen‐Philbrook H, Passik C, Koyner JL, Parikh CR; Consortium T‐A . Preoperative angiotensin‐converting enzyme inhibitors and angiotensin receptor blocker use and acute kidney injury in patients undergoing cardiac surgery. Nephrol Dial Transplant. 2013;28:2787–2799.
    1. Barodka V, Silvestry S, Zhao N, Jiao X, Whellan DJ, Diehl J, Sun JZ. Preoperative renin‐angiotensin system inhibitors protect renal function in aging patients undergoing cardiac surgery. J Surg Res. 2011;167:e63–e69.
    1. Yacoub R, Patel N, Lohr JW, Rajagopalan S, Nader N, Arora P. Acute kidney injury and death associated with renin angiotensin system blockade in cardiothoracic surgery: a meta‐analysis of observational studies. Am J Kidney Dis. 2013;62:1077–1086.
    1. Lee EH, Baek SH, Chin JH, Choi DK, Son HJ, Kim WJ, Hahm KD, Sim JY, Choi IC. Preoperative hypoalbuminemia is a major risk factor for acute kidney injury following off‐pump coronary artery bypass surgery. Intensive Care Med. 2012;38:1478–1486.
    1. Yoo YC, Shim JK, Song Y, Yang SY, Kwak YL. Anesthetics influence the incidence of acute kidney injury following valvular heart surgery. Kidney Int. 2014;86:414–422.
    1. Julier K, da Silva R, Garcia C, Bestmann L, Frascarolo P, Zollinger A, Chassot PG, Schmid ER, Turina MI, von Segesser LK, Pasch T, Spahn DR, Zaugg M. Preconditioning by sevoflurane decreases biochemical markers for myocardial and renal dysfunction in coronary artery bypass graft surgery: a double‐blinded, placebo‐controlled, multicenter study. Anesthesiology. 2003;98:1315–1327.
    1. Cai J, Xu R, Yu X, Fang Y, Ding X. Volatile anesthetics in preventing acute kidney injury after cardiac surgery: a systematic review and meta‐analysis. J Thorac Cardiovasc Surg. 2014;148:3127–3136.
    1. Kellum JA, M Decker J. Use of dopamine in acute renal failure: a meta‐analysis. Crit Care Med. 2001;29:1526–1531.
    1. McCullough PA, Bennett‐Guerrero E, Chawla LS, Beaver T, Mehta RL, Molitoris BA, Eldred A, Ball G, Lee HJ, Houser MT, Khan S. ABT‐719 for the prevention of acute kidney injury in patients undergoing high‐risk cardiac surgery: a randomized phase 2b clinical trial. J Am Heart Assoc. 2016;5:e003549 DOI: .
    1. Lassnigg A, Donner E, Grubhofer G, Presterl E, Druml W, Hiesmayr M. Lack of renoprotective effects of dopamine and furosemide during cardiac surgery. J Am Soc Nephrol. 2000;11:97–104.
    1. Mahesh B, Yim B, Robson D, Pillai R, Ratnatunga C, Pigott D. Does furosemide prevent renal dysfunction in high‐risk cardiac surgical patients? Results of a double‐blinded prospective randomised trial. Eur J Cardiothorac Surg. 2008;33:370–376.
    1. Dubois L, Durant C, Harrington DM, Forbes TL, Derose G, Harris JR. Technical factors are strongest predictors of postoperative renal dysfunction after open transperitoneal juxtarenal abdominal aortic aneurysm repair. J Vasc Surg. 2013;57:648–654.
    1. Smith MN, Best D, Sheppard SV, Smith DC. The effect of mannitol on renal function after cardiopulmonary bypass in patients with established renal dysfunction. Anaesthesia. 2008;63:701–704.
    1. Yallop KG, Sheppard SV, Smith DC. The effect of mannitol on renal function following cardio‐pulmonary bypass in patients with normal pre‐operative creatinine. Anaesthesia. 2008;63:576–582.
    1. Zangrillo A, Biondi‐Zoccai GG, Frati E, Covello RD, Cabrini L, Guarracino F, Ruggeri L, Bove T, Bignami E, Landoni G. Fenoldopam and acute renal failure in cardiac surgery: a meta‐analysis of randomized placebo‐controlled trials. J Cardiothorac Vasc Anesth. 2012;26:407–413.
    1. Bove T, Zangrillo A, Guarracino F, Alvaro G, Persi B, Maglioni E, Galdieri N, Comis M, Caramelli F, Pasero DC, Pala G, Renzini M, Conte M, Paternoster G, Martinez B, Pinelli F, Frontini M, Zucchetti MC, Pappalardo F, Amantea B, Camata A, Pisano A, Verdecchia C, Dal Checco E, Cariello C, Faita L, Baldassarri R, Scandroglio AM, Saleh O, Lembo R, Calabro MG, Bellomo R, Landoni G. Effect of fenoldopam on use of renal replacement therapy among patients with acute kidney injury after cardiac surgery: a randomized clinical trial. JAMA. 2014;312:2244–2253.
    1. Halpenny M, Lakshmi S, O'Donnell A, O'Callaghan‐Enright S, Shorten GD. Fenoldopam: renal and splanchnic effects in patients undergoing coronary artery bypass grafting. Anaesthesia. 2001;56:953–960.
    1. Bove T, Landoni G, Calabro MG, Aletti G, Marino G, Cerchierini E, Crescenzi G, Zangrillo A. Renoprotective action of fenoldopam in high‐risk patients undergoing cardiac surgery: a prospective, double‐blind, randomized clinical trial. Circulation. 2005;111:3230–3235.
    1. Landoni G, Biondi‐Zoccai GG, Tumlin JA, Bove T, De Luca M, Calabro MG, Ranucci M, Zangrillo A. Beneficial impact of fenoldopam in critically ill patients with or at risk for acute renal failure: a meta‐analysis of randomized clinical trials. Am J Kidney Dis. 2007;49:56–68.
    1. Nigwekar SU, Navaneethan SD, Parikh CR, Hix JK. Atrial natriuretic peptide for management of acute kidney injury: a systematic review and meta‐analysis. Clin J Am Soc Nephrol. 2009;4:261–272.
    1. Sward K, Valsson F, Odencrants P, Samuelsson O, Ricksten SE. Recombinant human atrial natriuretic peptide in ischemic acute renal failure: a randomized placebo‐controlled trial. Crit Care Med. 2004;32:1310–1315.
    1. Mentzer RM Jr, Oz MC, Sladen RN, Graeve AH, Hebeler RF Jr, Luber JM Jr, Smedira NG; Investigators N . Effects of perioperative nesiritide in patients with left ventricular dysfunction undergoing cardiac surgery: the NAPA Trial. J Am Coll Cardiol. 2007;49:716–726.
    1. Beaver TM, Winterstein AG, Shuster JJ, Gerhard T, Martin T, Alexander JA, Johnson RJ, Ejaz A, Hartzema AG. Effectiveness of nesiritide on dialysis or all‐cause mortality in patients undergoing cardiothoracic surgery. Clin Cardiol. 2006;29:18–24.
    1. Sezai A, Hata M, Niino T, Yoshitake I, Unosawa S, Wakui S, Fujita K, Takayama T, Kasamaki Y, Hirayama A, Minami K. Continuous low‐dose infusion of human atrial natriuretic peptide in patients with left ventricular dysfunction undergoing coronary artery bypass grafting: the NU‐HIT (Nihon University working group study of low‐dose Human ANP Infusion Therapy during cardiac surgery) for left ventricular dysfunction. J Am Coll Cardiol. 2010;55:1844–1851.
    1. Sezai A, Hata M, Niino T, Yoshitake I, Unosawa S, Wakui S, Kimura H, Shiono M, Takayama T, Hirayama A. Results of low‐dose human atrial natriuretic peptide infusion in nondialysis patients with chronic kidney disease undergoing coronary artery bypass grafting: the NU‐HIT (Nihon University working group study of low‐dose HANP Infusion Therapy during cardiac surgery) trial for CKD. J Am Coll Cardiol. 2011;58:897–903.
    1. Mitaka C, Ohnuma T, Murayama T, Kunimoto F, Nagashima M, Takei T, Iguchi N, Tomita M; JAPAN Investigators . Effects of low‐dose atrial natriuretic peptide infusion on cardiac surgery‐associated acute kidney injury: a multicenter randomized controlled trial. J Crit Care. 2017;38:253–258.
    1. Mitaka C, Kudo T, Jibiki M, Sugano N, Inoue Y, Makita K, Imai T. Effects of human atrial natriuretic peptide on renal function in patients undergoing abdominal aortic aneurysm repair. Crit Care Med. 2008;36:745–751.
    1. Mori Y, Kamada T, Ochiai R. Reduction in the incidence of acute kidney injury after aortic arch surgery with low‐dose atrial natriuretic peptide: a randomised controlled trial. Eur J Anaesthesiol. 2014;31:381–387.
    1. Iribarren J, Jimenez J, Brouard M, Lorenzo J, Perez R, Lorente L, Nuñez C, Lorenzo L, Henry C, Martinez R. Vasoplegic syndrome after cardiopulmonary bypass surgery—associated factors and clinical outcomes: a nested case‐control study. Crit Care. 2007;11:P254.
    1. Hajjar LA, Vincent JL, Barbosa Gomes Galas FR, Rhodes A, Landoni G, Osawa EA, Melo RR, Sundin MR, Grande SM, Gaiotto FA, Pomerantzeff PM, Dallan LO, Franco RA, Nakamura RE, Lisboa LA, de Almeida JP, Gerent AM, Souza DH, Gaiane MA, Fukushima JT, Park CL, Zambolim C, Rocha Ferreira GS, Strabelli TM, Fernandes FL, Camara L, Zeferino S, Santos VG, Piccioni MA, Jatene FB, Costa Auler JO Jr, Filho RK. Vasopressin versus norepinephrine in patients with vasoplegic shock after cardiac surgery: the VANCS randomized controlled trial. Anesthesiology. 2017;126:85–93.
    1. Hu Y, Li Z, Chen J, Shen C, Song Y, Zhong Q. The effect of the time interval between coronary angiography and on‐pump cardiac surgery on risk of postoperative acute kidney injury: a meta‐analysis. J Cardiothorac Surg. 2013;8:178.
    1. Zhang Y, Ye N, Chen YP, Cheng H. Relation between the interval from coronary angiography to selective off‐pump coronary artery bypass grafting and postoperative acute kidney injury. Am J Cardiol. 2013;112:1571–1575.
    1. McIlroy DR, Epi MC, Argenziano M, Farkas D, Umann T. Acute kidney injury after cardiac surgery: does the time interval from contrast administration to surgery matter? J Cardiothorac Vasc Anesth. 2012;26:804–812.
    1. Serraino GF, Marsico R, Musolino G, Ventura V, Gulletta E, Sante P, Renzulli A. Pulsatile cardiopulmonary bypass with intra‐aortic balloon pump improves organ function and reduces endothelial activation. Circ J. 2012;76:1121–1129.
    1. Wang J, Yu W, Gao M, Gu C, Yu Y. Preoperative prophylactic intraaortic balloon pump reduces the incidence of postoperative acute kidney injury and short‐term death of high‐risk patients undergoing coronary artery bypass grafting: a meta‐analysis of 17 studies. Ann Thorac Surg. 2016;101:2007–2019.
    1. Lundemoen S, Kvalheim VL, Svendsen OS, Mongstad A, Andersen KS, Grong K, Husby P. Intraaortic counterpulsation during cardiopulmonary bypass impairs distal organ perfusion. Ann Thorac Surg. 2015;99:619–625.
    1. Azau A, Markowicz P, Corbeau JJ, Cottineau C, Moreau X, Baufreton C, Beydon L. Increasing mean arterial pressure during cardiac surgery does not reduce the rate of postoperative acute kidney injury. Perfusion. 2014;29:496–504.
    1. Di Mauro M, Gagliardi M, Iaco AL, Contini M, Bivona A, Bosco P, Gallina S, Calafiore AM. Does off‐pump coronary surgery reduce postoperative acute renal failure? The importance of preoperative renal function. Ann Thorac Surg. 2007;84:1496–1502.
    1. Reents W, Hilker M, Borgermann J, Albert M, Plotze K, Zacher M, Diegeler A, Boning A. Acute kidney injury after on‐pump or off‐pump coronary artery bypass grafting in elderly patients. Ann Thorac Surg. 2014;98:9–14; discussion 14‐5.
    1. Schopka S, Diez C, Camboni D, Floerchinger B, Schmid C, Hilker M. Impact of cardiopulmonary bypass on acute kidney injury following coronary artery bypass grafting: a matched pair analysis. J Cardiothorac Surg. 2014;9:20.
    1. Abu‐Omar Y, Taghavi FJ, Navaratnarajah M, Ali A, Shahir A, Yu LM, Choong CK, Taggart DP. The impact of off‐pump coronary artery bypass surgery on postoperative renal function. Perfusion. 2012;27:127–131.
    1. Cheungpasitporn W, Thongprayoon C, Kittanamongkolchai W, Srivali N, OA OC, Edmonds PJ, Ratanapo S, Spanuchart I, Erickson SB. Comparison of renal outcomes in off‐pump versus on‐pump coronary artery bypass grafting: a systematic review and meta‐analysis of randomized controlled trials. Nephrology. 2015. Available at: . Accessed May 29, 2018.
    1. Takagi H, Ando T, Mitta S; Group A . Meta‐analysis comparing >/=10‐year mortality of off‐pump versus on‐pump coronary artery bypass grafting. Am J Cardiol. 2017;120:1933–1938.
    1. Filardo G, Hamman BL, da Graca B, Sass DM, Machala NJ, Ismail S, Pollock BD, Collinsworth AW, Grayburn PA. Efficacy and effectiveness of on‐ versus off‐pump coronary artery bypass grafting: a meta‐analysis of mortality and survival. J Thorac Cardiovasc Surg. 2018;155:172–179.e5.
    1. Yeung KK, Groeneveld M, Lu JJ, van Diemen P, Jongkind V, Wisselink W. Organ protection during aortic cross‐clamping. Best Pract Res Clin Anaesthesiol. 2016;30:305–315.
    1. Black JH III. Renal protection in juxtarenal and suprarenal aortic aneurysm surgery. Semin Vasc Surg. 2013;26:193–198.
    1. Cooper CJ, Haller ST, Colyer W, Steffes M, Burket MW, Thomas WJ, Safian R, Reddy B, Brewster P, Ankenbrandt MA, Virmani R, Dippel E, Rocha‐Singh K, Murphy TP, Kennedy DJ, Shapiro JI, D'Agostino RD, Pencina MJ, Khuder S. Embolic protection and platelet inhibition during renal artery stenting. Circulation. 2008;117:2752–2760.
    1. Kooiman J, Seth M, Dixon S, Wohns D, LaLonde T, Rao SV, Gurm HS. Risk of acute kidney injury after percutaneous coronary interventions using radial versus femoral vascular access: insights from the Blue Cross Blue Shield of Michigan Cardiovascular Consortium. Circ Cardiovasc Interv. 2014;7:190–198.
    1. Kim KB, Kang CH, Chang WI, Lim C, Kim JH, Ham BM, Kim YL. Off‐pump coronary artery bypass with complete avoidance of aortic manipulation. Ann Thorac Surg. 2002;74:S1377–S1382.
    1. Zhao DF, Edelman JJ, Seco M, Bannon PG, Wilson MK, Byrom MJ, Thourani V, Lamy A, Taggart DP, Puskas JD, Vallely MP. Coronary artery bypass grafting with and without manipulation of the ascending aorta: a network meta‐analysis. J Am Coll Cardiol. 2017;69:924–936.
    1. Lev‐Ran O, Loberman D, Matsa M, Pevni D, Nesher N, Mohr R, Uretzky G. Reduced strokes in the elderly: the benefits of untouched aorta off‐pump coronary surgery. Ann Thorac Surg. 2004;77:102–107.
    1. Bolotin G, Shapira Y, Gotler Y, Frolkis IV, Ben‐Gal Y, Nesher N, Uretzky G. The potential advantage of “no‐touch” aortic technique in off‐pump complete arterial revascularization. Int J Cardiol. 2007;114:11–15.
    1. Arnaoutakis GJ, Vallabhajosyula P, Bavaria JE, Sultan I, Siki M, Naidu S, Milewski RK, Williams ML, Hargrove WC III, Desai ND, Szeto WY. The impact of deep versus moderate hypothermia on postoperative kidney function after elective aortic hemiarch repair. Ann Thorac Surg. 2016;102:1313–1321.
    1. Boodhwani M, Rubens FD, Wozny D, Nathan HJ. Effects of mild hypothermia and rewarming on renal function after coronary artery bypass grafting. Ann Thorac Surg. 2009;87:489–495.
    1. Newland RF, Baker RA, Mazzone AL, Quinn SS, Chew DP; Perfusion Downunder C . Rewarming temperature during cardiopulmonary bypass and acute kidney injury: a multicenter analysis. Ann Thorac Surg. 2016;101:1655–1662.
    1. Koksoy C, LeMaire SA, Curling PE, Raskin SA, Schmittling ZC, Conklin LD, Coselli JS. Renal perfusion during thoracoabdominal aortic operations: cold crystalloid is superior to normothermic blood. Ann Thorac Surg. 2002;73:730–738.
    1. Lemaire SA, Jones MM, Conklin LD, Carter SA, Criddell MD, Wang XL, Raskin SA, Coselli JS. Randomized comparison of cold blood and cold crystalloid renal perfusion for renal protection during thoracoabdominal aortic aneurysm repair. J Vasc Surg. 2009;49:11–19; discussion 19.
    1. Yeung KK, Tangelder GJ, Fung WY, Coveliers HM, Hoksbergen AW, Van Leeuwen PA, de Lange‐de Klerk ES, Wisselink W. Open surgical repair of ruptured juxtarenal aortic aneurysms with and without renal cooling: observations regarding morbidity and mortality. J Vasc Surg. 2010;51:551–558.
    1. Sievert A, Sistino J. A meta‐analysis of renal benefits to pulsatile perfusion in cardiac surgery. J Extra Corpor Technol. 2012;44:10–14.
    1. Nam MJ, Lim CH, Kim HJ, Kim YH, Choi H, Son HS, Lim HJ, Sun K. A meta‐analysis of renal function after adult cardiac surgery with pulsatile perfusion. Artif Organs. 2015;39:788–794.
    1. Abramov D, Tamariz M, Serrick CI, Sharp E, Noel D, Harwood S, Christakis GT, Goldman BS. The influence of cardiopulmonary bypass flow characteristics on the clinical outcome of 1820 coronary bypass patients. Can J Cardiol. 2003;19:237–243.
    1. Farid S, Povey H, Anderson S, Nashef SA, Abu‐Omar Y. The effect of pulsatile cardiopulmonary bypass on the need for haemofiltration in patients with renal dysfunction undergoing cardiac surgery. Perfusion. 2016;31:477–481.
    1. Sandner SE, Zimpfer D, Zrunek P, Rajek A, Schima H, Dunkler D, Grimm M, Wolner E, Wieselthaler GM. Renal function and outcome after continuous flow left ventricular assist device implantation. Ann Thorac Surg. 2009;87:1072–1078.
    1. Gupta S, Woldendorp K, Muthiah K, Robson D, Prichard R, Macdonald PS, Keogh AM, Kotlyar E, Jabbour A, Dhital K, Granger E, Spratt P, Jansz P, Hayward CS. Normalisation of haemodynamics in patients with end‐stage heart failure with continuous‐flow left ventricular assist device therapy. Heart Lung Circ. 2014;23:963–969.
    1. Karkouti K, Beattie WS, Wijeysundera DN, Rao V, Chan C, Dattilo KM, Djaiani G, Ivanov J, Karski J, David TE. Hemodilution during cardiopulmonary bypass is an independent risk factor for acute renal failure in adult cardiac surgery. J Thorac Cardiovasc Surg. 2005;129:391–400.
    1. Ranucci M, Aloisio T, Carboni G, Ballotta A, Pistuddi V, Menicanti L, Frigiola A. Acute kidney injury and hemodilution during cardiopulmonary bypass: a changing scenario. Ann Thorac Surg. 2015;100:95–100.
    1. Oprea AD, Del Rio JM, Cooter M, Green CL, Karhausen JA, Nailer P, Guinn NR, Podgoreanu MV, Stafford‐Smith M, Schroder JN, Fontes ML, Kertai MD. Pre‐ and postoperative anemia, acute kidney injury, and mortality after coronary artery bypass grafting surgery: a retrospective observational study. Can J Anaesth. 2018;65:46–59.
    1. Khan UA, Coca SG, Hong K, Koyner JL, Garg AX, Passik CS, Swaminathan M, Garwood S, Patel UD, Hashim S, Quantz MA, Parikh CR. Blood transfusions are associated with urinary biomarkers of kidney injury in cardiac surgery. J Thorac Cardiovasc Surg. 2014;148:726–732.
    1. Mazer CD, Whitlock RP, Fergusson DA, Hall J, Belley‐Cote E, Connolly K, Khanykin B, Gregory AJ, de Medicis E, McGuinness S, Royse A, Carrier FM, Young PJ, Villar JC, Grocott HP, Seeberger MD, Fremes S, Lellouche F, Syed S, Byrne K, Bagshaw SM, Hwang NC, Mehta C, Painter TW, Royse C, Verma S, Hare GMT, Cohen A, Thorpe KE, Juni P, Shehata N; TRICS Investigators and Perioperative Anesthesia Clinical Trials Group . Restrictive or liberal red‐cell transfusion for cardiac surgery. N Engl J Med. 2017;377:2133–2144.
    1. Murphy GJ, Pike K, Rogers CA, Wordsworth S, Stokes EA, Angelini GD, Reeves BC; Investigators TI . Liberal or restrictive transfusion after cardiac surgery. N Engl J Med. 2015;372:997–1008.
    1. Paugh TA, Dickinson TA, Martin JR, Hanson EC, Fuller J, Heung M, Zhang M, Shann KG, Prager RL, Likosky DS; Michigan Society of Thoracic and Cardiovascular Surgeons; Perfusion Measures and Outcomes PERForm Registry . Impact of ultrafiltration on kidney injury after cardiac surgery: the Michigan experience. Ann Thorac Surg. 2015;100:1683–1688.
    1. Zarbock A, Kellum JA, Van Aken H, Schmidt C, Kullmar M, Rosenberger P, Martens S, Gorlich D, Meersch M. Long‐term effects of remote ischemic preconditioning on kidney function in high‐risk cardiac surgery patients: follow‐up results from the RenalRIP Trial. Anesthesiology. 2017;126:787–798.
    1. Yang Y, Lang XB, Zhang P, Lv R, Wang YF, Chen JH. Remote ischemic preconditioning for prevention of acute kidney injury: a meta‐analysis of randomized controlled trials. Am J Kidney Dis. 2014;64:574–583.
    1. Zhang Y, Zhang X, Chi D, Wang S, Wei H, Yu H, Li Q, Liu B. Remote ischemic preconditioning for prevention of acute kidney injury in patients undergoing on‐pump cardiac surgery: a systematic review and meta‐analysis. Medicine (Baltimore). 2016;95:e3465.
    1. Menting TP, Wever KE, Ozdemir‐van Brunschot DM, Van der Vliet DJ, Rovers MM, Warle MC. Ischaemic preconditioning for the reduction of renal ischaemia reperfusion injury. Cochrane Database Syst Rev. 2017;3:CD010777.
    1. Pierce B, Bole I, Patel V, Brown DL. Clinical outcomes of remote ischemic preconditioning prior to cardiac surgery: a meta‐analysis of randomized controlled trials. J Am Heart Assoc. 2017;6:e004666 DOI: .
    1. Walsh SR, Tang TY, Sadat U, Gaunt ME. Remote ischemic preconditioning in major vascular surgery. J Vasc Surg. 2009;49:240–243.
    1. Ali ZA, Callaghan CJ, Lim E, Ali AA, Nouraei SA, Akthar AM, Boyle JR, Varty K, Kharbanda RK, Dutka DP, Gaunt ME. Remote ischemic preconditioning reduces myocardial and renal injury after elective abdominal aortic aneurysm repair: a randomized controlled trial. Circulation. 2007;116:I98–I105.
    1. Walsh SR, Sadat U, Boyle JR, Tang TY, Lapsley M, Norden AG, Gaunt ME. Remote ischemic preconditioning for renal protection during elective open infrarenal abdominal aortic aneurysm repair: randomized controlled trial. Vasc Endovascular Surg. 2010;44:334–340.
    1. Murphy N, Vijayan A, Frohlich S, O'Farrell F, Barry M, Sheehan S, Boylan J, Conlon N. Remote ischemic preconditioning does not affect the incidence of acute kidney injury after elective abdominal aortic aneurysm repair. J Cardiothorac Vasc Anesth. 2014;28:1285–1292.
    1. Lellouche F, Dionne S, Simard S, Bussieres J, Dagenais F. High tidal volumes in mechanically ventilated patients increase organ dysfunction after cardiac surgery. Anesthesiology. 2012;116:1072–1082.
    1. Koyner JL, Garg AX, Coca SG, Sint K, Thiessen‐Philbrook H, Patel UD, Shlipak MG, Parikh CR; Consortium T‐A . Biomarkers predict progression of acute kidney injury after cardiac surgery. J Am Soc Nephrol. 2012;23:905–914.
    1. Cruz DN, Ronco C, Katz N. Neutrophil gelatinase‐associated lipocalin: a promising biomarker for detecting cardiac surgery‐associated acute kidney injury. J Thorac Cardiovasc Surg. 2010;139:1101–1106.
    1. Vincent J‐L, Rhodes A, Perel A, Martin GS, Rocca GD, Vallet B, Pinsky MR, Hofer CK, Teboul J‐L, de Boode W‐P, Scolletta S, Vieillard‐Baron A, De Backer D, Walley KR, Maggiorini M, Singer M. Clinical review: update on hemodynamic monitoring—a consensus of 16. Crit Care. 2011;15:229.
    1. Ostermann M, Hall A, Crichton S. Low mean perfusion pressure is a risk factor for progression of acute kidney injury in critically ill patients—a retrospective analysis. BMC Nephrol. 2017;18:151.
    1. Legrand M, Mebazaa A, Ronco C, Januzzi JL Jr. When cardiac failure, kidney dysfunction, and kidney injury intersect in acute conditions: the case of cardiorenal syndrome. Crit Care Med. 2014;42:2109–2117.
    1. Aya H, Cecconi M, Hamilton M, Rhodes A. Goal‐directed therapy in cardiac surgery: a systematic review and meta‐analysis. Br J Anaesth. 2013;110:510–517.
    1. Sirivella S, Gielchinsky I, Parsonnet V. Mannitol, furosemide, and dopamine infusion in postoperative renal failure complicating cardiac surgery. Ann Thorac Surg. 2000;69:501–506.
    1. Angeli P, Gines P. Hepatorenal syndrome, MELD score and liver transplantation: an evolving issue with relevant implications for clinical practice. J Hepatol. 2012;57:1135–1140.
    1. Shen Y, Zhang W, Cheng X, Ying M. Association between postoperative fluid balance and acute kidney injury in patients after cardiac surgery: a retrospective cohort study. J Crit Care. 2017;44:273–277.
    1. Chau K, Schisler T, Er L, Jaswal D, Cheung C, Israel A, Bowering J, Levin A. Fluid balance, change in serum creatinine and urine output as markers of acute kidney injury post cardiac surgery: an observational study. Can J Kidney Health Dis. 2014;1:19.
    1. Stein A, de Souza LV, Belettini CR, Menegazzo WR, Viegas JR, Costa Pereira EM, Eick R, Araujo L, Consolim‐Colombo F, Irigoyen MC. Fluid overload and changes in serum creatinine after cardiac surgery: predictors of mortality and longer intensive care stay. A prospective cohort study. Crit Care. 2012;16:R99.
    1. Rosner MH, Ostermann M, Murugan R, Prowle JR, Ronco C, Kellum JA, Mythen MG, Shaw AD; ADQI XII Investigators Group . Indications and management of mechanical fluid removal in critical illness. Br J Anaesth. 2014;113:764–771.
    1. Goldstein S, Bagshaw S, Cecconi M, Okusa M, Wang H, Kellum J, Mythen M, Shaw AD; Group AXI . Pharmacological management of fluid overload. Br J Anaesth. 2014;113:756–763.
    1. Ostermann M, Joannidis M, Pani A, Floris M, De Rosa S, Kellum JA, Ronco C; 17th Acute Disease Quality Initiative (ADQI) Consensus Group . Patient selection and timing of continuous renal replacement therapy. Blood Purif. 2016;42:224–237.
    1. Gibney N, Hoste E, Burdmann EA, Bunchman T, Kher V, Viswanathan R, Mehta RL, Ronco C. Timing of initiation and discontinuation of renal replacement therapy in AKI: unanswered key questions. Clin J Am Soc Nephrol. 2008;3:876–880.
    1. Karvellas CJ, Farhat MR, Sajjad I, Mogensen SS, Leung AA, Wald R, Bagshaw SM. A comparison of early versus late initiation of renal replacement therapy in critically ill patients with acute kidney injury: a systematic review and meta‐analysis. Crit Care. 2011;15:R72.
    1. Wierstra BT, Kadri S, Alomar S, Burbano X, Barrisford GW, Kao RL. The impact of “early” versus “late” initiation of renal replacement therapy in critical care patients with acute kidney injury: a systematic review and evidence synthesis. Crit Care. 2016;20:122.
    1. Zou H, Hong Q, Gaosi X. Early versus late initiation of renal replacement therapy impacts mortality in patients with acute kidney injury post cardiac surgery: a meta‐analysis. Crit Care. 2017;21:150.
    1. Liu Y, Davari‐Farid S, Arora P, Porhomayon J, Nader ND. Early versus late initiation of renal replacement therapy in critically ill patients with acute kidney injury after cardiac surgery: a systematic review and meta‐analysis. J Cardiothorac Vasc Anesth. 2014;28:557–563.
    1. Zarbock A, Kellum JA, Schmidt C, Van Aken H, Wempe C, Pavenstädt H, Boanta A, Gerß J, Meersch M. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: the ELAIN randomized clinical trial. JAMA. 2016;315:2190–2199.
    1. Gaudry S, Hajage D, Dreyfuss D. Initiation of renal‐replacement therapy in the intensive care unit. N Engl J Med. 2016;375:1901–1902.
    1. Bagshaw SM, Berthiaume LR, Delaney A, Bellomo R. Continuous versus intermittent renal replacement therapy for critically ill patients with acute kidney injury: a meta‐analysis. Crit Care Med. 2008;36:610–617.
    1. Kellum JA, Lameire N. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit Care. 2013;17:204.
    1. Bouchard J, Soroko SB, Chertow GM, Himmelfarb J, Ikizler TA, Paganini EP, Mehta RL; Program to Improve Care in Acute Renal Disease Study G . Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int. 2009;76:422–427.
    1. Bouchard J, Mehta RL. Volume management in continuous renal replacement therapy. Semin Dial. 2009;22:146–150.
    1. Schneider AG, Bellomo R, Bagshaw SM, Glassford NJ, Lo S, Jun M, Cass A, Gallagher M. Choice of renal replacement therapy modality and dialysis dependence after acute kidney injury: a systematic review and meta‐analysis. Intensive Care Med. 2013;39:987–997.
    1. Wald R, Shariff SZ, Adhikari NK, Bagshaw SM, Burns KE, Friedrich JO, Garg AX, Harel Z, Kitchlu A, Ray JG. The association between renal replacement therapy modality and long‐term outcomes among critically ill adults with acute kidney injury: a retrospective cohort study*. Crit Care Med. 2014;42:868–877.
    1. Romagnoli S, Ricci Z, Ronco C. Therapy of acute kidney injury in the perioperative setting. Curr Opin Anaesthesiol. 2017;30:92–99.
    1. Swaminathan M, Stafford‐Smith M, Chertow GM, Warnock DG, Paragamian V, Brenner RM, Lellouche F, Fox‐Robichaud A, Atta MG, Melby S, Mehta RL, Wald R, Verma S. Mazer CD; ACT‐AKI investigators . Allogeneic mesenchymal stem cells for treatment of AKI after cardiac surgery. J Am Soc Nephrol. 2018;29:260–267.
    1. Barnes CJ, Distaso CT, Spitz KM, Verdun VA, Haramati A. Comparison of stem cell therapies for acute kidney injury. Am J Stem Cells. 2016;5:1–10.

Source: PubMed

3
Se inscrever