Clinical review: anticoagulation for continuous renal replacement therapy--heparin or citrate?

Heleen M Oudemans-van Straaten, John A Kellum, Rinaldo Bellomo, Heleen M Oudemans-van Straaten, John A Kellum, Rinaldo Bellomo

Abstract

Heparin is the most commonly prescribed anticoagulant for continuous renal replacement therapy. There is, however, increasing evidence questioning its safety, particularly in the critically ill. Heparin mainly confers its anticoagulant effect by binding to antithrombin. Heparin binds to numerous other proteins and cells as well, however, compromising its efficacy and safety. Owing to antithrombin consumption and degradation, and to the binding of heparin to acute phase proteins, and to apoptotic and necrotic cells, critical illness confers heparin resistance. The nonspecific binding of heparin further leads to an unpredictable interference with inflammation pathways, microcirculation and phagocytotic clearance of dead cells, with possible deleterious consequences for patients with sepsis and systemic inflammation. Regional anticoagulation with citrate does not increase the patient's risk of bleeding. The benefits of citrate further include a longer or similar circuit life, and possibly better patient and kidney survival. This needs to be confirmed in larger randomized controlled multicenter trials. The use of citrate might be associated with less inflammation and has useful bio-energetic implications. Citrate can, however, with inadequate use cause metabolic derangements. Full advantages of citrate can only be realized if its risks are well controlled. These observations suggest a greater role for citrate.

© 2011 BioMed Central Ltd

Figures

Figure 1
Figure 1
Simplification of heparin binding to proteins and cells. Heparins bind to proteins and cells, and thereby interfere with the inflammatory cascade and, altogether, confer unpredictable consequences for critically ill patients. H, heparin; AT, antithrombin; LBP, lipopolysaccharide-binding protein; M, monocyte; MPO, myeloperoxidase; SOD, superoxide dismutase; GAGs, glucosaminoglycans; P, platelet; L, leukocyte.

References

    1. Uchino S, Bellomo R, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, Gibney N, Tolwani A, Oudemans-van Straaten H, Ronco C, Kellum JA. Continuous renal replacement therapy: a worldwide practice survey. The beginning and ending supportive therapy for the kidney (B.E.S.T. kidney) investigators. Intensive Care Med. 2007;33:1563–1570. doi: 10.1007/s00134-007-0754-4.
    1. Hirsh J, Warkentin TE, Shaughnessy SG, Anand SS, Halperin JL, Raschke R, Granger C, Ohman EM, Dalen JE. Heparin and low-molecular-weight heparin: mechanisms of action, pharmacokinetics, dosing, monitoring, efficacy, and safety. Chest. 2001;119:64S–94S. doi: 10.1378/chest.119.1_suppl.64S.
    1. Cohen JR, Sarfati I, Birnbaum E, Benacquista T, Wise L. The inactivation of antithrombin III by serum elastase in patients with surgical infections. Am Surg. 1990;56:665–667.
    1. Jordan RE, Nelson RM, Kilpatrick J, Newgren JO, Esmon PC, Fournel MA. Antithrombin inactivation by neutrophil elastase requires heparin. Am J Med. 1989;87:19S–22S. doi: 10.1016/0002-9343(89)80526-1.
    1. Manson L, Weitz JI, Podor TJ, Hirsh J, Young E. The variable anticoagulant response to unfractionated heparin in vivo reflects binding to plasma proteins rather than clearance. J Lab Clin Med. 1997;130:649–655. doi: 10.1016/S0022-2143(97)90115-3.
    1. Liu S, Hoke D, Julian J, Carson DD. Heparin/heparan sulfate (HP/HS) interacting protein (HIP) supports cell attachment and selective, high affinity binding of HP/HS. J Biol Chem. 1997;272:25856–25862. doi: 10.1074/jbc.272.41.25856.
    1. Young E, Podor TJ, Venner T, Hirsh J. Induction of the acute-phase reaction increases heparin-binding proteins in plasma. Arterioscler Thromb Vasc Biol. 1997;17:1568–1574.
    1. Cosmi B, Fredenburgh JC, Rischke J, Hirsh J, Young E, Weitz JI. Effect of nonspecific binding to plasma proteins on the antithrombin activities of unfractionated heparin, low-molecular-weight heparin, and dermatan sulfate. Circulation. 1997;95:118–124.
    1. Hochart H, Jenkins PV, Preston RJ, Smith OP, White B, O'Donnell J. Concentration-dependent roles for heparin in modifying lipopolysaccharide-induced activation of mononuclear cells in whole blood. Thromb Haemost. 2008;99:570–575.
    1. Gebska MA, Titley I, Paterson HF, Morilla RM, Davies DC, Gruszka-Westwood AM, Kakkar VV, Eccles S, Scully MF. High-affinity binding sites for heparin generated on leukocytes during apoptosis arise from nuclear structures segregated during cell death. Blood. 2002;99:2221–2227. doi: 10.1182/blood.V99.6.2221.
    1. Oudemans-Van Straaten HM, van SM, Molenaar PJ, Wester JP, Leyte A. Hemostasis during low molecular weight heparin anticoagulation for continuous venovenous hemofiltration: a randomized cross-over trial comparing two hemofiltration rates. Crit Care. 2009;13:R193. doi: 10.1186/cc8191.
    1. van de Wetering J, Westendorp RG, van der Hoeven JG, Stolk B, Feuth JD, Chang PC. Heparin use in continuous renal replacement procedures: the struggle between filter coagulation and patient hemorrhage. J Am Soc Nephrol. 1996;7:145–150.
    1. Oudemans-Van Straaten HM, Wester JP, de Pont AC, Schetz MR. Anticoagulation strategies in continuous renal replacement therapy: can the choice be evidence based? Intensive Care Med. 2006;32:188–202. doi: 10.1007/s00134-005-0044-y.
    1. Carr JA, Silverman N. The heparin-protamine interaction. A review. J Cardiovasc Surg (Torino) 1999;40:659–666.
    1. Warren BL, Eid A, Singer P, Pillay SS, Carl P, Novak I, Chalupa P, Atherstone A, Penzes I, Kubler A, Knaub S, Keinecke HO, Heinrichs H, Schindel F, Juers M, Bone RC, Opal SM. Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: a randomized controlled trial. JAMA. 2001;286:1869–1878. doi: 10.1001/jama.286.15.1869.
    1. Leithauser B, Schumacher J, Lendemans S, Tillmanns H, Matthias FR. Antithrombin attenuates microvascular leakage and leukocyte- endothelial interaction in response to endotoxin. Semin Thromb Hemost. 2002;28(Suppl 1):87–94. doi: 10.1055/s-2002-30201.
    1. Hoffmann JN, Vollmar B, Laschke MW, Inthorn D, Kaneider NC, Dunzendorfer S, Wiedermann CJ, Romisch J, Schildberg FW, Menger MD. Adverse effect of heparin on antithrombin action during endotoxemia: microhemodynamic and cellular mechanisms. Thromb Haemost. 2002;88:242–252.
    1. Heinzelmann M, Bosshart H. Heparin binds to lipopolysaccharide (LPS)-binding protein, facilitates the transfer of LPS to CD14, and enhances LPS-induced activation of peripheral blood monocytes. J Immunol. 2005;174:2280–2287.
    1. Borawski J. Myeloperoxidase as a marker of hemodialysis biocompatibility and oxidative stress: the underestimated modifying effects of heparin. Am J Kidney Dis. 2006;47:37–41. doi: 10.1053/j.ajkd.2005.10.001.
    1. Gritters M, Borgdorff P, Grooteman MP, Schoorl M, Schoorl M, Bartels PC, Tangelder GJ, Nube MJ. Platelet activation in clinical haemodialysis: LMWH as a major contributor to bio-incompatibility? Nephrol Dial Transplant. 2008;23:2911–2917. doi: 10.1093/ndt/gfn137.
    1. Myrup B, Yokoyama H, Kristiansen OP, Ostergaard PB, Olivecrona T. Release of endothelium-associated proteins into blood by injection of heparin in normal subjects and in patients with type 1 diabetes. Diabet Med. 2004;21:1135–1140. doi: 10.1111/j.1464-5491.2004.01313.x.
    1. Tasaki H, Yamashita K, Tsutsui M, Kamezaki F, Kubara T, Tanaka S, Sasaguri Y, Adachi T, Nakashima Y. Heparin-released extracellular superoxide dismutase is reduced in patients with coronary artery atherosclerosis. Atherosclerosis. 2006;187:131–138. doi: 10.1016/j.atherosclerosis.2005.08.028.
    1. Cornet AD, Smit EG, Beishuizen A, Groeneveld AB. The role of heparin and allied compounds in the treatment of sepsis. Thromb Haemost. 2007;98:579–586.
    1. Levi M, van der Poll T. Inflammation and coagulation. Crit Care Med. 2010;38:S26–S34. doi: 10.1097/CCM.0b013e3181c98d21.
    1. Black SC, Gralinski MR, Friedrichs GS, Kilgore KS, Driscoll EM, Lucchesi BR. Cardioprotective effects of heparin or N-acetylheparin in an in vivo model of myocardial ischaemic and reperfusion injury. Cardiovasc Res. 1995;29:629–636.
    1. Wang L, Brown JR, Varki A, Esko JD. Heparin's anti-inflammatory effects require glucosamine 6-O-sulfation and are mediated by blockade of L-and P-selectins. J Clin Invest. 2002;110:127–136.
    1. Thourani VH, Brar SS, Kennedy TP, Thornton LR, Watts JA, Ronson RS, Zhao ZQ, Sturrock AL, Hoidal JR, Vinten-Johansen J. Nonanticoagulant heparin inhibits NF-κB activation and attenuates myocardial reperfusion injury. Am J Physiol Heart Circ Physiol. 2000;278:H2084–H2093.
    1. Hoffmann JN, Hartl WH, Faist E, Jochum M, Inthorn D. Tumor necrosis factor measurement and use of different anticoagulants: possible interference in plasma samples and supernatants from endotoxin-stimulated monocytes. Inflamm Res. 1997;46:342–347. doi: 10.1007/s000110050199.
    1. Leitienne P, Fouque D, Rigal D, Adeleine P, Trzeciak MC, Laville M. Heparins and blood polymorphonuclear stimulation in haemodialysis: an expansion of the biocompatibility concept. Nephrol Dial Transplant. 2000;15:1631–1637. doi: 10.1093/ndt/15.10.1631.
    1. Warkentin TE. Heparin-induced thrombocytopenia: diagnosis and management. Circulation. 2004;110:e454–e458. doi: 10.1161/01.CIR.0000147537.72829.1B.
    1. Verma AK, Levine M, Shalansky SJ, Carter CJ, Kelton JG. Frequency of heparin-induced thrombocytopenia in critical care patients. Pharmacotherapy. 2003;23:745–753. doi: 10.1592/phco.23.6.745.32188.
    1. Selleng K, Warkentin TE, Greinacher A. Heparin-induced thrombocytopenia in intensive care patients. Crit Care Med. 2007;35:1165–1176. doi: 10.1097/01.CCM.0000259538.02375.A5.
    1. Selleng S, Selleng K, Wollert HG, Muellejans B, Lietz T, Warkentin TE, Greinacher A. Heparin-induced thrombocytopenia in patients requiring prolonged intensive care unit treatment after cardiopulmonary bypass. J Thromb Haemost. 2008;6:428–435. doi: 10.1111/j.1538-7836.2007.02870.x.
    1. Oudemans-Van Straaten HM. In: Controversies in Intensive Care Medicine. Kuhlen R, Moreno R, Ranieri M, Rhodes A, editor. Berlin: Medizinische Wissenschaftliche Verlagsgesellschaft; 2008. Anticoagulation for renal replacement therapy: heparin or citrate; pp. 153–161.
    1. Oudemans-Van Straaten HM, Bosman RJ, Koopmans M, van der Voort PH, Wester JP, van der Spoel JI, Dijksman LM, Zandstra DF. Citrate anticoagulation for continuous venovenous hemofiltration. Crit Care Med. 2009;37:545–552. doi: 10.1097/CCM.0b013e3181953c5e.
    1. Swartz R, Pasko D, O'Toole J, Starmann B. Improving the delivery of continuous renal replacement therapy using regional citrate anticoagulation. Clin Nephrol. 2004;61:134–143.
    1. Oudemans-Van Straaten HM. Citrate anticoagulation for continuous renal replacement therapy in the critically ill. Blood Purif. 2010;29:191–196. doi: 10.1159/000245646.
    1. Joannidis M, Oudemans-Van Straaten HM. Clinical review: Patency of the circuit in continuous renal replacement therapy. Crit Care. 2007;11:218. doi: 10.1186/cc5937.
    1. Morgan TJ. The Stewart approach - one clinician's perspective. Clin Biochem Rev. 2009;30:41–54.
    1. Egi M, Naka T, Bellomo R, Cole L, French C, Trethewy C, Wan L, Langenberg CC, Fealy N, Baldwin I. A comparison of two citrate anticoagulation regimens for continuous veno-venous hemofiltration. Int J Artif Organs. 2005;28:1211–1218.
    1. Apsner R, Schwarzenhofer M, Derfler K, Zauner C, Ratheiser K, Kranz A. Impairment of citrate metabolism in acute hepatic failure. Wien Klin Wochenschr. 1997;109:123–127.
    1. Kramer L, Bauer E, Joukhadar C, Strobl W, Gendo A, Madl C, Gangl A. Citrate pharmacokinetics and metabolism in cirrhotic and noncirrhotic critically ill patients. Crit Care Med. 2003;31:2450–2455. doi: 10.1097/01.CCM.0000084871.76568.E6.
    1. Meier-Kriesche HU, Gitomer J, Finkel K, DuBose T. Increased total to ionized calcium ratio during continuous venovenous hemodialysis with regional citrate anticoagulation. Crit Care Med. 2001;29:748–752. doi: 10.1097/00003246-200104000-00010.
    1. Bakker AJ, Boerma EC, Keidel H, Kingma P, van der Voort PH. Detection of citrate overdose in critically ill patients on citrate-anticoagulated venovenous haemofiltration: use of ionised and total/ionised calcium. Clin Chem Lab Med. 2006;44:962–966. doi: 10.1515/CCLM.2006.164.
    1. Hetzel GR, Taskaya G, Sucker C, Hennersdorf M, Grabensee B, Schmitz M. Citrate plasma levels in patients under regional anticoagulation in continuous venovenous hemofiltration. Am J Kidney Dis. 2006;48:806–811. doi: 10.1053/j.ajkd.2006.07.016.
    1. Bohler J, Schollmeyer P, Dressel B, Dobos G, Horl WH. Reduction of granulocyte activation during hemodialysis with regional citrate anticoagulation: dissociation of complement activation and neutropenia from neutrophil degranulation. J Am Soc Nephrol. 1996;7:234–241.
    1. Bohler J, Donauer J, Birmelin M, Schollmeyer PJ, Horl WH. Mediators of complement-independent granulocyte activation during haemodialysis: role of calcium, prostaglandins and leukotrienes. Nephrol Dial Transplant. 1993;8:1359–1365.
    1. Andersson T, Dahlgren C, Pozzan T, Stendahl O, Lew PD. Characterization of fMet-Leu-Phe receptor-mediated Ca2+ influx across the plasma membrane of human neutrophils. Mol Pharmacol. 1986;30:437–443.
    1. Lew PD, Wollheim CB, Waldvogel FA, Pozzan T. Modulation of cytosolic-free calcium transients by changes in intracellular calcium-buffering capacity: correlation with exocytosis and O2-production in human neutrophils. J Cell Biol. 1984;99:1212–1220. doi: 10.1083/jcb.99.4.1212.
    1. Haag-Weber M, Mai B, Deppisch R, Gohl H, Horl WH. Studies of biocompatibility of different dialyzer membranes: role of complement system, intracellular calcium and inositol-triphosphate. Clin Nephrol. 1994;41:245–251.
    1. Dhondt A, Vanholder R, Tielemans C, Glorieux G, Waterloos MA, De Smet R, Lameire N. Effect of regional citrate anticoagulation on leukopenia, complement activation, and expression of leukocyte surface molecules during hemodialysis with unmodified cellulose membranes. Nephron. 2000;85:334–342. doi: 10.1159/000045683.
    1. Gabutti L, Ferrari N, Mombelli G, Keller F, Marone C. The favorable effect of regional citrate anticoagulation on interleukin-1β release is dissociated from both coagulation and complement activation. J Nephrol. 2004;17:819–825.
    1. Polanska K, Opatrny K, Rokyta R, Krouzecky A, Vit L, Kasal E. Effect of regional citrate anticoagulation on thrombogenicity and biocompatibility during CVVHDF. Ren Fail. 2006;28:107–118. doi: 10.1080/08860220500530338.
    1. Bos JC, Grooteman MP, van Houte AJ, Schoorl M, van Limbeek J, Nube MJ. Low polymorphonuclear cell degranulation during citrate anticoagulation: a comparison between citrate and heparin dialysis. Nephrol Dial Transplant. 1997;12:1387–1393. doi: 10.1093/ndt/12.7.1387.
    1. Food energy - methods of analysis and conversion factors. FAO Food and Nutrition Paper 77.
    1. Citric acid.
    1. Balik M, Zakharchenko M, Otahal M, Hruby J, Rusinova K, Polak F, Stach Z, Vavrova J, Jabor A. Quantification of systemic dose of substrates for intermediate metabolism during citrate anticoagulation of continous renal replacement therapy. Intensive Care Med. 2010;36:S293.
    1. Vary TC, Hazen SA, Maish G, Cooney RN. TNF binding protein prevents hyperlactatemia and inactivation of PDH complex in skeletal muscle during sepsis. J Surg Res. 1998;80:44–51. doi: 10.1006/jsre.1998.5324.
    1. Weinberg JM, Venkatachalam MA, Roeser NF, Nissim I. Mitochondrial dysfunction during hypoxia/reoxygenation and its correction by anaerobic metabolism of citric acid cycle intermediates. Proc Natl Acad Sci USA. 2000;97:2826–2831. doi: 10.1073/pnas.97.6.2826.
    1. Feldkamp T, Weinberg JM, Horbelt M, Von Kropff C, Witzke O, Nurnberger J, Kribben A. Evidence for involvement of nonesterified fatty acid-induced protonophoric uncoupling during mitochondrial dysfunction caused by hypoxia and reoxygenation. Nephrol Dial Transplant. 2009;24:43–51. doi: 10.1093/ndt/gfn436.
    1. Ward DM, Mehta RL. Extracorporeal management of acute renal failure patients at high risk of bleeding. Kidney Int Suppl. 1993;41:S237–S244.
    1. van der Voort PH, Postma SR, Kingma WP, Boerma EC, Van Roon EN. Safety of citrate based hemofiltration in critically ill patients at high risk for bleeding: a comparison with nadroparin. Int J Artif Organs. 2006;29:559–563.
    1. Monchi M, Berghmans D, Ledoux D, Canivet JL, Dubois B, Damas P. Citrate vs. heparin for anticoagulation in continuous venovenous hemofiltration: a prospective randomized study. Intensive Care Med. 2004;30:260–265. doi: 10.1007/s00134-003-2047-x.
    1. Kutsogiannis DJ, Gibney RT, Stollery D, Gao J. Regional citrate versus systemic heparin anticoagulation for continuous renal replacement in critically ill patients. Kidney Int. 2005;67:2361–2367. doi: 10.1111/j.1523-1755.2005.00342.x.
    1. Betjes MG, van Oosterom D, van Agteren M, van de WJ. Regional citrate versus heparin anticoagulation during venovenous hemofiltration in patients at low risk for bleeding: similar hemofilter survival but significantly less bleeding. J Nephrol. 2007;20:602–608.
    1. Hetzel GR, Schmitz M, Wissing H, Ries W, Schott G, Heering PJ, Isgro F, Kribben A, Himmele R, Grabensee B, Rump LC. Regional citrate versus systemic heparin for anticoagulation in critically ill patients on continuous venovenous haemofiltration: a prospective randomized multicentre trial. Nephrol Dial Transplant. 2010;26:232–239. doi: 10.1093/ndt/gfq575.

Source: PubMed

3
Se inscrever