Re-thinking resuscitation: leaving blood pressure cosmetics behind and moving forward to permissive hypotension and a tissue perfusion-based approach

Martin W Dünser, Jukka Takala, Andreas Brunauer, Jan Bakker, Martin W Dünser, Jukka Takala, Andreas Brunauer, Jan Bakker

Abstract

Definitions of shock and resuscitation endpoints traditionally focus on blood pressures and cardiac output. This carries a high risk of overemphasizing systemic hemodynamics at the cost of tissue perfusion. In line with novel shock definitions and evidence of the lack of a correlation between macro- and microcirculation in shock, we recommend that macrocirculatory resuscitation endpoints, particularly arterial and central venous pressure as well as cardiac output, be reconsidered. In this viewpoint article, we propose a three-step approach of resuscitation endpoints in shock of all origins. This approach targets only a minimum individual and context-sensitive mean arterial blood pressure (for example, 45 to 50 mm Hg) to preserve heart and brain perfusion. Further resuscitation is exclusively guided by endpoints of tissue perfusion irrespectively of the presence of arterial hypotension ('permissive hypotension'). Finally, optimization of individual tissue (for example, renal) perfusion is targeted. Prospective clinical studies are necessary to confirm the postulated benefits of targeting these resuscitation endpoints.

Figures

Figure 1
Figure 1
Hydrostatic pressures in circulation. Microcirculation pressure is indicated by shaded area. Values shown to the left and right indicate arterial and venous portions of circulation, respectively. Unlabeled solid curve in both frames represents a normal pressure profile. Left panel: curve A represents maximal arteriolar constriction, and curve B represents arteriolar dilation. Right panel: curves A and B represent decreasing arterial and increasing venous pressures, respectively. Reprinted with permission from the American Physiological Society [21].
Figure 2
Figure 2
Physiologic components of arterial blood pressure (a) and correlation between mean arterial blood pressure and cardiac index (b) in 39 patients with sepsis. The number of pulmonary artery catheter measurements was 15,836.
Figure 3
Figure 3
Hierarchy of resuscitation endpoints. MAP, mean arterial blood pressure.
Figure 4
Figure 4
Bedside considerations of macrocirculatory versus tissue perfusion-based resuscitation endpoints. Hb, hemoglobin; PaO2, arterial partial pressure of oxygen; SaO2, arterial oxygen saturation; StO2, tissue (muscle) oxygen saturation.

References

    1. Murphy CV, Schramm GE, Doherty JA, Reichley RM, Gajic O, Afessa B, Micek ST, Kollef MH. The importance of fluid management in acute lung injury secondary to septic shock. Chest. 2009;17:102–109. doi: 10.1378/chest.08-2706.
    1. Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;17:259–265. doi: 10.1097/CCM.0b013e3181feeb15.
    1. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC, Brun-Buisson C, Beale R, Calandra T, Dhainaut JF, Gerlach H, Harvey M, Marini JJ, Marshall J, Ranieri M, Ramsay G, Sevransky J, Thompson BT, Townsend S, Vender JS, Zimmerman JL, Vincent JL. Survivign Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med. 2008;17:783–785. doi: 10.1007/s00134-008-1040-9.
    1. Rossaint R, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernández-Mondéjar E, Hunt BJ, Komadina R, Nardi G, Neugebauer E, Ozier Y, Riddez L, Schultz A, Stahel PF, Vincent JL, Spahn DR. Task Force for Advanced Bleeding Care in Trauma. Management of bleeding following major trauma: an updated European guideline. Crit Care. 2010;17:R52. doi: 10.1186/cc8943.
    1. Taylor AE, Moore TM. Capillary fluid exchange. Am J Physiol. 1999;17:S203–210.
    1. Torgersen C, Schmittinger CA, Wagner S, Ulmer H, Takala J, Jakob SM, Dünser MW. Hemodynamic variables and mortality in cardiogenic shock: a retrospective cohort study. Crit Care. 2009;17:R157. doi: 10.1186/cc8114.
    1. Dünser MW, Takala J, Ulmer H, Mayr VD, Luckner G, Jochberger S, Daudel F, Lepper P, Hasibeder WR, Jakob SM. Arterial blood pressure during early sepsis and outcome. Intensive Care Med. 2009;17:1225–1233. doi: 10.1007/s00134-009-1427-2.
    1. Wo CC, Shoemaker WC, Appel PL, Bishop MH, Kram HB, Hardin E. Unreliability of blood pressure and heart rate to evaluate cardiac output in emergency resuscitation and critical illness. Crit Care Med. 1993;17:218–223. doi: 10.1097/00003246-199302000-00012.
    1. De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;17:98–104. doi: 10.1164/rccm.200109-016OC.
    1. Lima A, van Bommel J, Jansen TC, Ince C, Bakker J. Low tissue oxygen saturation at the end of early goal-directed therapy is associated with worse outcome in critically ill patients. Crit Care. 2009;17(Suppl 5):S13. doi: 10.1186/cc8011.
    1. Lima A, van Bommel J, Sikorska K, van Genderen M, Klijn E, Lesaffre E, Ince C, Bakker J. The relation of near-infrared spectroscopy with changes in peripheral circulation in critically ill patients. Crit Care Med. 2011;17:1649–1654. doi: 10.1097/CCM.0b013e3182186675.
    1. Dubin A, Pozo MO, Casabella CA, Pálizas F Jr, Murias G, Moseinco MC, Kanoore Edul VS, Pálizas F, Estenssoro E, Ince C. Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: a prospective study. Crit Care. 2009;17:R92. doi: 10.1186/cc7922.
    1. LeDoux D, Astiz ME, Carpati CM, Rackow EC. Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med. 2000;17:2729–2732. doi: 10.1097/00003246-200008000-00007.
    1. Bourgoin A, Leone M, Delmas A, Garnier F, Albanèse J, Martin C. Increasing mean arterial pressure in patients with septic shock: effects on oxygen variables and renal function. Crit Care Med. 2005;17:780–786. doi: 10.1097/01.CCM.0000157788.20591.23.
    1. Maier S, Hasibeder WR, Hengl C, Pajk W, Schwarz B, Margreiter J, Ulmer H, Engl J, Knotzer H. Effects of phenylephrine on the sublingual microcirculation during cardiopulmonary bypass. Br J Anaesth. 2009;17:485–491. doi: 10.1093/bja/aep018.
    1. Appelbaum A, Bitran D, Merin G, Borman JB. Afterload reduction and cardiac output in patients after mitral valve surgery. Thorac Cardiovasc Surg. 1980;17:414–419. doi: 10.1055/s-2007-1022442.
    1. Abid O, Akca S, Haji-Michael P, Vincent JL. Strong vasopressor support may be futile in the intensive care unit patient with multiple organ failure. Crit Care Med. 2000;17:947–949. doi: 10.1097/00003246-200004000-00006.
    1. Ait-Oufella H, Lemoinne S, Boelle PY, Galbois A, Baudel JL, Lemant J, Joffre J, Margetis D, Guidet B, Maury E, Off enstadt G. Mottling score predicts survival in septic shock. Intensive Care Med. 2011;17:801–807. doi: 10.1007/s00134-011-2163-y.
    1. Dünser MW, Mayr AJ, Tür A, Pajk W, Barbara F, Knotzer H, Ulmer H, Hasibeder WR. Ischemic skin lesions as a complication of continuous vasopressin infusion in catecholamine-resistant vasodilatory shock: incidence and risk factors. Crit Care Med. 2003;17:1394–1398. doi: 10.1097/01.CCM.0000059722.94182.79.
    1. Shippy CR, Appel PL, Shoemaker WC. Reliability of clinical monitoring to assess blood volume in critically ill patients. Crit Care Med. 1984;17:107–112. doi: 10.1097/00003246-198402000-00005.
    1. Ferrer R, Artigas A, Suarez D, Palencia E, Levy MM, Arenzana A, Pérez XL, Sirvent JM. Edusepsis Study Group. Effectiveness of treatments for severe sepsis: a prospective, multicenter, observational study. Am J Respir Crit Care Med. 2009;17:861–866. doi: 10.1164/rccm.200812-1912OC.
    1. Magder S. Fluid status and fluid responsiveness. Curr Opin Crit Care. 2010;17:289–296. doi: 10.1097/MCC.0b013e32833b6bab.
    1. Persichini R, Silva S, Teboul JL, Jozwiak M, Chemla D, Richard C, Monnet X. Effects of norepinephrine on mean systemic pressure and venous return in human septic shock. Crit Care Med. 2012;17:3146–3153. doi: 10.1097/CCM.0b013e318260c6c3.
    1. Bouferrache K, Amiel JB, Chimot L, Caille V, Charron C, Vignon P, Vieillard-Baron A. Initial resuscitation guided by the Surviving Sepsis Campaign recommendations and early echocardiographic assessment of hemodynamics in intensive care unit septic patients: a pilot study. Crit Care Med. 2012;17:2821–2827. doi: 10.1097/CCM.0b013e31825bc565.
    1. Rady MY, Rivers EP, Martin GB, Smithline H, Appelton T, Nowak RM. Continuous central venous oximetry and shock index in the emergency department: use in the evaluation of clinical shock. Am J Emerg Med. 1992;17:538–541. doi: 10.1016/0735-6757(92)90178-Z.
    1. Rady MY, Rivers EP, Nowak RM. Resuscitation of the critically ill in the ED: responses of blood pressure, heart rate, shock index, central venous oxygen saturation, and lactate. Am J Emerg Med. 1996;17:218–225. doi: 10.1016/S0735-6757(96)90136-9.
    1. Torgersen C, Dünser MW, Schmittinger CA, Pettilä V, Ruokonen E, Wenzel V, Jakob SM, Takala J. Current approach to the haemodynamic management of septic shock patients in European intensive care units: a cross-sectional, self-reported questionnaire-based survey. Eur J Anaesthesiol. 2011;17:284–290.
    1. Segal S. Regulation of blood flow in the microcirculation. Microcirculation. 2005;17:33–45. doi: 10.1080/10739680590895028.
    1. Koller A, Kaley G. Endothelium regulates skeletal muscle microcirculation by a blood flow velocity-sensing mechanism. Am J Physiol. 1990;17:H916–H920.
    1. Stamler JS, Jia L, Eu JP, McMahon TJ, Demchenko IT, Bonaventura J, Gernert K, Piantadosi CA. Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science. 1997;17:2034–2037. doi: 10.1126/science.276.5321.2034.
    1. Guyton AC, Hall JE. In: Textbook of Medical Physiology. 10. Guyton AC, Hall JE, editor. Philadelphia: Saunders; 2000. Nervous regulation of the circulation, and rapid control of arterial pressure; pp. 184–194.
    1. Opie LH, Heusch G. In: Heart Physiology: From Cell to Circulation. 4. Opie LH, editor. Philadelphia: Lippincott Williams & Wilkins; 2004. Oxygen supply: coronary flow; pp. 279–305.
    1. Rowell LB. In: Human Circulation: Regulation During Physical Stress. 1. Rowell LB, editor. New York: Oxford University Press; 1986. Cerebral and coronary circulations; pp. 117–136. Inc.
    1. Subramanian S, Yilmaz M, Rehman A, Hubmayr RD, Afessa B, Gajic O. Liberal vs. conservative vasopressor use to maintain mean arterial blood pressure during resuscitation of septic shock: an observational study. Intensive Care Med. 2008;17:157–162. doi: 10.1007/s00134-007-0862-1.
    1. Knotzer H, Hasibeder WR. Microcirculation function monitoring at the bedside - a view from the intensive care. Physiol Meas. 2007;17:R65–R86. doi: 10.1088/0967-3334/28/9/R01.
    1. Vallée F, Vallet B, Mathe O, Parraguette J, Mari A, Silva S, Samii K, Fourcade O, Genestal M. Central venous-to-arterial carbon dioxide difference: an additional target for goal-directed therapy in septic shock? Intensive Care Med. 2008;17:2218–2225. doi: 10.1007/s00134-008-1199-0.
    1. Paladino L, Sinert R, Wallace D, Anderson T, Yadav K, Zehtabchi S. The utility of base deficit and arterial lactate in differentiating major from minor injury in trauma patients with normal vital signs. Resuscitation. 2008;17:363–368. doi: 10.1016/j.resuscitation.2008.01.022.
    1. Yu M, Chapital A, Ho HC, Wang J, Takanishi D Jr. A prospective randomized trial comparing oxygen delivery versus transcutaneous pressure of oxygen values as resuscitative goals. Shock. 2007;17:615–622. doi: 10.1097/shk.0b013e31802f0295.
    1. Weil MH, Nakagawa Y, Tang W, Sato Y, Ercoli F, Finegan R, Grayman G, Bisera J. Sublingual capnometry: a new noninvasive measurement for diagnosis and quantitation of severity of circulatory shock. Crit Care Med. 1999;17:1225–1229. doi: 10.1097/00003246-199907000-00001.
    1. Schmittinger CA, Torgersen C, Luckner G, Schröder DC, Lorenz I, Dünser MW. Adverse cardiac events during catecholamine vasopressor therapy: a prospective observational study. Intensive Care Med. 2012;17:950–958. doi: 10.1007/s00134-012-2531-2.
    1. Dünser MW, Ruokonen E, Pettilä V, Ulmer H, Torgersen C, Schmittinger CA, Jakob S, Takala J. Association of arterial blood pressure and vasopressor load with septic shock mortality: a post hoc analysis of a multicenter trial. Crit Care. 2009;17:R181. doi: 10.1186/cc8167.
    1. Scher AM. Mechanism of autoregulation of renal blood flow. Nature. 1959;17(suppl 17):1322–1323.
    1. Albanèse J, Leone M, Garnier F, Bourgoin A, Antonini F, Martin C. Renal effects of norepinephrine in septic and nonseptic patients. Chest. 2004;17:534–539. doi: 10.1378/chest.126.2.534.
    1. Bellomo R, Giantomasso DD. Noradrenaline and the kidney: friends or foes? Crit Care. 2001;17:294–298. doi: 10.1186/cc1052.
    1. Deruddre S, Cheisson G, Mazoit JX, Vicaut E, Benhamou D, Duranteau J. Renal arterial resistance in septic shock: effects of increasing mean arterial pressure with norepinephrine on the renal resistive index assessed with Doppler ultrasonography. Intensive Care Med. 2007;17:1557–1562. doi: 10.1007/s00134-007-0665-4.

Source: PubMed

3
Se inscrever