Probiotics and oxytocin nasal spray as neuro-social-behavioral interventions for patients with autism spectrum disorders: a pilot randomized controlled trial protocol

Xue-Jun Kong, Jun Liu, Jing Li, Kenneth Kwong, Madelyn Koh, Piyawat Sukijthamapan, Jason J Guo, Zhenyu Jim Sun, Yiqing Song, Xue-Jun Kong, Jun Liu, Jing Li, Kenneth Kwong, Madelyn Koh, Piyawat Sukijthamapan, Jason J Guo, Zhenyu Jim Sun, Yiqing Song

Abstract

Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by impairments in social interaction and communication. Oxytocin (OXT), as a neuropeptide, plays a role in emotional and social behaviors. Lactobacillus reuteri (L. reuteri) supplementation led to an OXT-dependent behavioral improvement in ASD mouse models. Despite some promising results from animal studies, little is known about the efficacy of supplementation with L. reuteri, alone or with exogenous OXT therapy, on social-behavioral functions in ASD patients. This paper presents a protocol for a pilot randomized controlled trial to evaluate the feasibility of conducting a full trial comparing oral supplementation of L. reuteri probiotics and intranasal OXT spray to placebo on the effect of social and behavioral functions in ASD patients. The study will also capture preliminary estimates of the efficacy of the proposed interventions in ASD patients.

Methods: This pilot trial is a two-staged, randomized, double-blind, placebo-controlled, parallel-group study. Throughout the study (0-24 weeks), 60 patients with ASD will be randomly assigned to receive either oral L. reuteri probiotics or placebo. In the second study stage (13-24 weeks), all participants will receive intranasal OXT spray. As primary outcomes, serum OXT levels will be assayed and social behaviors will be assessed via the Autism Behavior Checklist and the Social Responsiveness Scale which are validated questionnaires, an objective emotional facial matching test, and a new video-based eye-tracking test. Secondary outcomes include the GI-severity-index and Bristol Stool Chart to assess GI function and gut microbiome/short-chain fatty acids. All the outcomes will be assessed at baseline and weeks 12 and 24.

Discussion: This pilot study will provide important information on the feasibility of recruitment, blinding and concealment, treatment administration, tolerability and adherence, specimen collection, outcome assessment, potential adverse effects, and the preliminary efficacy on both primary and secondary outcomes. If successful, this pilot study will inform a larger randomized controlled trial fully powered to examine the efficacies of oral L. reuteri probiotics and/or intranasal OXT spray on social-behavioral improvement in ASD patients.

Trial registration: ClinicalTrials.gov, NCT03337035. Registered 8 November 2017.

Keywords: ASD; Autism spectrum disorders; Neuro-social behaviors; OXT; Oxytocin; Probiotics; Randomized controlled trial.

Conflict of interest statement

Competing interestsThe authors declare that they have no competing interests.

© The Author(s). 2020.

Figures

Fig. 1
Fig. 1
Study design. OXT oxytocin, ABC Aberrant Behavior Checklist, SRS social responsiveness scale, GSI gastrointestinal severity index, Gaba gamma-aminobutyric acid, IL interleukin, TGF tumor growth factor, IFN interferon, GFAP glial fibrillary acidic protein, MBP myelin basic protein, TNF tumor necrosis factor, fMRI functional magnetic resonance imaging, L. reuteri Lactobacillus reuteri

References

    1. Baio J, Wiggins L, Christensen DL, Maenner MJ, Daniels J, Warren Z, et al. Prevalence of autism spectrum disorder among children aged 8 years—Autism and Developmental Disabilities Monitoring Network, 11 sites, United States, 2014. MMWR Surveillance Summaries. 2018;67(6):1. doi: 10.15585/mmwr.ss6706a1.
    1. Mayer EA, Padua D, Tillisch K. Altered brain gut axis in autism: comorbidity or causative mechanisms? Bioessays. 2014;36(10):933–939. doi: 10.1002/bies.201400075.
    1. Alam R, Abdolmaleky HM, Zhou JR. Microbiome, inflammation, epigenetic alterations, and mental diseases. Am J Med Genet Part B. 2017;174(6):651–660. doi: 10.1002/ajmg.b.32567.
    1. Stigler KA, Sweeten TL, Posey DJ, McDougle CJ. Autism and immune factors: a comprehensive review. Res Autism Spect Disord. 2009;3(4):840–860. doi: 10.1016/j.rasd.2009.01.007.
    1. Erdman S, Poutahidis T. Microbes and oxytocin: benefits for host physiology and behavior. Int Rev Neurobiol. 2016;131:91–126. doi: 10.1016/bs.irn.2016.07.004.
    1. Pobbe RL, Pearson BL, Defensor EB, Bolivar VJ, Young WS, III, Lee H-J, et al. Oxytocin receptor knockout mice display deficits in the expression of autism-related behaviors. Hormones Behav. 2012;61(3):436–444. doi: 10.1016/j.yhbeh.2011.10.010.
    1. Teng BL, Nikolova VD, Riddick NV, Agster KL, Crowley JJ, Baker LK, et al. Reversal of social deficits by subchronic oxytocin in two autism mouse models. Neuropharmacol. 2016;105:61–71. doi: 10.1016/j.neuropharm.2015.12.025.
    1. Husarova VM, Lakatosova S, Pivovarciova A, Babinska K, Bakos J, Durdiakova J, et al. Plasma oxytocin in children with autism and its correlations with behavioral parameters in children and parents. Psychiatry Invest. 2016;13(2):174–183. doi: 10.4306/pi.2016.13.2.174.
    1. Neumann ID. Brain oxytocin: a key regulator of emotional and social behaviours in both females and males. J Neuroendocrinol. 2008;20(6):858–865. doi: 10.1111/j.1365-2826.2008.01726.x.
    1. Stavropoulos KK, Carver LJ. Research review: social motivation and oxytocin in autism–implications for joint attention development and intervention. J Child Psychol Psychiatry. 2013;54(6):603–618. doi: 10.1111/jcpp.12061.
    1. Andari E, Duhamel J-R, Zalla T, Herbrecht E, Leboyer M, Sirigu A. Promoting social behavior with oxytocin in high-functioning autism spectrum disorders. Proc Nat Acad Sci. 2010;107(9):4389–4394. doi: 10.1073/pnas.0910249107.
    1. Ooi YP, Weng S-J, Kossowsky J, Gerger H, Sung M. Oxytocin and autism spectrum disorders: a systematic review and meta-analysis of randomized controlled trials. Pharmacopsychiatry. 2017;50(01):5–13.
    1. Poutahidis T, Kearney SM, Levkovich T, Qi P, Varian BJ, Lakritz JR, et al. Microbial symbionts accelerate wound healing via the neuropeptide hormone oxytocin. PloS One. 2013;8(10):e78898. doi: 10.1371/journal.pone.0078898.
    1. Buffington SA, Di Prisco GV, Auchtung TA, Ajami NJ, Petrosino JF, Costa-Mattioli M. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell. 2016;165(7):1762–1775. doi: 10.1016/j.cell.2016.06.001.
    1. Sgritta M, Dooling SW, Buffington SA, Momin EN, Francis MB, Britton RA, Costa-Mattioli M. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron. 2019;101(2):246–259. doi: 10.1016/j.neuron.2018.11.018.
    1. Varian BJ, Poutahidis T, DiBenedictis BT, Levkovich T, Ibrahim Y, Didyk E, et al. Microbial lysate upregulates host oxytocin. Brain Behav Immun. 2017;61:36–49. doi: 10.1016/j.bbi.2016.11.002.
    1. Tillisch K, Labus J, Kilpatrick L, Jiang Z, Stains J, Ebrat B, et al. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology. 2013;144(7):1394–401. e4. doi: 10.1053/j.gastro.2013.02.043.
    1. Pinto-Sanchez MI, Hall GB, Ghajar K, Nardelli A, Bolino C, Lau JT, et al. Probiotic Bifidobacterium longum NCC3001 reduces depression scores and alters brain activity: a pilot study in patients with irritable bowel syndrome. Gastroenterology. 2017;153(2):448–59. e8. doi: 10.1053/j.gastro.2017.05.003.
    1. Liu J, Wan GB, Huang MS, Agyapong G, Zhang XY, Liu YW, Song YQ, Tsai YC, Kong XJ. Probiotic therapy for treating behavioral and gastrointestinal symptoms in autism spectrum disorder: a systematic review of clinical trials. Curr Med Sci. 2019;39(2):173–184. doi: 10.1007/s11596-019-2016-4.
    1. Sung V, D’Amico F, Cabana MD, Chau K, Koren G, Savino F, et al. Lactobacillus reuteri to treat infant colic: a meta-analysis. Pediatrics. 2018;141(1):e20171811. doi: 10.1542/peds.2017-1811.
    1. Fatheree NY, Liu Y, Taylor CM, Hoang TK, Cai C, Rahbar MH, et al. Lactobacillus reuteri for infants with colic: a double-blind, placebo-controlled, randomized clinical trial. J Pediatr. 2017;191:170–8. e2. doi: 10.1016/j.jpeds.2017.07.036.
    1. Gutierrez-Castrellon P, Lopez-Velazquez G, Diaz-Garcia L, Jimenez-Gutierrez C, Mancilla-Ramirez J, Estevez-Jimenez J, et al. Diarrhea in preschool children and Lactobacillus reuteri: a randomized controlled trial. Pediatrics. 2014;133:2013–0652. doi: 10.1542/peds.2013-0652.
    1. Parker KJ, Oztan O, Libove RA, Sumiyoshi RD, Jackson LP, Karhson DS, et al. Intranasal oxytocin treatment for social deficits and biomarkers of response in children with autism. Proc Nat Acad Sci. 2017;114(30):8119–8124. doi: 10.1073/pnas.1705521114.
    1. Yatawara C, Einfeld S, Hickie I, Davenport T, Guastella A. The effect of oxytocin nasal spray on social interaction deficits observed in young children with autism: a randomized clinical crossover trial. Mol Psychiatry. 2016;21(9):1225. doi: 10.1038/mp.2015.162.
    1. Constantino J, Gruber C. Social responsive scale (SRS) manual. Los Angeles: Western Psychological Services; 2005.
    1. Wan G, Kong X, Sun B, Yu S, Tu Y, Park J, et al. Applying eye tracking to identify autism spectrum disorder in children. J Autism Dev Disord. 2018;49:1–7.
    1. Hadjikhani N, Zürcher NR, Rogier O, Ruest T, Hippolyte L, Ben-Ari Y, et al. Improving emotional face perception in autism with diuretic bumetanide: a proof-of-concept behavioral and functional brain imaging pilot study. Autism. 2015;19(2):149–157. doi: 10.1177/1362361313514141.
    1. Kong X, Liu J, Cetinbas M, Sadreyev R, Koh M, Huang H, Adeseye A, He P, Zhu J, Russell H, Hobbie C. New and preliminary evidence on altered oral and gut microbiota in individuals with autism spectrum disorder (ASD): implications for ASD diagnosis and subtyping based on microbial biomarkers. Nutrients. 2019;11(9):2128. doi: 10.3390/nu11092128.
    1. Kong X, Wang BK, Park J, Kong J. Introduction of a new video-based eye tracking paradigm for early detection of ASD. North Am J Med Sci. 2017;10(4).
    1. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335. doi: 10.1038/nmeth.f.303.
    1. Masi A, Quintana D, Glozier N, Lloyd A, Hickie I, Guastella A. Cytokine aberrations in autism spectrum disorder: a systematic review and meta-analysis. Mol Psychiatry. 2015;20(4):440. doi: 10.1038/mp.2014.59.
    1. Guloksuz SA, Abali O, Aktas Cetin E, Bilgic Gazioglu S, Deniz G, Yildirim A, et al. Elevated plasma concentrations of S100 calcium-binding protein B and tumor necrosis factor alpha in children with autism spectrum disorders. Revista Brasileira de Psiquiatria. 2017;39(3):195–200. doi: 10.1590/1516-4446-2015-1843.
    1. Al-Ayadhi LY, Mostafa GA. A lack of association between elevated serum levels of S100B protein and autoimmunity in autistic children. J Neuroinflam. 2012;9(1):54.
    1. Esnafoglu E, Ayyıldız SN, Cırrık S, Erturk EY, Erdil A, Daglı A, et al. Evaluation of serum neuron-specific enolase, S100B, myelin basic protein and glial fibrilliary acidic protein as brain specific proteins in children with autism spectrum disorder. Int J Dev Neurosci. 2017;61:86–91. doi: 10.1016/j.ijdevneu.2017.06.011.
    1. Laurence J, Fatemi S. Glial fibrillary acidic protein is elevated in superior frontal, parietal and cerebellar cortices of autistic subjects. Cerebellum. 2005;4(3):206–210. doi: 10.1080/14734220500208846.
    1. Launay J-M, Bursztejn C, Ferrari P, Dreux C, Braconnier A, Zarifian E, et al. Catecholamines metabolism in infantile autism: a controlled study of 22 autistic children. J Autism Dev Disord. 1987;17(3):333–347. doi: 10.1007/BF01487064.
    1. Nicolucci AC, Hume MP, Martínez I, Mayengbam S, Walter J, Reimer RA. Prebiotics reduce body fat and alter intestinal microbiota in children who are overweight or with obesity. Gastroenterology. 2017;153(3):711–722. doi: 10.1053/j.gastro.2017.05.055.

Source: PubMed

3
Se inscrever